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In order to evaluate the stress-strain fields within periodic composites, finite element
simulations are commonly performed on representative unit-cells. For flat composites,
periodic boundary conditions are well established and widely used. In the present paper,
the definition of periodic boundary conditions is extended to non-flat unit-cells in order
to account for the radius of the tube in the simulation. Two different homogenization
procedures, based on the simulations performed with these new boundary conditions, are
then proposed in order to discuss the validity, as a function of the tube diameter, of a flat
unit-cell approximation.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Afin d’évaluer les contraintes et déformations au sein de matériaux composites périodiques,
des simulations par élément-finis sont réalisées sur des cellules représentatives. Pour des
composites « plans », les conditions aux limites périodiques sont bien établies et largement
utilisées. L’objet de cette note est de détailler les conditions aux limites périodiques
à appliquer dans le cas d’une cellule non « plane ». Deux procédures d’homogénéisation
prenant en compte les simulations réalisées avec ce nouveau jeu de conditions aux limites
sont par la suite proposées dans le but de discuter, en fonction du diamètre du tube, la
validité d’une approximation « plane » de la cellule.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This article focuses on the elastic homogenization of tubes having a coarse microstructure (i.e. the typical length scale of
the microstructure is not small compared to the thickness or the radius of the tube). Since taking into account the detailed
description of the microstructure would be computation time consuming, rapid and efficient thermo-mechanical simulations
require a homogeneous behaviour (i.e. cylindrically distributed). In addition, the microstructure is assumed to be periodic
and in the case of the tube, the periodic unit-cell is non-flat. Homogenization of tubes has been treated analytically for thin
multi-layered tubes [1,2] and for braided microstructures in the context of the classical plate theory [3]. To the knowledge
of the author, the question of the numerical homogenization of tubes based on non-flat periodic unit-cells has not yet been
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Fig. 1. Description of the non-flat unit-cell.

treated, except by considering flat unit-cells with classical periodic boundary conditions and as a consequence by neglecting
the effect of the radius of the tube (see [4], for example). However, the validity of this assumption has to be discussed as a
function of the tube diameter. Hence, the main purposes of this paper are, first to define periodic boundary conditions for
the tube geometry (i.e. for non-flat unit-cells), and secondly, to propose two different homogenization procedures account-
ing for these specific boundary conditions in order to discuss the flat unit-cell approximation. These procedures converge
towards the flat unit-cell approximation for large enough diameters. Note that for too small diameters, the question itself
of replacing the heterogeneous media by homogeneous media has still to be clarified and is out of the scope of this paper.
An application is proposed for the case of a tube with spherical inclusions periodically distributed in order to identify the
diameter value below which the flat unit-cell approximation is no more relevant.

2. Periodic homogenization for flat unit-cell

The effective behaviour of an infinite and periodic material can be deduced from simulations performed on a periodic
unit cell by using classical periodic boundary conditions [5] (Eq. (1), where h is a periodicity vector and E is the applied
macroscopic strain). The elastic stiffness tensor can be fully determined from the average stress and strain, evaluated for
6 independent loadings, by solving the 36 × 36 linear system (Eq. (2), subscript I being associated to each loading). This
definition is referred as the “mechanical” approach [6]. Alternatively, the stiffness tensor, can be defined from an “energetic”
[6] approach by solving the 36 × 36 linear system (Eq. (3)).

u(x + h) = u(x) + E.h (1)

σI = K app
BC : εI (for I = 1, . . . ,6) (2)

σI : ε J = εI : K app
BC : ε J (for I = 1, . . . ,6 and J = 1, . . . ,6) (3)

As the periodic boundary conditions satisfy the Hill–Mandel condition, these two approaches are equivalent [5] and the
resulting stiffness tensor is symmetric.

3. Periodic boundary conditions for non-flat unit-cells

In this section a tube is considered with a periodic microstructure in the axial and circumferential directions. The inner
and outer surfaces are subjected to homogeneous stresses. The purpose of this section is to establish the set of periodic
boundary conditions to apply on a periodic non-flat unit-cell in order to avoid the simulation of the whole tube. The
boundary is divided into 6 surfaces: T0, T1, Z0, Z1, R0 and R1 defined according to Fig. 1. The inner and outer diameters
are respectively r0 and r1, the angular sector defining the unit-cell is characterized by the angle θ0. The 6 independent
loadings (axial stress, internal pressure, external pressure, axial shear, radial shear and torsion) defined below are related to
6 scalar values (respectively σ 0

zz , σ 0i
rr , σ 0e

rr , σ 0i
rz , σ 0i

rθ and dθ0). As they all satisfy the periodicity conditions, any combination
(superposition) of them also satisfies the periodicity condition and these 6 independent loadings allow to define a whole set
of periodic loadings. The implementation of periodic boundary conditions in a displacement finite-element code (CAST3M
in this study) consists of static boundary conditions added to kinematic relations in order to fulfil the periodicity conditions.

