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1. Introduction

The thermodynamic approach to mass transport is based on the rate of entropy production Σ [1–5]:

Σ = �Je · ∇
(

1

T

)
−

N∑
i=1

�J i · ∇
(

μi

T

)
(1)

Here, �Je is the energy flux, �J i and μi are the material flux and chemical potential of the ith component, respectively, N is
the number of components, and T is temperature. The energy flux and temperature profile are defined by the difference in
temperature at the system boundaries, while the mass flux is defined by non-equilibrium thermodynamics as [1,2]:

�J i = −ni Li∇ μi

T
− ni Li Q ∇ 1

T
(2)

where Li and Li Q are the Onsager coefficients, and ni is the numeric volume concentration of the ith component.
In order to utilize Eq. (2) in a predictive capacity, it is transformed into a form that contains component concentrations

and other physically measurable system parameters:

∇μi =
N∑

k=1

∂μi

∂nk
∇nk − v̄ i∇ P + ∂μi

∂T
∇T + ei �E (3)

Here P is the internal macroscopic pressure of the system, ei = − ∂μi
∂Φ

is the electric charge of the respective ionic particle,

Φ is the macroscopic electric potential in the system, �E = −∇Φ is the electric field strength, and v̄ i is the partial molecular
volume, which is very similar in magnitude to the specific molecular volume vi .
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Note that the partial derivatives in Eq. (3) are taken at constant values of the respective parameters, which are not
parameters in the differentiation. Thus, the temperature derivative ∂μi

∂T is calculated at constant pressure.
The thermodynamic approach utilizes the Gibbs–Duhem equation [1–5]:

∇ P =
N∑

i=1

ni

(
N∑

k=1

∂μi

∂nk
∇nk + ∂μi

∂T
∇T + ei �E

)
(4)

Eq. (4) defines the pressure gradient required to maintain hydrostatic equilibrium. Substituting Eq. (4) into Eq. (3), we obtain

�J i = −φi Li

vi T

[
(1 − φi)

(
N∑

k=1

∂μi

∂φk
∇φk + ∂μi

∂T
∇T + ei �E

)

−
N∑

k �=i

viφk

vk

N∑
l=1

∂μk

∂φl
∇φl + ∂μk

∂T
∇T + ek �E − (μi + qi)

∇T

T

]
(5)

In formulating Eq. (5) we have introduced the volume fractions φi = ni vi and the heats of transport qi = Li Q /Li [1–5]. The
volume fractions obey the equation

N∑
i=1

φi = 1 (6)

The calculation of electric field strength in the system will be discussed later in relation to specific situations. Eqs. (5)
and (6) are the complete set of equations describing mass transport in a stationary system. There is a problem related to
these equations: for an N-component system, the number of the equations is N + 1, and one needs to make these equations
mathematically consistent. Usually, it is assumed that one of the component fluxes is calculated in another way, and the
respective Eq. (2) for that component is simply ignored. Usually, that selected component’s material flux is calculated from
the following equation for a closed system:

N∑
i=1

�J i = 0 (7)

However, there is no reasonable way to select which component is calculated in this way, and as a result the physical
properties of the system become dependent on this selection. To solve this problem for a binary system, an approach was
suggested in Ref. [6]. In this work we extend that approach to multi-component systems.

2. Thermodynamics of mass transport

In order to eliminate the prediction by Eq. (5) of thermodiffusion mass transport in pure liquids, which is inconsistent
with both the Gibbs–Duhem equation and the standard definition of the thermophoresis, we follow the approach used in
Ref. [6] where the heat of transport is related to the chemical potential at constant volume by

qi = −μi (8)

Using Eqs. (6) and (8), Eq. (5) can be written as

�J i = − Li

T

N∑
k

φiφk

vi

(
N∑

l=1

∂μ∗
ik

∂φl
∇φl +

∂μ∗
ik

∂T
∇T − ∂μ∗

ik

∂Φ
�E
)

