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In this Note, we describe a homogenization methodology with the aim of establishing
strain gradient constitutive relations for heterogeneous materials. The presented methodol-
ogy includes two main steps. The first one is the construction of the average strain-energy
density for a well-chosen Representative Volume Element (RVE) by using a homogeniza-
tion technique. The second one is the transformation of the obtained average strain-energy
density to that of the continuum. This transformation permits to ensure that the effective
moduli do not depend on the size of an RVE, but only on the intrinsic size of the compo-
nents. It also ensures that the moduli related to the strain gradient vanish as the contrast
between the components disappears. These features were then illustrated by means of a
simple example.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, nous décrivons une méthodologie d’homogénéisation dans le but d’éta-
blir des lois de comportement au gradient de déformation pour les matériaux hétérogènes.
La méthodologie présentée comporte deux étapes. La première étape est la construction
de la densité moyenne d’énergie de déformation pour un Volume Élémentaire Représen-
tatif (VER) en utilisant une technique d’homogénéisation. La deuxième est de transformer
cette densité moyenne obtenue pour un VER en celle valable pour un milieu continu. Cette
transformation permet de garantir que les modules effectifs généralisés ne dépendent pas
de la taille du VER mais seulement des tailles intrinsèques des constituants. Elle garantit
également que les modules du second ordre s’annulent si le contraste entre les propriétés
des constituants disparaît. Ces aspects sont illustrés ensuite par un exemple simple.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we develop a homogenization methodology with which strain gradient constitutive relations can be estab-
lished by means of homogenization over a Representative Volume Element (RVE). This work is mainly motivated by the need
of regularized damage models in order to describe size effect or to avoid mesh-dependent results in numerical simulations.
In the literature, a wide variety of damage models have been proposed on the basis of continuum damage mechanics [1] by
introducing length parameters in constitutive relations. Pijaudier-Cabot and Bazant [2] developed a practical nonlocal model
in a continuum damage setting. The development of nonlinear gradient models has taken place predominately in plasticity
[3–5]. These gradient theories have afterwards been transferred to damage mechanics [6–8]. Alternative damage gradient
models were also developed [9,10]. However, it has to be noticed that in most of these damage models, the length parame-
ters were only adopted for numerical convenience. Their physical meanings in constitutive equations and their microscopic
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origin incite always debates and discussions. In general, the length parameters introduced in these models can’t be obtained
by conventional homogenization methods.

Numerous authors believe that the homogenization of an RVE by including the gradient terms of the macroscopic field is
a natural way to describe the behavior of heterogeneous materials. Drugan [11] and Drugan and Willis [12] developed a non-
local effective constitutive equation for a class of linearly elastic composites by formally solving the equilibrium equation.
For periodic linearly elastic media, an asymptotic solution technique has been used to obtain the homogenized higher-order
gradient material behavior, for which effective moduli up to an arbitrary order may be determined based on the properties
and morphology of the phases [13,14]. Multi-scale finite element method was also be used to establish the higher-order
macroscopic constitutive tangents [15,16]. This idea was also applied for homogenization of elastic-plastic materials [17] or
gradient materials [18]. Apart from these strain gradient laws, another class of strain gradient constitutive laws, namely the
Cosserat relationship, can also be obtained by homogenization procedure [19–22].

Even though a number of works have been performed in this topic, some fundamental aspects concerning the unique-
ness and the consistence of the higher-order gradient laws issued from homogenization have not been thoroughly studied.
For example, the dependence of higher-order effective moduli on the size of the RVE has not been well discussed in the
literature. This constitutes the main motivation of the present work.

In the present work, we have established a methodology for the construction of constitutive laws of an elastic het-
erogeneous material by using the homogenization theory. First, several hypotheses have been adopted in order to adapt
the concept of macro-homogeneity in homogenization with higher-order gradients. In addition, we developed a special
procedure with the purpose of transforming the constitutive laws for individual RVEs to those for the continuum. This
transformation permits to ensure that the effective moduli do not depend on the size of an RVE, but only on the intrinsic
size of the components. It also ensures that the moduli related to the strain gradient vanish as the contrast between the
components disappears. These features were then illustrated by means of a simple example.

