
C. R. Mecanique 339 (2011) 297–302
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Thermodiffusion and coupled phenomena / Thermodiffusion et phénomènes couplés

Soret-driven convection in a porous cavity with perfectly conducting
boundaries

Dmitriy Lyubimov a, Konstantin Gavrilov a, Tatyana Lyubimova a,b,∗
a Theoretical Physics Department, Perm State University, Bukireva str. 15, 614990 Perm, Russia
b Institute of Continuous Media Mechanics UB RAS, Koroleva str. 1, 614013 Perm, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 20 April 2011

Keywords:
Instability
Filtration convection
Soret effect

This article deals with two-dimensional Soret-driven convection in a porous cavity with
perfectly conducting boundaries heated from below. It is shown that thermodiffusion effect
destroys degeneracy existing in the case of single-component fluid. The scenario of the
convection onset is discussed. The boundaries of the diffusive state instability to the small-
amplitude and finite-amplitude monotonous and oscillatory perturbations are determined.
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1. Introduction

Convection in a porous medium is widely studied due to the broad field of industrial, geophysical and environmental
applications. Different aspects of a filtration convection like double-diffusive convection are discussed in [1]. In [2] the
authors carried out numerical and analytical investigation of the Soret-driven convection using Brinkman-extended Darcy
model for a sparsely packed porous medium. The flows in a shallow enclosure heated from below are studied for the case of
fixed heat flux at the boundaries. The critical Rayleigh number is found to be strongly dependent on the separation factor.
Different types of perturbations (monotonic, oscillating and subcritical) exist at different separation factor values.

The present article deals with the onset of two-dimensional Soret-driven convection in a horizontal porous cylinder with
perfectly conducting boundaries heated from below. For single-component fluid this problem was studied by Lyubimov [3].
He found out that at supercritical parameter values the problem has infinite number of stationary solutions for arbitrary
shape of the cavity. As shown in [4], weak deviation from perfect conditions (finite conductivity of the boundaries, heating
non-strictly from below, weak seeping through the boundaries, etc.) may destroy degeneracy, however, the dynamics of the
system at supercritical Rayleigh number values reflects the existence of infinite number of stationary solutions in perfect
conditions. These results were confirmed experimentally in [5].

The goal of the present work is to study thermodiffusion effect on the onset and dynamical properties of convection
in the configuration considered in [3]. In the first part of paper we implement weakly nonlinear analysis to study the
dynamical properties of two-dimensional Soret-driven convection in a porous cylinder at small values of the separation
factor. In the second part the linear stability of the diffusive state is studied for finite values of the separation factor.

2. Problem formulation

We consider the onset of convection in infinite horizontal cylinder of square cross-section filled with the isotropic porous
material saturated with the binary fluid (Fig. 1). The upper and lower boundaries of the cylinder are maintained at different
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Fig. 1. Problem configuration.

constant temperatures and uniform vertical temperature gradient is imposed on lateral boundaries. All the boundaries are
supposed to be rigid and impermeable. The fluid is viscous and incompressible.

It is assumed that the mixture density ρ̃ linearly depends on temperature deviation from average value T̃ and solute
concentration C̃ : ρ̃ = ρ̃0(1 −β1 T̃ −β2C̃), where ρ̃0 is the average density of the mixture, β1 and β2 are thermal and solutal
expansion coefficients, respectively, β2 > 0 if the solute is lighter than the base fluid. The thermodiffusion effect is taken into
account, thus the diffusive flux �j is proportional to the concentration and temperature gradients �j = −ρ0 D(∇ C̃ + αT ∇ T̃ ),
where D is the mass diffusivity, αT is the thermodiffusion coefficient. These coefficients can be considered as a constant
due to the small temperature and concentration variations inside the cavity. Normal thermodiffusion effect corresponds to
the case when the light component moves to the warmer area.