3.1. Static boundary conditions

3.1.1. Axial stress σ 0
zz

To prescribe axial stresses, the surfaces Z0 and Z1 are subjected to uniform axial stresses (Eq. (4)).

σ .ez + r = −σ 0
zzez on Z0 and σ .ez + r = σ 0

zzez on Z1 (4)
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In these equations r corresponds to the stress fluctuations induced by the additional kinematic boundary conditions intro-
duced in the following (see Section 3.2.2 and comments in Section 3.3), they are unknown quantities. Practically, the surface
forces applied in the finite element code corresponds to the right side of these equations.

3.1.2. Internal and external pressure σ 0i
rr and σ 0e

rr
To prescribe internal and external pressures, the surfaces R0 and R1 are subjected to uniform radial stresses (Eq. (5)).

σ .er = σ 0i
rr er on R0 and σ .er = −σ 0e

rr er on R1 (5)

3.1.3. Axial shear σ 0i
rz

To prescribe axial shears, the surfaces R0 and R1 are subjected to uniform axial shear stresses (Eq. (6)).

σ .er = σ 0i
rz ez on R0 and σ .er = − r0

r1
σ 0i

rz ez on R1 (6)

3.1.4. Radial shear σ 0i
rθ

To prescribe internal and external pressure, the surfaces R0 and R1 are subjected to uniform axial shear stresses (Eq. (7)).

σ .er = σ 0i
rθ eθ on R0 and σ .er = − r2

0

r2
1

σ 0i
rθ eθ on R1 (7)

Remark. Note that no prescribed stresses are applied on surfaces T0 and T1, stresses on these surfaces will arise from the
kinematic periodic boundary conditions prescribed in the next section (see also comments in Section 3.3).

3.2. Kinematic boundary conditions

3.2.1. Surfaces T0 and T1
Periodic kinematic boundary conditions on the surfaces T0 and T1 can be expressed as follows for each couple of

opposite points (M0, M1): the position of M1 in the deformed configuration must correspond to the rotation of the angle
θ0 of M0 in the deformed configuration (Eq. (8)). Eq. (8) can be expressed in the Cartesian coordinate system (Eqs. (9)) for
implementation in the FE code.

M1 + u(M1) = R(θ0) : (M0 + u(M0)
)

(8)

ux(M1) − ux(M0) cos θ0 + u y(M0) sin θ0 = x(M0) cos θ0 − y(M0) sin θ0 − x(M1) (9a)

u y(M1) − ux(M0) sin θ0 − u y(M0) cos θ0 = x(M0) sin θ0 + y(M0) cos θ0 − y(M1) (9b)

uz(M1) − uz(M0) = 0 (9c)

3.2.2. Surfaces Z0 and Z1
The kinematic boundary conditions on surfaces Z0 and Z1 have to fulfil the periodicity conditions and to prescribe the

torsion loading (characterized by its angle dθ0 between the two surfaces). The boundary conditions have to be divided into
conditions in the transverse plane (x, y) and conditions in the axial direction (z) (see Fig. 1). For each couple of opposite
points (M0, M1): the position of M1 in the deformed configuration must correspond, in the transverse plane, to the rotation
of the angle dθ0 of M0 in the deformed configuration (Eq. (10)). The development of this expression in the Cartesian
coordinate system is equivalent to Eqs. (9a) and (9b), replacing θ0 by dθ0.

M1 + u(M1) = R
(
dθ0) : (M0 + u(M0)

)
in (x, y) plane (10)

In the axial direction, as the axial stress is prescribed the axial strain is unknown and the periodicity condition can be
expressed for each couple of opposite points (M0, M1) with respect to an arbitrary couple of opposite points (P0, P1)

(Eq. (11)) [7].

uz(M0) − uz(P0) = uz(M1) − uz(P1) (11)

3.3. Comments

The definition of the kinematic boundary conditions in a finite element code, in our case CAST3M (available online at
http://www-cast3m.cea.fr), is often performed by introducing Lagrange multipliers. These Lagrange multipliers, correspond-
ing to reaction forces on the nodes where the conditions are applied, give rise to a modification of the local stresses in
comparison to the surface forces applied in the finite element code. On the surfaces T0 and T1, no surface forces are ap-
plied, the development of stresses on these surfaces (for example circumferential stresses when an internal pressure loading

http://www-cast3m.cea.fr
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Fig. 2. Deformed unit-cell of a woven composite (in red) submitted to a combined traction–torsion loading. White and green meshes are periodic copies of
the red deformed mesh.