(9)

where

μ∗
ik = μi − vi

vk
μk (10)

and − ∂μ∗
ik

∂Φ
= ei − vi

vk
ek . As follows from Eq. (10), μ∗

ki = − vk
vi

μ∗
ik . We can write Eq. (7) in the form

N∑
i=1

�J i = −
N∑
i,k

(Li − Lk)φiφk

T vi

(
N∑

l=1

∂μ∗
ik

∂φl
∇φl +

∂μ∗
ik

∂T
∇T − ∂μ∗

ik

∂Φ
�E
)

(11)

Because we cannot thermodynamically control the components’ kinetic coefficients, Eq. (11) is consistent with Eq. (7) only
in closed systems, where all the component fluxes are zero. In this case we can write an equation for the component
material flux in the form equivalent to Eq. (9):
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�Jk = Lk

T

N∑
i

φiφk

vi

(
N∑

l=1

∂μ∗
ik

∂φl
∇φl +

∂μ∗
ik

∂T
∇T − ∂μ∗

ik

∂Φ
�E
)

(12)

Eqs. (9) and (12) are distinguished by the terms containing the preset values of the respective material fluxes, and by the
kinetic coefficients. For a system in which the two considered fluxes are equal to zero, Eqs. (9) and (12) will take the same
form, and yield the same concentration distribution. Thus, Eq. (12) delivers no new information on such a system compared
to Eq. (9), while the condition expressed by Eq. (8) allows the system of equations defined by Eq. (2) to be consistent for
stationary systems when at least two of the components have material fluxes equal to zero. When such a condition is not
fulfilled, the problem should be solved in another way. Ref. [6] outlined another way to solve the system in the case of or a
binary non-stationary and open system. In this paper, we discuss only those systems that are both stationary and closed.

Furthermore, we consider in this work the ternary system containing a neutral solvent with concentration φ1, an elec-
trolyte salt dissociated into ions with concentrations φ± = n±v± , and isolated charged particles with concentration φ2,
where φ2 is so small that the charged particles make no contribution to the physicochemical parameters of the system.
More specifically, we consider the thermophoresis of an isolated and charged colloid particle that is stabilized by an ionic
surfactant. Usually, a symmetric electrolyte is used in such systems, where the numeric concentrations of the ions are equal
to maintain electrical neutrality:

v−φ+ = v+φ− (13)

In such a system we can define the volume concentration of dissolved salt by φs = φ+(1 + v−
v+ ) = φ−(1 + v+

v− ) and formulate
the following approximate relationship in place of the more exact form expressed by Eq. (6):

φs + φ1 = 1 (14)

Here the volume contribution of charged colloid particles is ignored because their concentration is very low, that is, the
condition φ2 � φs � φ1 is assumed to be satisfied. The electric neutrality means that in our system, the ion concentrations
are equal at any salt concentration and temperature. Consequently, the chemical potentials of the ions are equal: μ+ = μ−
(see Refs. [7,8]).

Using Eqs. (5)–(8) we obtain the equations for the material fluxes, which are set to be zero.

�J2 = 0 = −φ2L2

v2T

[
∂μ∗

21

∂φ2
∇φ2 + 3

∂μ∗
21

∂φs
∇φs + ∂μ∗

21

∂T
∇T + e2 �E

]
(15)

�J− = 0 = −φ−L−
v−T

(
3
∂μ∗−1

∂φs
∇φs + ∂μ∗−1

∂T
∇T − e�E

)
(16)

�J+ = 0 = −φ+L+
v+T

(
3
∂μ∗+1

∂φs
∇φs + ∂μ∗+1

∂T
∇T + e�E

)
(17)

where, e+ = −e− = e (symmetric electrolyte). Index 2 is related to the colloid particles, index 1 to the solvent, and indices
± to the respective ions. We will not write the equation for the flux of the background solvent �J1 because it yields no new
information in comparison with Eqs. (15)–(17), as outlined above. Solving Eqs. (16), (17), we obtain:

∇φs = −∇T
∂(μ∗+1 + μ∗−1)

∂T

/
3
∂(μ∗+1 + μ∗−1)

∂φs
(18)

2e�E = 3
∂(μ∗−1 − μ∗+1)

∂φs
∇φs + ∂(μ∗−1 − μ∗+1)