Full set of equations describing the filtration Soret-driven convection consists of the Darcy–Boussinesq equation, the
continuity equation, the energy equation and the concentration evolution equation [1]:

0 = − 1

ρ̃0
∇ p̃ − ν

K
�̃v + g(β1 T̃ + β2C̃) �γ (1)

div �v = 0 (2)

b
∂ T̃

∂t
+ �̃v · ∇ T̃ = χeff	T̃ (3)

m̃
∂ C̃

∂t
+ �̃v · ∇ C̃ = D(	C̃ + αT 	T̃ ) (4)

In these equations p̃ is the pressure, �̃v is the velocity, K is the permeability, m̃ is the porosity, b is the media-fluid heat
capacity ratio, χeff is the effective thermal diffusivity of mixture, �γ is the vertical unit vector. The slip and impermeability
boundary conditions are imposed for the velocity and mass flux (�n is the unit vector normal to the boundary):

(∇ C̃ + αT ∇ T̃ ) · �n = 0, �̃v · �n = 0 (5)

The temperatures of the upper and lower boundaries are fixed and constant linear temperature distribution is imposed
on the lateral boundaries:

T̃ (x = 0, L) = Θ

(
1 − y

L

)
, T̃ (y = 0) = Θ, T̃ (y = L) = 0 (6)

Eqs. (1)–(4) with the boundary conditions (5), (6) have the solution which corresponds to the diffusive state:

�̃v0 = 0, T̃0 = Θ

(
1 − y

L

)
, C̃0 = αT Θ

y

L
+ const (7)

To study the stability of this state we formulate the problem for small perturbations. Choosing appropriate follow-
ing scales for the length (L), time (bL2/χeff), pressure (ρνχeff/K ), velocity (χeff/L), temperature (Θ) and concentration
(β1Θ/β2) we rewrite the equations and boundary conditions in the dimensionless form. We restrict ourselves to two-
dimensional solutions. In this it is convenient to exclude the pressure and introduce stream function ψ related to the
velocity as vx = ∂ψ/∂ y, vy = −∂ψ/∂x. To simplify the boundary condition for mass flux we introduce the new variable
η = C − εT , where ε = −αT β2/β1 is the separation factor. Taking into account these assumptions the problem for the
dimensionless perturbations is written as follows
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Fig. 2. Stream function for two independent solutions which correspond to the lowest instability level at ε = 0.

0 = 	ψ + R

(
∂T

∂x
(1 + ε) + ∂η

∂x

)
(8)

∂T

∂t
= 	T − ∂ψ

∂x
− J (T ,ψ) (9)

∂η

∂t
= Le

m
	η − ε	T − ε

(
1

m
− 1

)(
∂ψ

∂x
+ J (T ,ψ)

)
− 1

m
J (η,ψ) (10)

T |Γ = 0, ψ |Γ = 0,
∂η

∂n

∣∣∣∣
Γ

= 0 (11)

where J is the Jakobian and Γ is the boundary of the domain.
The problem (8)–(11) contains the following dimensionless parameters: the Darcy–Rayleigh number R = gLKβ1Θ/νχeff,

the separation factor ε = −αT β2/β1, the Lewis number Le = D/χeff and the normalized porosity m = m̃/b.

3. Amplitude equations for small supercriticalities

As it was shown in [3], in the case of single-component fluid the problem has infinite number of stationary solutions for
arbitrary shape of the cavity when Rayleigh number exceeds some critical value. Indeed, in this case the linear problem for
critical monotonous perturbations has the form:

	ψ1 + R
∂T1

∂x
= 0, 	T1 − ∂ψ1

∂x
= 0, T1|Γ = ψ1|Γ = 0 (12)

This problem has a remarkable property – it is invariant with respect to the change of variables (ψ1 → √
RT1, T1 →

−ψ1/
√

R) [3]. The general solution of (12) is represented as the superposition of two independent particular solutions ϕ
and ϑ :

ψ1 = √
R(αϕ + βϑ), T1 = αϑ − βϕ (13)

In the case of square cavity, it is possible to specify the spatial distribution of ϕ and ϑ and the spectra of critical Rayleigh
numbers R∗:

ϕnk = sinπkx cosπ
√

n2 + k2

(
x − 1

2

)
sinπny, ϑnk = sinπkx sinπ

√
n2 + k2

(
x − 1

2

)
sinπny (14)

R∗
nk = 4π2(n2 + k2), n,k ⊂ N (15)

Stream function fields for two independent solutions which correspond to the lowest instability level, are shown in
Figs. 2a and 2b. Temperature field for the first of these solutions looks like stream function field for the second solution
(Fig. 2b) and temperature field for the second solution – like stream function field for the first solution (Fig. 2a).

