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In this study, a Reynolds stress closure, including the Pantano and Sarkar model of the
mean part of the pressure–strain correlation is used for the computation of compressible
homogeneous at high-speed shear flow. Several studies concerning the compressible
homogeneous shear flow show that the changes of the turbulence structures are principally
due to the structural compressibility effects which significantly affect the pressure field
and then the pressure–strain correlation. Eventually, this term appears as the main term
responsible for the changes in the magnitude of the Reynolds stress anisotropies. The
structure of the gradient Mach number is similar to that of turbulence, therefore this
parameter may be appropriate to study the changes in turbulence structures that arise
from structural compressibility effects. Thus, the incompressible model of the pressure
strain correlation and its corrected form by using the turbulent Mach turbulent only, fail to
correctly evaluate the compressibility effects at high shear flow. An extension of the widely
used incompressible Launder, Reece and Rodi model on compressible homogeneous shear
flow is the major aim of the present work. From this extension, the standard coefficients
Ci become a function of the extra compressibility parameters (the turbulent Mach number
Mt and the gradient Mach number Mg ) through the Pantano and Sarkar model. Application
of the model on compressible homogeneous shear flow by considering various initial
conditions shows reasonable agreement with the DNS results of Simone et al. and Sarkar.
The observed trend of the dramatic increase in the normal Reynolds stress anisotropies,
the significant decrease in the Reynolds shear stress anisotropy and the increase of the
turbulent kinetic energy amplification rate with increasing the gradient Mach number are
well predicted by the model. The ability of the model to predict the equilibrium states for
the flow in cases A1 to A4 from DNS results of Sarkar is examined, the results appear to be
very encouraging. Thus, both parameters Mt and Mg should be used to model significant
structural compressibility effects at high-speed shear flow.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The extension of the standard models to compressible flows represents a research topic of great scientific and industrial
interest. A major challenge related to this extension is to involve compressibility effects that appear in most of high-speed
turbulent flows, such as supersonic and hypersonic of aerodynamic importance. In this context, extensive research initiatives
in compressible modeling have been conducted during the last few years. It is well known that the standard models fail
to predict high compressible flows. In recent studies, Spezial et al. [1] employed the Favre Reynolds-stress closure with the
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addition of the compressible dissipation and pressure–dilatation correlation models [2,3] for the prediction of compressible
homogeneous shear flow.

The poor predictions for the turbulent kinetic energy and the changes in the magnitude of the Reynolds-stress
anisotropies show that the dilatational terms effects are much smaller than one believes. According to the DNS results
of Blaisdell and Sarkar [4], the dilatational terms represent nearly 9 to 12% of the turbulent kinetic energy production,
which do not provide support for the assumption that the level of compressibility is controlled by these terms. In contrast
to dilatational effects, structural compressibility effects may cause significant changes on turbulence structures. Accordingly,
Sarkar [5] and Simone et al. [6] find in their compressible homogeneous shear flows DNS results that the structural com-
pressibility effects strongly affect the pressure field and then the pressure strain correlation which recognized as the main
responsible for the changes in magnitude of Reynolds stress anisotropies. It appears from DNS results of Simone et al. [6]
that there is an amplification of the turbulent kinetic energy with increasing the gradient Mach number at low St (St < 5),
for St > 5, the trend change and compressibility tend to stabilize turbulent shear flows. To study these effects, Sarkar [5] and
Simone et al. [6] suggested the use of the gradient Mach number which is defined by: Mg = Sl/a where S = (U i, j U i, j)

0.5

and l is an integral length scale. From the DNS results (cited above), one can see that after an initial slight increase with
St (St < 5), Mg shows a trend to become asymptotically constant, contrary to the turbulent Mach number Mt (Mt = √

2k/ā,
where k is the turbulent kinetic energy and ā is the mean speed sound) which grow constantly with St. Obviously, the
structure of this parameter is similar to that of turbulence. As a consequence of this, Mg seems to be an appropriate param-
eter to study the structural compressibility effects and it may be useful to establish compressible turbulence models that
are indispensable for a precise simulation of high shear flows. More recently, a Mt -corrected form of the Launder, Reece
and Rodi model for the pressure–strain correlation has been proposed by Marzougui, Khlifi and Lili [7]. Applications of this
model on compressible homogeneous shear flow have shown a qualitative agreement with the DNS results of Sarkar [5]
for cases A1, A2, and A3 that correspond to moderate mean shear. Contrary, in case A4, the predictions model [7] are in
disagreement with the DNS results [5]. Pantano and Sarkar [8] use the gradient Mach number M g in addition to the tur-
bulent Mach number Mt to express the pressure strain correlation. An extended form of the incompressible Launder, Reece
and Rodi model through the Pantano and Sarkar model [8] is proposed. The aim of this work is an a priori evaluation of
the proposed model for different simulation cases of compressible homogeneous shear flow. Thus, the predicted results by
the proposal model are compared with the DNS results and those obtained by the standard Launder, Reece and Rodi model
[9] and its corrected form [7]. The results obtained for equilibrium states of major flow characteristics are also used for
comparisons.