∂T
∇T (19)

Eq. (18) allows us to numerically evaluate the concentration gradient as

∇φs ≈ φs Ss
T ∇T (20)

where Ss
T � 10−3 is a characteristic value for salts with a typical concentration of 10−2–10−1 mol/L, that is φs � 10−4 or

less. The maximal temperature gradient achievable in experiments is ∇T � 104 K/cm. Substituting these values into Eq. (20)
yields ∇φs ≈ 10−4–10−3 cm−1. The same evaluation applied to parameters in Eq. (19) indicates that the first right-hand
term in this equation can be neglected, and the equation for the thermoelectric power can be written as

�E ≈ ∂(μ∗−1 − μ∗+1)

∂T

∇T

2e
= v+ − v−

2ev1

∂μ1

∂T
∇T (21)

For a non-electrolyte background solvent, the parameter ∂μ1
∂T can be evaluated as ∂μ1

∂T � αT kT , where αT is the thermal
expansion coefficient of the solvent (Refs. [6,9]). In liquids the thermal expansion coefficient is typically low enough (αT �
10−3 K−1) that the thermoelectric field strength does not exceed 1 V/cm. This electric field strength corresponds to the



S.N. Semenov, M.E. Schimpf / C. R. Mecanique 339 (2011) 280–286 283
maximum temperature gradient discussed above. The electrophoretic velocity in such a field will be 10−5–10−4 cm/s. For a
comparison, the thermophoretic velocity in such temperature gradients is usually at least ten to one hundred times higher.

These evaluations show that temperature-induced diffusiophoresis and electrophoresis of a charged colloid particle in a
temperature gradient can be ignored, so that the expression for the Soret coefficient of a diluted suspension of the charged
colloid particles can be written as

S2
T = − ∇φ2

φ2∇T
= −∂μ

∗p
21

∂T

/
φ2

∂μ
∗p
21

∂φ2
= − 1

kT

∂μ
∗p
21

∂T
(22)

Here superscript p refers to constant pressure and μ
∗p
21 is the combined chemical potential at constant pressure, which is

defined as

μ
∗p
21 = μ

p
2 − N2 vm

2

v1
μ

p
1 (23)

where μ
p
1 , μ

p
2 are the chemical potentials of the respective components at constant pressure, v1 and vm

2 are the specific
molecular volumes of the solvent and the molecule or atom constituting the particle, respectively; N2 is the number of
internal molecules or atoms in the particle.

3. Microscopic calculations

Although the thermodynamic expressions for the Soret coefficient using parameter μ
∗p
21 were obtained by a number of

the authors (e.g., see Refs. [1–5]), this approach is criticized in the literature. In Ref. [10], it is stated that the thermodynamic
Soret coefficient should be proportional to a linear combination of the surface area and volume of the particle, as it contains
μ

∗p
21 given by Eq. (23). Experiments show that the Soret coefficient is proportional to the particle size for colloid particles and

is practically independent on particle size for molecular species. This is in agreement with predictions of the hydrodynamic
theory. However, in Ref. [11] it is shown thermodynamically that this parameter is proportional to the osmotic pressure
caused by the suspended colloid particles, which means that this problem requires additional study. Here, we apply a
statistical mechanical approach to the calculation of the Soret coefficient.

In our calculations, we will use the fact that there is certain symmetry between the chemical potentials contained

in Eq. (23). This symmetry, which was successfully used in Ref. [9], equates the term
N2 vm

2
v1

μ
p
1 with N1μ

p
1 , where N1 is

the number of solvent molecules that are displaced by the suspended particle. Equating the free energy as the sum of
chemical potentials, we can say that N1μ

p
1 is the chemical potential of the virtual colloid particle consisting of molecules

of the liquid displaced by the suspended particle. For this reason, we can extend the results obtained in calculations of the
chemical potential of the suspended particle μ

p
2 to the calculation of parameter N1μ

p
1 by a simple change of designations.

We will consider the virtual particle containing N1 uniformly distributed molecules of solvent interacting with molecules of
the surrounding liquid solvent.