As shown in [3], in the case of single-component fluid the nontrivial supercritical solutions of nonlinear problem organize
one-parametric family. Weak deviations from perfect conditions (finite conductivity of the boundaries, heating non-strictly
from below, weak seeping through the boundaries) may destroy degeneracy [4].

Let us apply the same technique as in [4] to study the behavior of the nonlinear system (8)–(11) at small supercriti-
calities. We expand stream function, temperature, concentration, separation factor, Rayleigh number in the series of formal
small parameter. Using the multiple-scale method and assuming that the separation factor ε is small enough we could apply
a standard method to obtain a dynamical system for amplitudes α and β . In accordance with this technique a sequence of
heterogeneous systems for each order of formal small parameter is derived. The conditions for the solution existence allow
one to construct the dynamical system:
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Fig. 3. Typical phase portraits for the dynamical system in the absence of thermodiffusion effect (a) and in the presence of thermodiffusion effect (b).

d1
dα

dt
= α

[(
d3 + d5Le−1)εR∗ + d3

(
R − R∗) − (

α2 + β2)d4 R∗]

d2
dβ

dt
= β

[(
d3 + d6Le−1)εR∗ + d3

(
R − R∗) − (

α2 + β2)d4 R∗] (16)

where the coefficients d1 = 0.0979, d2 = 0.1521, d3 = 0.5554, d4 = 0.2313, d5 = 1.1646 and d6 = 0.7851 are calculated using
the standard procedure. Fig. 3 demonstrates the comparison of typical phase portraits in the absence and in the presence of
thermodiffusion effect. As shown in [3], in the absence of thermodiffusion the stationary solutions are located on the circle
(bold line in Fig. 3a) and all of them are stable. At any non-zero values of ε degeneracy is destroyed. In this case, when
Rayleigh number exceeds a threshold value (R > R∗), instead of infinite number of stationary solution, we have one trivial
and four nontrivial solutions (Fig. 3b). The linear analysis of stationary solutions of the system (16) shows that two of these
solutions with amplitudes α̂ and β̂ are stable:

α̂1,2 = ±
√((

d3 + d5Le−1
)
εR∗ + d3

(
R − R∗))/d4 R∗, β̂ = 0 (17)

One of solutions (17) corresponds to one-vortex flow in the clockwise direction and the other – to the counter-clockwise
flow. As the result, for small values of the separation factor the nonlinear system (8)–(10) has even spatial pattern.

The degeneracy destruction scenario is similar to the one observed in [4] for finite thermal conductivities of the bound-
aries.

4. Numerical method

To carry out investigation of the convection onset at finite values of the separation factor ε the following numerical
method was applied. The finite-difference technique was used to solve Eqs. (8)–(10) with the boundary conditions (11).
The central difference scheme was used for the discretization of spatial derivatives and backward Euler method – for the
discretization of time-derivatives. The alternating direction implicit method was applied to solve the discrete linear algebraic
systems derived from the energy and concentration equations. The Darcy equation was solved with the help of successive
over-relaxation method. The uniform mesh with number of nodes equal to 50 × 50 was employed.