is applied) is the consequence of the kinematic periodic boundary conditions prescribed on these surfaces (Eq. (8)). Simi-
larly, on the surfaces Z0 and Z1 the applied surface forces are −σ 0

zzez and σ 0
zzez respectively, and the kinematic periodic

boundary conditions (Eqs. (10) and (11)) induce additional stress fluctuations (denoted r in Eq. (3)).
It is worth mentioning that the definition of this set of boundary conditions is quite general and is not related to any

underlying assumption on the considered unit-cell. As a consequence it can be applied to any heterogeneous periodic unit-
cell. Fig. 2 gives the example of a woven composite submitted to a combination of traction and torsion. The simulation is
performed on the red unit-cell mesh and white and green meshes are just periodic copies of the red deformed mesh. This
figure validates the ability to reproduce periodicity conditions even in the case of a heterogeneous unit-cell (note that the
deformation of the unit-cell is clearly heterogeneous).

4. Periodic homogenization for composite tubes with a coarse microstructure

Assuming a periodic tube defined by its periodic unit-cell, the periodic boundary conditions defined in Section 3 allow
determining the exact stress strain fields for various loadings. The question is now to derive an equivalent homogeneous
elastic behaviour from these results. As the stress and strain fields are heterogeneous even in the case of a homogeneous
unit cell, defining effective stress and strains is quite difficult. However, two different approaches, inspired from the “me-
chanical” and “energetic” approaches introduced in Section 2, are proposed. These approaches converge towards the flat
unit-cell approximation when the diameter of the tube is large enough whereas for lower diameters, the three approaches
provide different results. As a consequence, the comparison of these results as a function of the diameter can be used (see
Section 5) to evaluate the value of the diameter below which the flat unit-cell approximation is no more valid. Note that
below this value, none of these approaches is really relevant. The question itself of replacing the heterogeneous media by
a homogeneous equivalent media is probably not relevant and should be reviewed. This question is out of the scope of the
present article.

4.1. “Mechanical approach”

Considering a homogeneous anisotropic behaviour cylindrically distributed, the stresses and strains in each point of the
periodic cell are related by the stiffness tensor. When considering a Cartesian coordinate system, the expression of the
stiffness tensor depends on the position of the considered point x (Eq. (12)). The superscript ∗ stands for “expression of the
tensor in the Cartesian coordinate system”.

σ ∗(x) = K 0∗(x) : ε∗(x) (12)

When considering a cylindrical coordinate system, its expression becomes independent of the position of x (Eq. (13)). The
superscript c stands for “expression of the tensor in the cylindrical coordinate system”.

σ c(x) = K 0c : εc(x) (13)
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This equation can be averaged over the periodic cell (Eq. (14)), where Xc is a tensor defined by its components in the
cylindrical coordinate system corresponding to a volume average of each components of Xc (Eq. (15)).

σ c = K 0c : εc (14)

Xc =
⎛
⎜⎝

Xc
rr Xc

rθ Xc
rz

Xc
θr Xc

θθ Xc
θ z

Xc
zr Xc

zθ Xc
zz

⎞
⎟⎠ (15)

Considering a heterogeneous microstructure and similarly to the “mechanical” approach introduced in Section 2, the ho-
mogeneous equivalent tensor can be defined from Eqs. (14) and (15), using σ c and εc the heterogeneous stress and strain
fields, expressed in the cylindrical coordinate system. In order to determine the full tensor, 6 independent loadings are
required (Eq. (14) applied for 6 independent loadings defines a 36 × 36 linear system where the 36 coefficients of the ten-
sor are unknown). This definition is based on the equivalence between the heterogeneous and homogeneous cases for the
quantities σ c and εc .