2. Principal hypotheses

The concept of the macro-homogeneity is a fundamental hypothesis in conventional homogenization theory [23]. Accord-
ing to this concept, the stress and strain fields in all points of a body are assumed to admit two different scales of variation.
First, they fluctuate in a local microscopic scale. Second, the volume averages of stress and strain fields are nearly uniform
in the vicinity of an RVE, and significantly vary only in a macroscopic scale much larger than the dimension of the RVE.

However, this fundamental hypothesis is no longer valid in numerous cases, especially when the macroscopic stress
or strain fields can no longer be regarded as uniform in an RVE. In these cases, their gradients cannot be neglected in
homogenization procedure.

In order to adapt the macro-homogeneity concept to the cases when higher-order gradients cannot be neglected, we
admit the following hypotheses:

1. An RVE is no longer considered as an infinitesimal volume in macroscopic scale. A macroscopic solid Ω is constituted
by a finite number of RVEs. Therefore we assume that

Ω =
⋃

Ω(m),
⋂

Ω(m) = ∅, m = 1, M (1)

where Ω(m) is the m-th RVE and M is the total number of the RVEs in Ω .
2. Higher-order strain gradients have no influence on constitutive laws if the material is perfectly homogeneous. If an RVE

is constituted of several linearly elastic phases, we can assume that each phase is perfectly homogeneous. As a consequence,
for each phase we can write:⎧⎨

⎩
σ

(m)
i j, j (y) + f (m)

i (y) = 0,

σ
(m)
i j (y) = C (m)

i jpq(y)u(m)
p,q (y),

y ∈ Ω(m) (2)

where σ (m)(y), u(m)(y), f(m)(y) are the fluctuating microscopic fields within Ω(m) , respectively the Cauchy stress tensor,
the displacement vector and the body force vector; C(m)(y) is the stiffness tensor, constant in each phase; y is the local
coordinate position associated with the RVE and originated at its geometrical center. In the following, we will distinguish
the local coordinate y from the global one x, associated to the solid Ω . Eq. (2) is the starting point for the construction of
high order constitutive laws as suggested by numerous authors [11–22].

3. We assume that there exists a macroscopic displacement field u issued from smoothing the oscillating microscopic
displacement field. The equivalence of these two fields is guaranteed by the equality of their average gradients over an RVE
until order n, namely

ūi = ū(m)
i ,

∂ui

∂x j1

= ∂u(m)
i

∂x j1

· · · ∂nui

∂x j1 · · · ∂x jn

= ∂nu(m)
i

∂x j1 · · · ∂x jn

(3)

where the over-bars signify “averaging over Ω(m)”. It is to notice that only the two first equalities in (3) are needed in
conventional homogenization method.
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4. The macroscopic displacement field in Ω(m) can be represented in terms of its gradients at the geometrical center xc

by expanding it into a Taylor’s series [6,24], namely,

ui(y) = ∂ui(xc)

∂x j
y j + 1

2

∂2ui(xc)

∂x j∂xk
y j yk + 1

6

∂3ui(xc)

∂x j∂xk∂xl
y j yk yl + · · · , y ∈ Ω(m) (4)

where ∂ui(xc)
∂x j

,
∂2ui(xc)
∂x j∂xk

and ∂3ui(xc)
∂x j∂xk∂xl

are the derivatives of the macroscopic displacement at the geometrical center of Ω(m) .