In accordance with linear stability analysis, the solution of linear problem (8)–(11) looks like

ψ(t, x, y) = ψ̄(x, y)eλt, T (t, x, y) = T̄ (x, y)eλt, η(t, x, y) = η̄(x, y)eλt (18)

To compute the maximum increment in spectra we apply the following technique based on Arnoldi method [6]. The
evolution problem for the perturbations (8)–(11) is written as

d f

dt
= � f (19)

where f is the vector which components equal to the stream function, temperature and η at computational grid nodes
f = (ψ, T , η),� is linear operator of the linear problem (8)–(11). If f1 is chosen as an initial basis vector then the other N
vectors are constructed by the rule

f i+1 = � f i, 1 < i � N (20)

We can define the scalar product operation 〈 f i f j〉 for the vectors f i and f j as the sum over all grid nodes of stream
function, temperature and chemical potential values’ products. The spectra of increments is the set of eigenvalues for the
problem

AY = λBY , Aij = 〈 f i� f j〉, Bij = 〈 f i f j〉 (21)

where Y is a vector with dimension N , in the present paper we choose N = 3 for computations.
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Fig. 4. Stability map (m = 0.75). (a) Le = 1, solid line corresponds to the monotonic supercritical threshold, dashed line corresponds to the oscillatory thresh-
old, dash–dot line corresponds to the monotonic subcritical threshold. (b) The oscillatory thresholds for different Lewis numbers, solid line corresponds to
Le = 0 and dashed line corresponds to Le = 0.1. Additional fragment in the upper right corner illustrates the frequency variation with the separation factor.

Fig. 5. Stream function (a), temperature (b) and concentration (c) distributions (m = 0.75, Le = 1, ε = 0.1, R = 59).

5. Numerical results

In Fig. 4a the stability map in the parameter plane separation factor–Rayleigh number is presented for Le = 1. In accordance
with (15), for ε = 0, the critical Rayleigh number is equal to 8π2, this point is marked with a full circle at the graph center.
For normal thermodiffusion effect (ε > 0) the stationary flow arises at Rayleigh number higher than the critical one (solid
line in Fig. 4a).

The spatial structures of stream function, temperature and concentration obtained for m = 0.75, Le = 1, ε = 0.1, R = 59
are presented in Fig. 5. We investigate one-vortex flow which carries warm fluid from one half of the cavity to the other.
The stream function pattern is similar to the one presented in Fig. 2a and the temperature pattern is similar to Fig. 2b. This
result is in agreement with the results of weakly nonlinear analysis discussed in Section 3.

In Fig. 4a three types of stability boundaries are plotted: the solid line corresponds to the monotonic supercritical thresh-
old, the dashed line corresponds to the oscillatory threshold, the dash–dot line corresponds to the monotonic subcritical
threshold. As one can see, in case of normal thermodiffusion, the separation factor growth leads to the lowering of critical
Rayleigh number. When anomalous thermodiffusion is enhancing, the diffusive state is stabilized (ε < 0). If the separation
factor exceeds some value (ε∗ = −0.14) the oscillatory instability develops. The critical Rayleigh number is growing (dashed
line in Fig. 4a) with the amplification of anomalous thermodiffusion.

The ε∗-point position where the oscillatory instability appears depends on the Lewis number. When the Lewis number
is small (Le � 1) and thermal conduction mechanism is much stronger than the diffusion mechanism, the oscillatory pertur-
bations born at small anomalous thermodiffusion values (|ε∗| � 1). The oscillatory thresholds for different Lewis numbers
are shown in Fig. 4b: solid line corresponds to Le = 0 and dashed line corresponds to Le = 0.1. Additional fragment in the
upper right corner illustrates the frequency variation with the separation factor. When the diffusion–thermal conductivity
ratio is growing the ε∗-point position moves to the domain with higher values of Rayleigh number. Le = 1 is typical value
of Lewis number for liquid mixture and Le = 0.01 – for gaseous mixture. Lewis number decreasing destabilizes the diffusive
state for normal and anomalous thermodiffusion.
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6. Conclusion

The conditions for the onset of filtration convection in 2D cavity of square cross-section filled with porous material and
binary mixture are studied. It is found that any weak thermodiffusion effect destroys the degeneracy existing in the case
of single-component fluid. For small values of the separation factor the spatial pattern with even temperature distribution
arises in the system. For finite values of the separation factor the linear stability of the diffusive state is studied numerically
by finite-difference method. The instability thresholds are calculated for monotonic and oscillatory perturbations.
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