4.2. “Energetic approach”

The homogeneous equivalent behaviour can also be defined from an energetic point of view. The equivalent homogeneous
behaviour is defined here as the homogeneous behaviour (i.e. radially distributed) for which the deformation energy function
ehom

IJ (K 0c) is equal, for all loadings I and J , to the deformation energy ehet
IJ associated to the heterogeneous microstructure

(Eq. (16)). These deformation energies are defined by Eqs. (17) and (18) from the stress and strain fields evaluated for the
homogeneous behaviour (σ0I and ε0I ) and for the heterogeneous behaviour (σ1I and ε1I ), respectively. For the homogeneous

behaviour, the function ehom
IJ (K 0c) can be expressed as a function of the stiffness (and compliance) tensors expressed in the

cylindrical coordinate system (Eq. (19)).

ehet
IJ = ehom

IJ

(
K 0c) for I = 1, . . . ,6, J = 1, . . . ,6 (16)

ehom
IJ

(
K 0c) = 1

2V

∫

V

σ0I (x) : ε0 J (x)dV (17)

ehet
IJ = 1

2V

∫

V

σ1I (x) : ε1 J (x)dV (18)

ehom
IJ

(
K 0c) = 1

2V

∫

V

εc
0I (x) : K 0c : εc

0 J (x)dV = 1

2V

∫

V

σ c
0I (x) : S0c : σ c

0 J (x)dV (19)

As the stress and strain fields are heterogeneous, even for the homogeneous behaviour, the homogeneous stiffness tensor
corresponding to the resolution of Eq. (16) cannot be obtained from a direct resolution of a 36 × 36 linear system as in the
case of the periodic homogenization applied to flat unit-cells (see Eq. (3)). As a consequence, an iterative procedure has to be
used. The quantities ehet

IJ for the heterogeneous unit-cell are evaluated once (from the simulations of 6 independent loadings)

and the quantities ehom
IJ (K 0c) are evaluated for different successive values of K 0c in order to solve ehom

IJ (K 0c) − ehet
IJ = 0 (for

I = 1, . . . ,6, J = 1, . . . ,6). In that case, K 0c is assumed to be symmetric and the research is performed on 21 coefficients.
In practice, a Newton–Raphson algorithm can be used and each evaluation of ehom

IJ (K 0c) is performed numerically (i.e. finite
element simulations with the same boundary conditions than those used for the heterogeneous unit-cell). Note that in order
to improve efficiency, the analytical solutions evaluated for homogeneous (i.e. radially distributed) anisotropic behaviours
[8] could also be used.

4.3. Comments

In Section 2, the “energetic” approach and the “mechanical” approaches are equivalent for periodic boundary conditions
applied on flat unit-cells as it is demonstrated that they satisfy the Hill–Mandel condition [5]. In the “mechanical” approach
proposed for the non-flat unit-cell in Section 4.1, the definition of the effective stress and strain (averaging components
in the cylindrical coordinates) is quite arbitrary and the Hill–Mandel condition is not rigorously satisfied (leading to non-
symmetric effective tensors as mentioned in Section 5). In the “energetic” approach (Section 4.2), the effective behaviour
is defined from a purely energetic point of view without defining explicitly effective stress and strain. As a consequence,
these approaches are not equivalent. However, for large enough diameters, these approaches converge together and towards
the flat unit-cell approximation which satisfies the Hill–Mandel condition. Hence, considering a convergence criterion (an
example is proposed in Section 5), a minimum diameter can be determined for which the equivalence between these
“energetic” and “mechanical” approaches is approximately satisfied (according to the convergence criterion).
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Fig. 3. Microstructures for two different mean radius of the tube (1.125 and 4.5 mm).

Fig. 4. Meshes used for the heterogeneous and homogeneous simulations.

5. Application to a tube with spherical inclusions

The microstructure consists of a tube with spherical inclusions periodically distributed assuming that the arc length
between inclusion centres is constant as a function of the radius of the tube (Fig. 3). The “mechanical” and “energetic”
approaches proposed for the non-flat unit-cells in the previous section are compared to the flat periodic unit-cell approxi-
mation (corresponding to an infinite radius) in order to discuss the validity of this approximation as a function of the tube
diameter.

5.1. Description of the microstructure

The thickness of the tube is 1 mm and 4 different mean radii are considered (1.125, 2.25, 4.5 and 9 mm). The typical
dimensions of the periodic inclusion network are defined by the arc length P0 (∼ 1.41 mm) between two inclusion cen-
tres and by the diameter of the inclusion d0 (0.8 mm). In the Z direction, the distance between two inclusion centres is
assumed to be equal to P0. The number of inclusions distributed on the circumference of the tube is then 5, 10, 20 and 40
respectively for tubes of mean radii 1.125, 2.25, 4.5 and 9 mm (Fig. 3).

In order to compare results obtained for an infinite radius, a parallelepiped flat unit-cell is also considered with a
thickness equal to the thickness of the tube, a width and length equal to P0.

Finally, a high elastic contrast is assumed between the matrix and the inclusions with Young moduli of 100 GPa and
0.1 GPa respectively (Poisson coefficients are 0.3 for both the inclusions and the matrix).