The rigid body movement is omitted from (4). According to (4), we can calculate the averages of the derivatives of the
macroscopic displacement over Ω(m) , namely:

ūi, j = 1

V (m)

∫

Ω(m)

ui, j dV = ∂ui(xc)

∂x j
+ ∂2ui(xc)

∂x j∂xk
Ī(m)

k + 1

2

∂3ui(xc)

∂x j∂xk∂xl
Ī(m)

kl + · · ·

ūi, jk = 1

V (m)

∫

Ω(m)

ui, jk dV = ∂2ui(xc)

∂x j∂xk
+ ∂3ui(xc)

∂x j∂xk∂xl
Ī(m)

l + · · ·

ūi, jkl = 1

V (m)

∫

Ω(m)

ui, jkl dV = ∂3ui(xc)

∂x j∂xk∂xl
+ · · · (5)

where V (m) is the volume of Ω(m) and

Ī(m)

k = 1

V (m)

∫

Ω(m)

yk dV = 0, Ī(m)

kl = 1

V (m)

∫

Ω(m)

yk yl dV (6)

Consequently, by taking (3), (5) and (6) into account, the Taylor expansion (4) can also be written as:

ui = ū(m)
i, j y j + 1

2
ū(m)

i, jk y j yk + 1

2
ū(m)

i, jkl

(
1

3
yk yl − Ī(m)

kl

)
y j + · · · , y ∈ Ω(m) (7)

Thus we have a link between the macroscopic field and the average gradients of the microscopic field. It is evident that this
link can also be established for stress field. In the resolution of local homogenization problems, the average gradients are
often taken as remote loads. In conventional homogenization methods, the first term in the expansion is sufficient for this
purpose. More terms are needed when higher-order gradients cannot be neglected.

3. Calculation of the average second gradient

In an RVE, the microscopic displacement and its gradients may be discontinuous. As a consequence, their derivatives will
present singularities. For example, in the case of a matrix containing inclusions, the strain field is discontinuous across the
interfaces, and therefore, the second gradient u(m)

i, jk will present singularities which have to be included in the calculation
of ū(m)

i, jk . It is evident that this is not necessary when the average displacement and its gradients are imposed as bound-
ary conditions. Hereafter, we only consider the calculation of ū(m)

i, jk in the cases when the stress boundary conditions are
prescribed.

In order to avoid the manipulation of singularities, we adopt the definition made in [25], according to which the average
second gradient of displacement over an RVE can be written as follows

ū(m)

i, jk = 1

2V (m)

∫

∂Ω(m)

(
u(m)

i, j nk + u(m)

i,k n j
)

dS (8)

where n j is the outward unit vector of ∂Ω(m) . We can show that for a matrix containing randomly distributed inclusions,
Eq. (8) can be simplified as follows:

ū(m)

i, jk = 1

V (m)

∫

Ω(m)\Γ
u(m)

i, jk dV (9)

where Ω(m)\Γ denotes Ω(m) excluding all the interfaces Γ . In order to demonstrate this equation, let us consider a bi-
phase RVE occupying a convex domain. Let c be the probability for an arbitrary point belonging to inclusions, i.e., y ∈ Ω(1) ,
then 1 − c is the probability of a point belonging to the matrix, i.e., y ∈ Ω(2) , where Ω(m) = Ω(1) ∪ Ω(2) . It follows that
c = V (1)/V (m) and 1 − c = V (2)/V (m) , where V (1) and V (2) are respectively the volumes of Ω(1) and Ω(2) . Let crs be the
covariance function that, for two sufficiently distant points in Ω(m) , gives the probability to find simultaneously the phase r
at point 1 and the phase s at point 2. In the present case, we have c11 = c2, c22 = (1 − c)2 and c12 = c21 = c(1 − c).
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We evaluate now ū(m)
1,11 under stress boundary condition σi j = σ̄i j + σ̄i j,k yk on ∂Ω(m) . It is clear that the stress traction

on ∂Ω(m) must be statically admissible, i.e.
∫
∂Ω(m) σi jn j dS + ∫

Ω(m) f i dV = 0 where f i is the body force. The derivative u1,1

on ∂Ω(m) is therefore H11i j(σ̄i j + σ̄i j,k yk) with H(y) being the compliance tensor of the material, H(y) = H(1) for inclusions
and H(y) = H(2) for matrix. For more convenience, ∂Ω(m) can be divided into two parts according to the direction of n1, i.e.
∂Ω(m) = ∂Ω

(m)
+ ∪ ∂Ω

(m)
− , where ∂Ω

(m)
+ and ∂Ω

(m)
− are respectively the boundaries with positive and negative values of n1.