For an isolated particle placed in the liquid, the chemical potential at constant volume can be calculated using a modifi-
cation of the following expression [12,13]:

μ2 = μ02 + 4π

1∫
0

dλ

∞∫
R

g21(r, λ)

v1
Φ∗

21(r)r
2 dr (24)

where R is the particle radius and r is the distance between a molecule of liquid and the center of the particle; g21(r, λ) is
the pair correlative function, which expresses the probability of finding a molecule of liquid at �r1 (r = |�r1|) if the internal
molecule or atom is placed at �r2; and

Φ∗
21(r) =

∫
V in

dV in

vm
2

Φ21
(|�r2 −�r1|

)
(25)

is the Hamaker potential used in colloid science [13,14] to study the interaction of colloid particles; and Φ21(|�r2 −�r1|) is the
respective intermolecular potential. The Hamaker potential is efficient at a distance of one molecular size, independent on
the particle size. Parameter μ02 is the chemical potential of all non-interacting internal molecules or atoms that comprise
the colloid particle. For colloid particles, μ02 plays no role, except maybe for heavy metal particles, although it can describe
the isotope effect in molecular thermodiffusion (Ref. [9]). Parameter λ describes the gradual “switching on” of the interaction
related to the considered particle. A detailed description of this representation can be found in Refs. [12,13].

The internal interactions within the particle can also contribute to its chemical potential, but according to basic principles
of mechanics, such interactions cannot shift the barycenter, and are ignored in derivations related to kinetic effects such as
thermodiffusion.

In a salt solution, the suspended particle interacts with both solvent molecules and ions. Both interactions can be de-
scribed separately, as the salt concentration is usually very low and cannot change the solvent density to any significant
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extent. The first kind of interaction, which is discussed in Refs. [6,9], uses the approximation g21(r, λ) = 1 and the Hamaker
interaction potential

Φ∗
21(y) = −ε21

6

σ 3
21

vm
2

(
1

y
+ 1

2 + y
+ ln

y

2 + y

)
(26)

where ε12 is the molecular energy of interaction, σ12 is the minimal molecular approach distance, y = x/σ21, and x is the
distance from the particle surface to the closest solvent molecule.

For electrostatic interactions, the properties of diluted systems may be used, where the pair correlative function has the
Boltzmannian form (see Refs. [12,13]). Since there are two kinds of ions, Eq. (24) can be written as

μe
2 = −4πns

1∫
0

dλ

∞∫
R

(
e

λΦe
kT − e− λΦe

kT
)
Φe(r)r

2 dr = −4πnskT

∞∫
R

(
e

Φe
kT + e− Φe

kT − 2
)
r2 dr (27)

where ns is the numeric volume concentration of salt, Φe = eϕ is the electrostatic interaction energy, and ϕ is the electric
double layer potential around the charged particle.

The chemical potentials at constant pressure and volume for the suspended molecular or colloid particle can be related
by expressing the forces acting on the particle at uniform and non-uniform pressure, respectively (Ref. [9]):

∇μ
p
2 = ∇μ2 +

∫
V out

∇Π dv (28)

where Π is the local pressure distribution around the suspended molecule.
The local pressure distribution is widely used in hydrodynamic theory of kinetic effects in liquids [15–18], and is usually

obtained from the condition of local mechanical equilibrium in the liquid. For electrostatic interactions, this equilibrium
condition is written as ∇[(n+ − n−)Φe(r) + Π] = 0, where n+ , n− are the respective local distributions of ions. In Ref. [6]
the local pressure distribution was used in the thermodynamic approach, and can be obtained through formulations for the
condition of local equilibrium in a thin layer of thickness l and area S when that layer is shifted from position r to r + dr.
This equilibrium condition can be expressed through the local conservation of specific free energy F (r) = (n+ − n−)Φe(r) +
Π(r) for the isothermal system in such a shift. When this layer creates a closed surface around the particle, the change
in free energy (n+ − n−)Φe(r)l dS due to the change in layer area dS should also be taken into account [9]. In the virtual
shifting of a spherical layer, the change in volume is related to the change in the surface area by dV = 2r dS , and we obtain