2. Governing equations

The general equations governing the motion of a compressible fluid are the Navier–Stokes equations. They can be written
as follows for mass, momentum and energy conservation:

∂

∂t
ρ + ∂

∂xi
ρui = 0 (1)

∂

∂t
ρui + ∂

∂x j
ρuiu j = ∂

∂x j
σi j (2)

∂

∂t
ρe + ∂

∂x j
ρeu j = ∂

∂x j
σi jui − ∂

∂x j
q j (3)

where e = cv T , σi j = −pδi j + τi j, τi j = 2μSij , Sij = (ui, j + u j,i)/2 and qi = −λT ,i .
For an ideal gas, the relation between pressure, density and temperature can be written as follows:

p = ρRT (4)

2.1. Averaged equations

In compressible flows, two averaging techniques can be used to split a physical quantity f , into an averaged and a
fluctuating term. Such techniques are known as the ensemble and the mass-weighted averages, which are often referred to
as the Reynolds and the Favre averages respectively. For the Reynolds average technique, f is divided into a mean part, F̄ ,
and a fluctuating part, f ′ , as

f = F̄ + f ′, f ′ = 0

While in the Favre average, except density and pressure, the quantity f is written in the following form

f = F̃ + f ′′

where the Favre mean is defined as

f̃ = ρ f /ρ̄
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and the Favre fluctuation f ′′ satisfies the following relationships:

ρ f ′′ = 0, f ′′ = −ρ ′ f ′/ρ̄

2.2. Basic equations of the Favre second-order closure in compressible homogeneous turbulent shear flow

For compressible homogeneous shear flow, the mean velocity gradient is given by:

Ũ i, j = Sδi1δ j2 (5)

where S is the constant mean shear rate. These considerations lead to:

Ũ i,i = 0 (6)

ρ̄ = cte (7)

At high Reynolds numbers, when assuming the hypothesis of isotropy dissipative structures of the turbulence, the Favre
averaged Reynolds stress should be a solution of the transport equation:

ρ̄
d

dt

(
˜u′′

i u′′
j

) = −(
ρ̄ ˜u′′

i u′′
mŨ j,m + ρ̄ ˜u′′

j u′′
mŨi,m

) + P∗
i j − 2

3
ρ̄εδi j + 2

3
p′u′

i,iδi j (8)

where P∗
i j is the deviatoric part of pressure–strain correlation:

P∗
i j = 2p′s′

i j − 2

3
p′u′

i,iδi j, s′
i j = (

u′
i, j + u′

j,i

)
/2

The governing equation of turbulent kinetic energy, k = ˜u′′
i u′′

i /2, is:

ρ̄
dk

dt
= −ρ̄˜u′′

i u′′
j Ũ i, j + p′u′

i,i − ρ̄ε (9)

Classically, the second-order closure requires a transport equation of the turbulent dissipation rate. The new concept of
dissipation in compressible turbulence was proposed by Sarkar et al. [3], Zeman [2] and Ristorcelli [10] and can be written
as follows:

ε = εs + εc (10)

where for homogeneous turbulence ρ̄εs = μωiω
′
i , ω′

i is the fluctuating vorticity, and ρ̄εc = 4
3 μ(u′

i,i)
2 represent the

solenoidal and compressible parts of ε respectively. Sarkar et al. [3] have mentioned that for moderate Mach numbers,
εs is insensitive to the compressibility changes. This yields, for εs , a model transport equation, similar to what it was
obtained in the incompressible case. Such a model equation is written as in [1], namely:

ρ̄
dεs

dt
= −Cε1ρ̄

εs

k
˜u′′

i u′′
j Ũ i, j − Cε2ρ̄

ε2
s

k
(11)

where Cε1 and Cε2 are respectively the model constants, Cε1 = 1.35 and Cε2 = 1.85.
We should remind that εc is generally taken to be proportional to εs through the following algebraic equation:

εc = F (Mt)εs (12)

F (Mt) is a function of the turbulent Mach number.
As it is suggested in model [3], one can write:

F (Mt) = αM2
t (13)

where α is constant model, α = 0.5 in homogeneous turbulence.
Sarkar et al. [3] have also proposed a model for the pressure–dilatation correlation in term of the turbulent Mach number

as follows

p′d′ = α1Mt ρ̄

(
Rij − 2

3
Kδi j

)
Ũ i, j + α2ρ̄Mt

2εs + α3Mt
2ρ̄kŨ i,i (14)

The model constants, α1, α2 and α3 take the values: α1 = 0.15, α2 = 0.2 and α3 = 0.

The turbulent Mach number is described in [1] by the transport equation as follows

dMt

dt
= − Mt

2 k
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2ρk

(
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2
γ (γ − 1)Mt

2
)(

p′ d′ − ρε
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(15)
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3. The compressibility models to be tested

Many DNS and experiment results have been performed for compressible turbulent flows, most of which show that
the compressibility has significant effects on the pressure–strain correlation via the pressure fields. Such effects induce
reduction in the magnitude of the anisotropy of the Reynolds shear stress and increase in the magnitude of the normal
stress anisotropy. Consequently, the pressure strain correlation requires a careful modeling in the Reynolds stress turbulence
model. With respect to the incompressible case, many compressible models have been developed for the pressure–strain
correlation. Hereafter, most of all these models are generated from a simple extension of its incompressible counter-part;
they perform in simulating of important turbulent flows evolving with moderate compressibility. Adumitroaie et al. [11]
modeled the pressure–strain correlation using the turbulent Mach number. Fujihiro et al. [12] related the correlation to the
rate of change of the normalized pressure variance. Recently, Marzougui, Khlifi and Lili [7] used the concept of growth rate
of turbulent kinetic energy to introduce correction on the Launder, Reece and Rodi model coefficients [9] which become
a function of the turbulent Mach number. Using the wave equation of the pressure propagating, Pantano and Sarkar [8]
pointed out that for compressible homogeneous turbulence evolving with high mean shear rate, compressibility effects are
closely linked with the turbulent Mach number and the gradient Mach number. They used these two parameters to extent
the incompressible models for the pressure–strain correlation to compressible homogeneous shear flow. The detailed models
read as below:

– Launder, Reece and Rodi (LRR) model [9]

P I∗
i j = −C I

1ρ̄εSbi j + C I
2ρ̄k

(
S̃ i j − 1

3
S̃llδi j

)
+ C I

3ρ̄k

(
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3
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)
+ C I
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)
(16)

where C I
1 = 3, C I

2 = 0.8, C I
3 = 1.75, C I

4 = 1.31, S̃ i, j = 0.5(Ũ i, j + Ũ j,i) and Ω̃i, j = 0.5(Ũ i, j − Ũ j,i).

– Marzougui, Khlifi and Lili (MKL) model [7]
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3
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(
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3
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where
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t

)
C2 = C I
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3
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– Pantano and Sarkar (PS) model [8]

P∗
i j = (

1 − f (Mt, Mg)
)

P I∗
i j

f (Mt, Mg) = α1M2
t + α2M2

g + α3Mt Mg (18)

In this study, we have chosen to extent the incompressible model of Launder, Reece and Rodi [9]. The calibration of the
coefficients α1,α2 and α3 by using the DNS results of Sarkar [5] for homogeneous shear flow gives for C1, C2 and C3 the
following expressions
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1

(
1 − 0.9M2

t

)
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2

(
1 + 0.4M2

t

)
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3

(
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4
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g

)
4. Results and discussion

The transport equations (8), (9), (11) and (15) on which the second-order closure for compressible homogeneous shear
flow is based, are solved using the fourth-order accurate Runge–Kutta numerical scheme.

The ability of the proposed form of the Pantano and Sarkar model [8] to predict the anisotropy of the compressible
homogeneous turbulent shear flow will now be considered. The model predictions will be compared with DNS results
conducted by Sarkar [5] for cases: A1, A2, A3 and A4 and by Simone et al. [6] for cases B0 and B1. These cases correspond
to different initial conditions for which the initial values of the gradient Mach number M g0 change by changing the initial
values of (S K/ε)0 and taking Mt0 constant as it is listed in Tables 1 and 2.
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Table 1
Initial conditions for DNS [5] of homogeneous turbulent shear flow.