From (8) and by omitting the parts of ∂Ω(m) with n1 = 0 and vertexes, we can write:

ū(m)
1,11 = 1

V (m)

( ∫

∂Ω
(m)
+

H11i j(σ̄i j + σ̄i j,1 y1)n1 dS +
∫

∂Ω
(m)
−

H11i j(σ̄i j + σ̄i j,1 y1)n1 dS

)

= 1

V (m)

∑
r=1,2
s=1,2

crs

( ∫

∂Ω
(m)
+

H (r)
11i j(σ̄i j + σ̄i j,1 y1)dy2 dy3 −

∫

∂Ω
(m)
−

H (s)
11i j(σ̄i j + σ̄i j,1 y1)dy2 dy3

)
(10)

After some simple algebra, we can obtain:

ū(m)
1,11 = (

cH (1)
11i j + (1 − c)H (2)

11i j

)
σ̄i j,1 (11)

It is clear that H(1)
11i jσ̄i j,1 = ū(1)

1,11 and H(2)
11i jσ̄i j,1 = ū(2)

1,11 are respectively the average strain gradient in Ω(1) and Ω(2) . Conse-
quently:

ū(m)
1,11 = V (1)

V (m)
ū(1)

1,11 + V (2)

V (m)
ū(2)

1,11 = 1

V (m)

∫

Ω(1)

u(m)
1,11 dV + 1

V (m)

∫

Ω(2)

u(m)
1,11 dV = 1

V (m)

∫

Ω(m)\Γ
u(m)

1,11 dV (12)

Other components of ū(m)

i, jk can similarly be evaluated. Thus Eq. (9) is demonstrated.

For periodic RVEs, this demonstration is not appropriate as the different phases are not randomly distributed in Ω(m) . In
this case, Eq. (9) can still be used if ū(m)

i, jk is regarded as an average value of ū(m)

i, jk calculated with all possible periodic RVEs
of the same volume.

4. Creation of strain gradient constitutive relations by homogenization

Under the hypotheses adopted in Section 2, we develop a homogenization methodology including two main steps. The
first one is the resolution of the local problem (2) for an RVE subjected to gradient loads on its boundary. Due to intro-
duction of strain gradient, the size of the RVE enters into the constitutive law. Therefore, the homogenization analysis in
the first step only provides the constitutive relations for the considered RVE. A special procedure must be developed to
transform the obtained constitutive relations to those for the continuum. This is the task of the second step.

Step 1: Homogenization. Consider an RVE Ω(m) loaded with known traction ti on its exterior boundary ∂Ω(m) . Let δui be a
virtual kinematically admissible displacement field, as defined in (7) but truncated after the second term. The virtual work
of the traction ti on the virtual displacement δui is

δW (m)
u =

∫

∂Ω(m)

tiδui dS = δū(m)
i, j

∫

∂Ω(m)

ti y j dS + 1

2
δū(m)

i, jk

∫

∂Ω(m)

ti y j yk dS (13)

Let’s define

σ̄
(m)
i j = 1

V (m)

∫

∂Ω(m)

ti y j dS

1σ̄
(m)

i jk = 1

2V (m)

∫

∂Ω(m)

ti y j yk dS (14)

By using the boundary condition ti = σ
(m)
i j n j and the equilibrium equation σ

(m)
i j, j = 0, we obtain:

σ̄
(m)
i j = 1

V (m)

∫

Ω(m)

σ
(m)
i j dV

1σ̄
(m)

i jk = 1

2V (m)

∫
(m)

(
σ

(m)
i j yk + σ

(m)

ik y j
)

dV (15)
Ω
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Thus we can see that σ̄
(m)
i j , 1σ̄

(m)

i jk are respectively the average stress and double stress tensors over Ω(m) . Using these
definitions, Eq. (13) becomes