The mesh refinements used for the simulations (Fig. 4) have been optimized to avoid mesh dependencies on the eval-
uation of the homogenized behaviours. Tetrahedral elements (10 nodes, 5 Gauss points) and cubic elements (20 nodes, 27
Gauss points) have been used respectively for the simulations on the heterogeneous and homogeneous unit-cells (required
for the “energetic” approach described in Section 4.2.1).

5.2. Results

In the following, the homogenized behaviours are referenced by K mech and K ener respectively for the “mechanical” ap-
proach (Eq. (14)) and the “energetic” approach (Eq. (16)). K ∞ corresponds to the homogenized behaviour evaluated on a
parallelepiped unit cell with classical periodic boundary conditions applied between surfaces T0 and T1, and Z0 and Z1,
and static uniform boundary conditions on surfaces R0 and R1.

All the tensors evaluated numerically exhibit an orthotropic symmetry (coefficients less than 1 MPa are set to “0”). While
K ener is symmetric by definition, the numerical evaluation of K mech exhibits a slight non-symmetry which decreases when
the tube diameter increases (less than 0.3% in the worst case of the smallest radius). The numerical values presented in the
following are symmetrized values (for non-diagonal coefficients K mech ≈ 1/2(K mech + K mech)).
i j i j ji
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Fig. 5. Evolution of the non-zero coefficients of the homogenized stiffness tensors as a function of the mean radius of the tube (Y -axis in GPa, X-axis in
mm). K mech , K ener and K ∞ are respectively plotted in red, green and black. The scale of the Y -axis is defined for each coefficient by [0.9K ∞

IJ ;1.1K ∞
IJ ].

Coefficients are expressed with the Voigt notation with the correspondence 1 → rr, 2 → θθ , 3 → zz, 4 → rθ , 5 → rz, 6 → θ z.

The evolution of the coefficients are plotted as a function of the mean radius of the tube in Fig. 5 for the homogenized
stiffness tensors K mech and K ener . It can be observed that all these tensors converge towards K ∞ which is a satisfying result
as K ∞ corresponds to the case of the infinite radius. This point can be regarded as a partial validation of the periodic
boundary conditions proposed and implemented for the non-flat unit-cells. Considering K mech and K ener , the convergence is
achieved for a quite small radius. For a convergence criterion, defined by max |(KIJ − K ∞

IJ )/K ∞
IJ |, of 2%, the results demon-

strate that convergence is achieved for radii of 1.125 mm and 2.5 mm respectively for K mech and K ener . As a consequence,
for a radius larger than 2.5 mm, convergence is achieved, the two approaches are equivalent and correspond to the evalu-
ation of K ∞ performed on a flat unit-cell. As a conclusion for this specific microstructure and according to the proposed
convergence criterion, the flat unit-cell approximation is valid for diameters larger than 2.5 mm.

6. Conclusions and future prospects

Composite tubes with a coarse microstructure (i.e. the typical size of the microstructure is not small compared to the
dimensions of the tube) are of interest for different applications such as fuel cladding tubes for nuclear application [9]
or catheter for medical application [3]. In order to evaluate the stress-strain fields within the composite, finite element
simulations are commonly performed on representative unit-cells. For flat composites, periodic boundary conditions are well
established and widely used. In order to account for the radius of the tube in FE simulations the first question was then to
extend periodic boundary conditions to non-flat unit-cells (Section 3). Then, the second question was to discuss the validity
of a flat unit-cell approximation, neglecting the radius of the tube, used to evaluate a homogenized behaviour for the tube.
For this discussion, two different homogenization procedures based on simulations performed with these new boundary
conditions have been proposed in Section 4. They are inspired from the “mechanical” and “energetic” approaches introduced
in Section 2 for flat unit-cells. These approaches converge towards the flat unit-cell approximation when increasing the
diameter of the tube and a convergence criterion is proposed (Section 5) to evaluate the diameter above which the three
approaches are equivalent. Below this value, the three approaches provide three different results but none of them is more
relevant than another and the question itself of replacing the heterogeneous media by a homogeneous media has probably
to be reviewed. It can also be noticed that the effective behaviour evaluated with the “mechanical” approach exhibits a slight
non-symmetry, however, this asymmetry also decreases when the diameter increases and, for the microstructure considered
in Section 5, this asymmetry is negligible especially when considering diameters satisfying the convergence criterion.

Finally, the conclusion given is Section 5 is specific of the considered microstructure and a further work will be to
account for more realistic microstructures. In addition, the second part of the present paper was focused on the overall
elastic behaviour and average quantities; it will be of a great interest to compare the effect of the radius of the tube on the
local stresses and strains especially when considering non-linear behaviours.
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