∇[
(n+ − n−)Φe(r) + Π

] + 2(n+ − n−)Φe(r)

r
�r0 = 0 (29)

where �r0 is the unit radial vector. The pressure gradient related to the change in surface area has the same nature as the
Laplace pressure gradient discussed in Refs. [7,8]. Solving Eq. (29), in the assumption of a Boltzmann ion distribution [14],
we obtain

Π = nskT
(
e

Φe
kT + e− Φe

kT − 2
) − 2ns

r∫
∞

(
e

Φe
kT − e− Φe

kT
)Φe(r′)

r′ dr′ (30)

Substituting the pressure gradient calculated from Eq. (30) into Eq. (28), accounting Eq. (27), and considering the
temperature-induced gradients related to the temperature dependence of the Boltzmannian exponents, we obtain the tem-
perature derivative in the gradient of chemical potential for a charged colloidal particle, which is related to the electrostatic
interactions in its electrical double layer

∂μ
pe
2

∂T
= 4πnskR

(n + 2)

∞∫
R

dr

r∫
∞

(
e

Φe
kT + e− Φe

kT
)Φ2

e (r′)
(kT )2

dr′ (31)

Here n is ratio thermal conductivities in the particle and solvent. For low potentials (i.e., Φe(r′)
kT < 1), where the Debye–

Hueckel theory should work, Eq. (31) takes the form

∂μ2e
P

∂T
= 4πnskR

(n + 2)

∞∫
R

dr

r∫
∞

Φ2
e (r′)

(kT )2
dr′ (32)

Using an exponential distribution for the electric double layer potential, characteristic for particles with low electrokinetic
potential ζ , we obtain from Eq. (32)
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∂μ2e
P

∂T
= 4πnskRλ2

D

(n + 2)

(
eζ

kT

)2

(33)

where λD is the Debye length [7,13].

4. Results and discussion

Calculations of the non-electrostatic (Hamaker) terms, which are included in the thermodynamic expression for the
Soret coefficient (Eqs. (17), (18)), are carried out in Ref. [9]. Combining these expressions with Eq. (33), we obtain the Soret
coefficient of an isolated charged colloidal particle in an electrolyte solution:

ST = 4πns Rλ2
D

T (n + 2)

(
eζ

kT

)2

+ π2αT Rσ 2
21ε21

2(n + 2)vm
2 kT

σ 3
21

v1

(
1 − vm

2 σ 5
11ε11

v1σ
5
21ε21

)
(34)

Here αT is the thermal expansion coefficient of the solvent, and σ11, ε11 are the respective energetic parameters for the
solvent.

The thermodynamic expression for the Soret coefficient contains terms related to the electrostatic interaction in the
electric double layer and the Hamaker interaction of the suspended colloid particle. The electrostatic term has the same
structure as the respective expressions for the Soret coefficient obtained by other methods using the same approximation
[10,11,15,16]. In the Hamaker term, the last term in brackets reflects the effects related to displacing the solvent from vol-
ume occupied by the particle. These effects alone may cause a change in the direction of thermophoresis when the solvent
is changed. However, such an inversion of thermophoresis can only occur when electrostatic interactions are relatively weak.
When electrostatic interactions dominate thermophoresis, only positive thermophoresis can be observed. The relative role
of the electrostatic mechanism can be evaluated by the parameter

ns vm
2

λ2
D

σ 2
21

8

παT T

(eζ )2

ε21kT

v1

σ 3
21

/(
1 − vm

2 σ 5
11ε11

v1σ
5
21ε21

)
(35)

A part of the physicochemical parameters contained in Eq. (29) is comparable for both mechanisms of thermophoresis. An
exception is the characteristic length of interaction, which is much higher for electrostatic interactions. Also, the characteris-
tic density of ions or molecules in the liquid, which govern electrostatic interactions with the colloid particle, is much lower
than the density of the solvent molecules. The respective ratios are λ2

D/σ 2
21 ≈ 103 and ns vm

2 ≈ φs � 10−4 for typical ion

concentrations in water. The parameter 1 − vm
2 σ 5

11ε11

v1σ
5
21ε21

is small (about 0.1) when the colloid particles are compatible with the

solvent. The characteristic ratio of the energetic parameters (eζ )2

ε21kT is in the range 0.1–10. Combining these numeric values,
one can see that the ratio given by Eq. (35) lies in the range 0.1–10 and is governed mainly by the value of the electrokinetic
potential ζ .