1

V (m)

∫

∂Ω(m)

tiδui dS = δū(m)
i, j σ̄

(m)
i j + δū(m)

i, jk
1σ̄

(m)

i jk (16)

The right side of (16) can be regarded as the variation of the average strain energy density U (m) in the RVE defined as
follows:

σ̄
(m)
i j = ∂U (m)

∂ ū(m)
i, j

, 1σ̄
(m)

i jk = ∂U (m)

∂ ū(m)

i, jk

(17)

Therefore (16) can just read as the virtual work principle applied on Ω(m):

δW (m)
u /V (m) = δU (m) (18)

Eq. (18) is the energy-averaging theorem, known in the literature as the Hill–Mandel condition or macro-homogeneity
condition [23,26,27].

The constitutive equations for the RVE can be obtained by solving the local problem (2) under boundary conditions
which can be given by the macroscopic displacement or stress fields. The macroscopic constitutive relations are evaluated
from (17):

σ̄
(m)
i j = σ̄

(m)
i j

(
ū(m)

i, j , ū(m)

i, jk

)
1σ̄

(m)

i jk = 1σ̄
(m)

i jk

(
ū(m)

i, j , ū(m)

i, jk

)
(19)

It is important to point out that Eqs. (19) are obtained from homogenization of a single RVE. Therefore, they are valid only
for individual RVEs. In the following, we will rewrite them for a linearly elastic continuum.

Step 2: Transformation. According to Mindlin [28], a strain energy function for a homogeneous and isotropic continuum can
be written, using the notation of the present paper, as follows:

U = 1

2
(Cijpqui, jup,q + Dijkpqrui, jkup,qr) (20)

where ui, j, ui, jk are the derivatives of the macroscopic displacement; C and D are the stiffness tensors for strains and strain
gradients. This form of strain energy function can also be found by using the above-mentioned homogenization technique.
In fact, for an RVE suitably chosen, we can write the average strain energy density as follows:

U (m) = 1

2

(
C̄ (m)

i jpqū(m)
i, j ū(m)

p,q + D̄(m)

i jkpqr ū(m)

i, jkū(m)
p,qr

)
(21)

where C̄ (m)
i jpq , D̄(m)

i jkpqr are the average stiffness tensors of the m-th RVE issued from a homogenization procedure.
It is to notice that the form (21) can’t be obtained with arbitrary RVEs. The microstructure in a general 3D RVE has to

possess at least three orthogonal planes of symmetry with respect to the local coordinate system, at least in a statistical
sense. This condition is satisfied for macroscopically isotropic or orthotropic materials with well-chosen RVEs, and also,
more generally, for centro-symmetric cells.

The total strain energy in a macroscopic volume Ω is, according to the hypothesis (1) and Eq. (21):

∫
Ω

U dV =
M∑

m=1

V (m) 1

2

(
C̄ (m)

i jpqū(m)
i, j ū(m)

p,q + D̄(m)

i jkpqr ū(m)

i, jkū(m)
p,qr

)
(22)

where U is the strain-energy density in Ω . As we pointed above, in general, U �= U (m) as the later depends on the RVE’s
volume. Our objective is to transcribe the summation in (22) into an integral expression in order to extract a true strain
energy density. To this end, we first consider the integral

∫
Ω

Cijpqui, jup,q dV =
M∑

m=1

∫

Ω̄(m)

Cijpqui, jup,q dV (23)

where u is the macroscopic displacement vector; Ω̄(m) represents the homogenized RVE, i.e., Ω̄(m) is a mono-connected
domain covering Ω(m); C is the macroscopic stiffness tensor. We assume that it varies very slowly in the scale of an RVE
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such that C(x) = C̄(m) , x ∈ Ω̄(m) . In fact, C is a constant tensor if Ω is constituted of statistically identical RVEs. Thus we can
write: ∫

Ω̄(m)

Cijpq dV = V (m)C̄ (m)
i jpq,

∫

Ω̄(m)

Cijpq yk dV = 0,

∫

Ω̄(m)