Case Mg0 Mt0 (Sk/ε)0 b11 b22 b12

A1 0.22 0.4 1.8 0 0 0
A2 0.44 0.4 3.6 0 0 0
A3 0.66 0.4 5.4 0 0 0
A4 1.32 0.4 10.8 0 0 0

Table 2
Initial conditions for DNS [6] of homogeneous turbulent shear flow.

Case Mg0 Mt0 (Sk/ε)0 b11 b22 b12

B0 0.4 0.25 5.35 0 0 0
B1 0.6 0.25 8 0 0 0

Fig. 1. Time evolution of the Reynolds-stress anisotropy: (a) b11, (b) b22, and (c) Pb12. Case A4.

Fig. 2. Time evolution of the pressure–strain correlation: (a) P11, (b) P22, and (c) P12 in case A4.

From Figs. 1, 2 and 3, it is clear that the incompressible Launder, Reece and Rodi (LRR) model [9] is still unable to
predict the dramatic changes in the magnitude of the Reynolds-stress anisotropy that arise from compressibility. Because
the compressibility correction model proposed by Marzougui, Khlifi and Lili contains the turbulent Mach number Mt only,
the predicted values for case A4 are in disagreement with the DNS results [5]. The proposed form of the Pantano and Sarkar
model provides an acceptable performance in reproducing the DNS results for A4. This model explains the importance of
the involving of Mg with the commonly used parameter Mt in modeling the high compressible turbulent flows. Figs. 1(a–c)
show that the Pantano and Sarkar model [8] appears to be able to predict correctly the significant decrease in the magnitude
of the normalized production term −2b12 and the increase in the magnitude of the diagonal components of Reynolds-stress
tensor b11 and b22 in case A4.

Figs. 2(a–c) show the time history of the components of the pressure–strain correlation P11, P22 and P12 for case A4.
The Pantano and Sarkar model [8] yields reasonably acceptable results that are in good qualitative agreement with the DNS
results [5].

Fig. 3 presents the behavior of (εS/Sk) for case A4. It can be seen there is a decrease in εS/Sk (εS/Sk = −2b12
εS
P ) when

Mg0 increases, since the compressibility effects cause significant reduction on the Reynolds turbulent shear stress b12 from
numerical simulation case A1 to A4 of DNS results [5] (Table 1). It is clear that the proposed form of the Pantano and Sarkar
model likes the DNS results.
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Fig. 3. Time evolution of esk = εs
Sk in case A4.

Fig. 4. Time evolution of the Reynolds-stress anisotropy: (a) b11, (b) b22, and (c) b12 in cases A1, A2 and A3. PS model (line), LRR model (dash dot: A1,
dash dot dot: A2, short dash: A3), arrow shows the trend with increasing Mg .

Fig. 5. Time evolution of the pressure–strain correlation: (a) P11, (b) P22, and (c) P12 in cases A1, A2 and A3. PS model (line), LRR model (dash dot: A1,
dash dot dot: A2, short dash: A3), arrow shows the trend with increasing Mg .

Fig. 6. Time evolution of esk = εs
Sk in cases A1, A2 and A3. PS model (line), LRR model (dash dot: A1, dash dot dot: A2, short dash: A3), arrow shows the

trend with increasing Mg .
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Table 3
Comparison of the present model predictions for the long-time values of the anisotropy tensor for cases A1 to A4 and with the DNS results of Sarkar [5]
and the formula of Stefan [13].

Case LRR model Pantano and Sarkar model DNS results of Sarkar Formula of Stefan

b11 b22 b12 b11 b22 b12 b11 b22 b12 b11 b22 b12

A1 0.159 −0.125 −0.1895 0.338 −0.169 −0.125 0.32 −0.2 −0.145 0.372 −0.207 −0.136
A2 0.161 −0.127 −0.1895 0.425 −0.182 −0.1025 0.44 −0.24 −0.12 0.444 −0.238 −0.113
A3 0.162 −0.127 −0.189 0.473 −0.19 −0.0895 0.051 −0.275 −0.092 0.48 −0.254 −0.099
A4 0.164 −0.128 −0.1885 0.65 −0.236 −0.05 0.6 −0.31 −0.06 0.563 −0.289 −0.066

Table 4
Comparison of the present model predictions for the long-time values of εs/SK for cases A1 to A4 and with the DNS results of Sarkar [5] and the formula
of Stefan [13].