5. Conclusion

Calculation of the ratio given by Eq. (35) shows that either the electrostatic or Hamaker mechanism can play a dominate
role in thermophoresis at different values of the particle electrokinetic potential. When the Soret coefficient is large, particle
thermophoresis is determined by electrostatic interactions, and takes a positive value. When the Soret coefficient is relatively
small, thermophoresis is related to Hamaker interactions, and can have different directions in different solvents.

Together, the combination of the electrostatic and Hamaker interactions can explain a change in the direction of ther-
mophoresis of charged particles where the Soret coefficient increases several times with the addition of salt and eventually
becomes positive. An increase in the characteristic length of interaction with the surrounding liquid and the respective
energy of those interactions are the main factors that contribute to the enhancement of particle thermophoresis with salt
addition.

References

[1] S.R. De Groot, Thermodynamics of Irreversible Processes, North-Holland Publishing Company, Amsterdam, 1952.
[2] S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962.
[3] D. Kondepudi, I. Prigogine, Modern Thermodynamics, Wiley, New York, 1999.
[4] K. Ghoraeb, A. Firoozabadi, Molecular, pressure and thermal diffusion in nonideal multicomponent mixtures, AIChE 46 (2000) 883.
[5] S. Pan, M.Z. Sahgir, M. Kawaji, C.G. Jiang, Y. Yan, Theoretical approach to evaluate thermodiffusion in aqueous alkanol solutions, J. Chem. Phys. 126

(2007) 014502.
[6] S.N. Semenov, M.E. Schimpf, Mass transport thermodynamics in nonisothermal molecular liquid mixtures, Physics – Uspekhi 52 (2009) 1045.
[7] L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, 3rd edn., Pergamon Press, 1980 (English translation, E.M. Lifshitz, L.P. Pitaevskii).
[8] V.G. Levich, Introduction Into Statistical Physics, Gostechizdat, Moscow, 1954 (in Russian).
[9] S.N. Semenov, Statistical thermodynamic expression for the Soret coefficient, EPL 90 (2010) 56002.

[10] A. Parola, R. Piazza, Particle thermophoresis in liquids, Eur. Phys. J. 15 (2004) 255.
[11] J.K.G. Dhont, Thermodiffusion of interacting colloids. I. A statistical thermodynamics approach, J. Chem. Phys. 120 (2004) 1632.



286 S.N. Semenov, M.E. Schimpf / C. R. Mecanique 339 (2011) 280–286
[12] I.Z. Fisher, Statistical Theory of Liquids, Chicago Univ., 1964.
[13] R.J. Hunter, Foundations of Colloid Science, vol. 2, Clarendon, London, 1992.
[14] S. Ross, I.D. Morrison, Colloidal Systems and Interfaces, Wiley, New York, 1988.
[15] E. Ruckenstein, Can phoretic motions be treated as interfacial tension gradient driven phenomena? J. Coll. Interf. Sci. 83 (1981) 77.
[16] J.L. Anderson, Colloid transport by interfacial forces, Annu. Rev. Fluid Mech. 21 (1989) 61.
[17] S.N. Semenov, M.E. Schimpf, Thermophoresis of dissolved molecules and polymers: consideration of the temperature-induced macroscopic pressure

gradient, Phys. Rev. E 69 (2004) 011201.
[18] J.C. Giddings, P.M. Shiundu, S.N. Semenov, Thermophoresis of metal particles in a liquid, J. Coll. Interf. Sci. 176 (1995) 454.


	Thermodynamics of mass transport in diluted suspensions of charged particles in non-isothermal liquid electrolytes
	Introduction
	Thermodynamics of mass transport
	Microscopic calculations
	Results and discussion
	Conclusion
	References