Cijpq yk yr dV = C̄ (m)
i jpq

∫

Ω̄(m)

yk yr dV (24)

By truncating (7) after its second term then substituting it into the right side of (23) and by taking (24) into account, we
obtain straightforwardly:

M∑
m=1

V (m)
(
C̄ (m)

i jpqū(m)
i, j ū(m)

p,q
) =

∫
Ω

Cijpqui, jup,q dV −
M∑

m=1

V (m)C̄ (m)
i jpq Ī(m)

kr ū(m)

i, jkū(m)
p,qr (25)

with

Ī(m)
i j = 1

V (m)

∫

Ω̄(m)

yi y j dV (26)

By introducing (25) into (22) we obtain:

∫
Ω

U dV = 1

2

∫
Ω

ui, jCi jpqup,q dV +
M∑

m=1

V (m)

2

(
D̄(m)

i jkpqr − C̄ (m)
i jpq Ī(m)

kr

)
ū(m)

i, jkū(m)
p,qr (27)

If the Taylor expansion (7) is truncated after the second term, we have ū(m)

i, jk = ui, jk in Ω(m) . By definition, ui, jk is a slowly

varying field in the scale of Ω(m) . Let D̃ and I be respectively the macroscopic stiffness tensor and the macroscopic inertia
moment tensor. Similarly, we assume that they vary very slowly in the scale of Ω(m) such that D̃(x) = D̄(m) , I(x) = Ī(m) ,
x ∈ Ω̄(m) . It follows that

V (m)
(

D̄(m)

i jkpqr − C̄ (m)
i jpq Ī(m)

kr

)
ū(m)

i, jkū(m)
p,qr =

∫

Ω̄(m)

(
D̄(m)

i jkpqr − C̄ (m)
i jpq Ī(m)

kr

)
ū(m)

i, jkū(m)
p,qrs dV

=
∫

Ω̄(m)

(D̃i jkpqr − Cijpq Ikr)ui, jkup,qrs dV (28)

Finally, combining (27) and (28) gives:∫
Ω

U dV = 1

2

∫
Ω

(Cijpqui, jup,q + Dijkpqrui, jkup,qr)dV (29)

with

Cijpq = C (m)
i jpq

Dijkpqr = D̃i jkpqr − Cijpq Ikr = D̄(m)

i jkpqr − C (m)
i jpq I(m)

kr (30)

From (29), we extract the strain energy density for macroscopic continuum:

U = 1

2
Cijpqui, jup,q + Dijkpqrui, jkup,qr (31)

Then the constitutive relations in the homogenized continuum are:

σi j = ∂U

∂ui, j
= Cijpqup,q

1σi jk = ∂U

∂ui, jk
= Dijkpqrup,qr (32)

This transformation procedure can be repeated if higher-order gradients are included in the constitutive laws. Eqs. (31)
and (32) are of similar form compared with many constitutive laws proposed in the literature. However, the relationships
in (31) and (32) are issued from a homogenization consideration, therefore benefit from physical clarity of the method.

As demonstrated above, the gradient constitutive laws involve geometrical parameters of RVEs. However, the gradient
constitutive behavior is a material property: Apart from the solution accuracy related to the stochastic aspect of hetero-
geneities, the size of the RVE should not change the fundamental result of the constitutive behavior. Once the RVEs chosen
represent properly the microstructure of the material, adopting different RVEs must provide basically the same constitutive
relations. This size-independent feature of the constitutive laws will be checked by the following example.
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Fig. 1. Two different RVEs “matrix-fibre-matrix”.