Case LRR model Pantano and Sarkar model DNS results of Sarkar Formula of Stefan

A1 0.257 0.167 0.15 0.16
A2 0.273 0.148 0.115 0.133
A3 0.282 0.132 0.10 0.116
A4 0.294 0.1 0.075 0.078

Fig. 7. Time evolution of the turbulent kinetic energy in cases B0 and B1. PS model (line), LRR model (dot), arrow shows the trend with increasing Mg .

The ability of the Pantano and Sarkar model [8] in the cases A1, A2 and A3 that correspond to initial moderate mean
shear rates and gradient Mach numbers Mg0 is examined. From Figs. 4, 5, and 6 it can be seen that the Pantano and Sarkar
model [8] shows the same tendency as the DNS results [5] in cases A1, A2 and A3. From the DNS results of Sarkar [5], one
can remark that for St = 20 the turbulence seems to evolve to equilibrium states. This can be seen more clearly in Tables 3
and 4 that show a systematic comparison between the models predictions for the long-time values of bij and (εS/Sk), the
DNS results of Sarkar [5] and those given by the formula of Stefan [13], namely

b11 = 2

3
− 0.4e−(0.3Mg)

b12 = −0.17e−(0.2Mg)

b22 = −1

3
+ 0.17e−(0.3Mg)

ε/SK = 0.2e−(0.2Mg)

According to Tables 3 and 4, it seems that the proposed form of the Pantano and Sarkar model appears to be able to
predict accurately the equilibrium values of bij and εs/SK for compressible shear flow. According to the DNS results of
Simone et al. [6], the monotonic increase of the turbulent kinetic energy amplification rate with the initial M g0 at low
St (St < 5), is the one of the important compressibility effects on the turbulent homogeneous shear flow. The principal
reason of this amplification is the reduced level of b12 and then the production in the turbulent kinetic energy equation
which seems to be due to the structural compressibility effects on the pressure–strain correlation via the pressure field.
Fig. 7 compares the turbulent kinetic energy predictions with the DNS results [6] in cases: B0 and B1 (Table 2). It is clearly
seen that the proposed form of the Pantano and Sarkar model [8] predictions is in acceptable agreement with the DNS
results. From the previous results, one can conclude that the Reynolds-stress closure involving the parameter M g appears
to be suited to study the structural compressibility effects on compressible homogeneous turbulence at high speed shear
flows.
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5. Conclusion

In this study, the commonly second-order closures have been used for the prediction of homogeneous compressible
turbulent shear flow. The standard Reynolds-stress turbulence closure with the addition of the pressure–dilatation and
compressible dissipation models gives very poor predictions of the changes in the Reynolds-stress anisotropy magnitude.
The deficiency of this closure is due to the use of the incompressible models of the pressure–strain correlation. Such models
are based on the incompressible Poisson equation for the pressure. Thus, it does not appear to be useful for compressible
flows. This same report was revealed by Spezial et al. [14,1], Vreman et al. [15] and Pantano and Sarkar [8]. The authors
concluded that new representations incorporating some compressible physics are needed for the pressure–strain correlation.
This is what has been confirmed by the DNS performed by Blaisdell et al. [4] and Sarkar [5].

A comparison of different turbulence models [7–9] of the pressure–strain correlation is made with the several DNS results
of Sarkar [5], Simone et al. [6] in order to evaluate its ability in prediction of the time evolving fields and equilibrium states
for different cases of compressible homogeneous shear flow, particularly in case A4 that corresponds to high mean shear.
It is found that none of the used incompressible models or then its corrected forms with the turbulent Mach number
Mt only, can yield to acceptable results for high compressibility. With the help of the Pantano and Sarkar model for the
pressure–strain correlation, an extended form of the Launder, Reece and Rodi model involving the gradient Mach number
Mg with the commonly used Mt has been proposed. This model appears to be able to predict accurately the structural
compressibility effects. The significant decrease in the magnitude of the Reynolds shear stress, the increase in magnitude of
the diagonal components of the Reynolds stress anisotropies, the increase of the turbulent kinetic energy amplification rate
with increasing initial values of the gradient Mach number and the asymptotic states of the flow are well predicted by the
proposed model. Therefore, the gradient Mach number Mg is concluded to be an important parameter in addition to Mt in
the modeling of the pressure–strain correlation for high compressible homogeneous turbulence.
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