5. A simple example: one-dimensional composite

Hereafter we will apply the developed homogenization methodology to solve a simple local problem in establishing
the strain gradient constitutive relations. The selected example is voluntarily simple with which closed solutions can be
obtained. Consider a randomly layered bi-phase bar under uniaxial traction. Let εm and ε f be respectively the average sizes
of the matrix and the fibers, thus the average size of a basic cell is ε = εm + ε f . Let’s also define c = ε f /ε and 1 − c = εm/ε
which are respectively the volume ratios of the fibres and the matrix. The Young moduli are denoted by E f for the fibre
phase and Em for the matrix phase. Beside the external axial tractions at its two extremities, we assume that the bar is
also subjected to body forces f , assumed uniform in the composite. For simplicity, the composite bar is considered as an
arbitrary combination of two classes of the basic cells: one with the sequence “matrix-fibre-matrix” and another with the
sequence “fibre-matrix-fibre”.

Let us first consider the RVEs with the sequence “matrix-fibre-matrix”. In the following, we will establish the macro-
scopic constitutive relation for the composite by choosing two different RVEs. The first RVE, named Ω

(m)
ε , is the basic cell

and the second, named Ω
(m)
3ε , is composed of 3 basic cells, see Fig. 1. The local elasticity problems corresponding to the

homogenization on these RVEs are written as follows:

Pb1:

{
σ ′ (m) + f = 0

σ (m) = Eu′ (m)
for y ∈ Ω

(m)
ε

{
σ (m) = σ0 at y = −ε/2

σ (m) = σ0 − f ε at y = ε/2

u(m), σ (m) continuous at y = ±εc/2

(33)

Pb2:

{
σ ′ (m) + f = 0

σ (m) = Eu′ (m)
for y ∈ Ω

(m)
3ε

{
σ (m) = σ0 at y = −3ε/2

σ (m) = σ0 − 3 f ε at y = 3ε/2

u(m), σ (m) continuous at y = ±εc/2;±ε(1 ± c)/2

(34)

For the RVE Ω
(m)
ε , the exact solution of the local problem (33) can be written in closed form. Accounting for the boundary

conditions and stress continuity conditions across the interfaces, integration of the equilibrium equation gives:

σ (m)(y) = − f y + σ0 − f ε/2 (35)

This solution can also be expressed in terms of ū′ and ū′′ which are respectively the average macroscopic strain and strain
gradient on Ω

(m)
ε . In fact, the equilibrium equation can be written as u′′ (m) = − f /E . Its averaging provides, according to (9),

ū′′ = − f /Ē (36)

where Ē stands for the homogenized modulus of the composite,

1

Ē
= 1 − c

Em
+ c

E f
(37)

By averaging the strain u′ (m) = σ (m)/E(m) , we have

σ0 = Ē
(
ū′ − ū′′ε/2

)
(38)

By substituting (36) and (38) into (35), we obtain:

σ (m)(y) = Ē
(
ū′ + ū′′ y

)
(39)
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Fig. 2. A fibre-matrix-fibre RVE.

This result allows for the calculation of the average strain energy density on Ω
(m)
ε :

U (m)
1 = 1

ε

ε
2∫

− ε
2

(σ (m))2

2E(m)
dy = 1

2
Ē
(
ū′)2 + 1

2
l21 Ē

(
ū′′)2

(40)

where l1 is a characteristic length, l21 = Ēε2

12 ( 1−c3

Em
+ c3

E f
).

For the RVE Ω
(m)
3ε , the solution of the problem (34) yields the same stress field as in (39). The only difference resides

in the calculation of ū′ and ū′′ , given by σ0 = Ē(ū′ − 3ū′′ε/2) and f = −Ē ū′′ . The average strain energy density in Ω
(m)
3ε is

therefore:

U (m)
3 = 1

3ε

3ε
2∫

− 3ε
2

(σ (m))2

2E(m)
dy = 1

2
Ē
(
ū′)2 + 1

2
l23 Ē

(
ū′′)2

(41)

with l23 = l21 + 2
3 ε2.

It is clear that U (m)
1 �= U (m)

3 even though Ω
(m)
ε and Ω

(m)
3ε can both represent the microstructure of the composite. The

constitutive laws thus obtained depend on the volume of the RVE if the strain gradient ū′′ is taken into account. More-
over, the strain gradient terms still exist in these expressions when Em = E f , that is in contradiction with the common
knowledge. These anomalies can be remedied by using the transformation method described in Section 4.

According to the second equation in (32), we can calculate the effective stiffness for the strain gradient term, namely:
For Ω

(m)
ε :

D = Ēl21 − Ē
1

ε

∫

Ω̄
(m)
ε

y2 dy = Ē2ε2
(

1 − c3

12Em
+ c3

12E f

)
− Ēε2

12
= εmε f (1 + c)Ē2

12

(
1

Em
− 1

E f

)
(42)

For Ω
(m)
3ε :

D = Ēl23 − Ē

3ε

∫

Ω̄
(m)
3ε

y2 dy = Ēε2
(

Ē

Em

1 − c3

12
+ Ē

E f

c3

12
+ 2

3

)
− 3

4
Ēε2 = εmε f (1 + c)Ē2

12

(
1

Em
− 1

E f

)
(43)

By applying this transformation procedure, we do obtain the same constitutive equation from the homogenization of two
RVEs of different size. The strain energy density is therefore:

U (matrix-fibre-matrix) = Ē

2

[(
u′)2 + εmε f (1 + c)Ē

12

(
1

Em
− 1

E f

)(
u′′)2

]
(44)

With this result, the strain energy density for an RVE with the sequence “fibre-matrix-fibre” (Fig. 2) can easily be ob-
tained just by exchanging c with (1 − c) and Em with E f in Eq. (44), thus we have:

U (fibre-matrix-fibre) = Ē

2

[(
u′)2 + εmε f (2 − c)Ē

12

(
1

E f
− 1

Em

)(
u′′)2

]
(45)

Since the probability of the sequence “matrix-fibre-matrix” is 1 − c and the probability of the sequence “fibre-matrix-fibre”
is c, the average strain energy density of the composite writes:

U = (1 − c)U (matrix-fibre-matrix) + cU (fibre-matrix-fibre) = Ē

2

[(
u′)2 + εmε f (1 − 2c)Ē

12

(
1

E
− 1

E

)(
u′′)2

]
(46)
m f
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From Eq. (46), the following remarks can be made:

1. The strain gradient term in the density of strain energy is directly related to the size, volume ratio and stiffness of each
component of the composite, but independent of the RVE’s size.

2. The strain gradient term disappears if the difference between Em and E f vanishes.
3. When the matrix and the fibres have identical volume ratio (c = 1/2), the strain gradient term vanishes.
4. When the components in the bar are randomly distributed, unique constitutive law can be obtained. However, when

the composition of the bar is periodic, the homogenization results are not unique. In this case, the strain gradient term
depends on the choice of the RVE.

5. The gradient term can be either positive or negative. When the volume of fibers is smaller than that of matrix (c < 1/2),
this term is positive when the fibre is stronger than the matrix (E f > Em), and negative in the contrary (E f < Em).

We recognize that these results are rather new and their correct interpretation requires more detailed analysis.
It is worthy to notice that more complicated 2D or 3D problems can also be studied with the proposed methodology,

and similar results can be obtained. However, they are not presented in this Note in order to save space.

6. Concluding remarks

In this paper, we first developed a homogenization procedure in order to establish strain gradient constitutive relations
for a heterogeneous material. The main hypotheses adopted in this approach include the consideration of an RVE as a
volume with finite size and the inexistence of gradient behavior if the material is perfectly homogeneous. An important
feature of the present method is its self-consistency with respect to the selection of the RVE. Once the microstructure
of the material is correctly represented in an RVE, the constitutive equations obtained by using the present method are
independent of its size. This aspect was illustrated by a simple example in which a one-dimensional periodic composite was
homogenized by including strain gradient.

It is clear that the present Note deals with a very open problem which still requires great research efforts on many
fundamental and application aspects. One of the research directions may be the development of micromechanics-based
high-order constitutive laws with the micro-flaws’ size as internal variable. This class of constitutive laws can be used as
the base in the establishment of regularized damage models, which allow, on the one hand, a realistic description of the
size effect, and on the other hand, mesh-independent finite element simulations.
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