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Using the thermodynamic expression for the Soret coefficient for diluted mixtures,
expressed through the temperature derivative of the molecule chemical potential at
the constant pressure, statistical mechanics is applied to relate this expression to the
microscopic molecular parameters. When the contribution of the internal degrees of
freedom in molecules is accounted for in the calculations, the results are equivalent to
previous approaches, adding new terms to the Soret coefficient. These terms are related
to the differences in molecular vibration and rotation between the solute and solvent
molecules. These “internal” contributions to molecular thermodiffusion explain the isotopic
effect observed in molecular systems. The theory describes most of the experimental
data on the thermodiffusion of isolated molecules placed in non-electrolyte liquids. The
approach also reveals a strong dependence of molecular thermodiffusion on molecular
symmetry.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

The aim of this article is to employ statistical mechanical calculations to incorporate the role of molecular internal
degrees of freedom on the Soret coefficient, which characterizes the concentration gradient established in a non-isotherm
mixture [1–3]:

ST = −∇φ/φ(1 − φ)∇T (1)

Here φ is the volume fraction of the selected component in a binary mixture and T is the temperature. The motivation for
this work comes from experiments that demonstrate a change in thermodiffusion with isotopic substitutions in molecules
[4–7].

Isotopic substitution is a method for changing the mass of a molecule without changing its chemical structure or
geometry, while only slightly altering the intermolecular interaction potentials. Using a thermogravitational column, the
thermodiffusion of several binary isotopic mixtures were studied in Refs. [4–7], including mixtures of benzene with various
degrees of deuteration, isotopically substituted mixtures of halogenated benzenes [8], mixtures of partly and fully deuter-
ated methanol [4], and isotopic mixtures of carbon disulfide [8]. In Refs. [7,9], it was found that the Soret coefficient S T

depends not only on the mass difference between the two isotopic molecules, such as C6H6 and C6D6, but also on the mass
distribution within the molecules, as characterized by the molecular moment of inertia I . The results could be described
by a linear function of the relative mass difference and the relative difference in moment of inertia, as had originally been
used to describe the behavior of gaseous isotopic mixtures [10] and mixtures of gaseous polyatomic molecules [11].
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Simulations for Lennard-Jones liquids using molecular dynamics showed that the differences in molecular mass, moment
of inertia, diameter, and interaction strength contribute additively to ST in such a way that the molecules with the higher
mass, the higher moment of inertia, the smaller diameter, and the stronger interaction show more positive thermodiffusion,
that is, movement toward to the cold side [12–17]. In Ref. [18] the isotope effect in a mixture of two different non-isotopic
liquids of comparable molecular size and mass, benzene and cyclohexane, was investigated. For these mixtures it was
shown that ST can be separated into additive contributions related to the differences in mass and moment of inertia, plus
an additional term related to the molecular structure.

In Ref. [19] it was shown that the Soret coefficient in binary mixtures of isotopically substituted cyclohexanes can be
approximated using the following linear function:

ST = SiT + am�M + bi�I (2)

Here SiT is the contribution of intermolecular interactions, am and bi are coefficients (further described in Section 4) and
�M and �I are the differences in the mass and the moment of inertia, respectively, for the molecules constituting the
binary mixture.

In Ref. [20], a thermodynamic expression for the Soret coefficient was obtained that contains a term related to the
difference in thermal velocities, and is expressed through the logarithm of solute to solvent mass ratio. The expression can
be transformed into the second term on the right-hand side of Eq. (2) when the mass difference is small. The expression
obtained in Ref. [20] also contains a term corresponding to the first term on the right-hand side of Eq. (2), which is
related to intermolecular interactions. In that work the molecule was considered to be a uniform sphere having no internal
structure. Consequently, the internal degrees of freedom related to molecular rotations and vibrations were not considered.
These factors will be investigated here in connection with molecular thermodiffusion.

The general thermodynamic expression for the Soret coefficient in a dilute binary mixture is [21,22]

ST = 1

2kT

∂μ∗
P

∂T
(3)

where μ∗
P is the combined chemical potential, which is defined as

μ∗
P = μ2

P − N2 v2

v1
μ1

P (4)

Parameters μ1
P ,μ2

P are the chemical potentials of the respective components at constant pressure, v1 and v2 are the specific
molecular volumes of the solvent molecule and the molecule or atom constituting the molecule, respectively, and N2 is the
number of internal molecules or atoms in the molecule. We note here that the chemical potential at constant pressure
should be used, a fact that was not accounted for in previous theories. The expression for the Soret coefficient using the
parameter μ∗ at the constant volume was also obtained in Ref. [23].

In our calculations we will use the fact that there is certain symmetry between the chemical potentials contained in
Eq. (4). Thus, the term N2 v2

v1
μ1

P can be written as N1μ1, where N1 is the number of the solvent molecules that displaced
from the volume N2 v2. Using the known determination of free energy as the sum of chemical potentials, we can say that
N1μ

1
P is the chemical potential of a virtual particle consisting of the molecules of solvent displaced by the suspended

molecule. For this reason, we can extend the results obtained in calculations of the chemical potential of the suspended
molecule μ2

P to the calculation of parameter N1μ
1
P by a simple change in the respective designations 2 → 1. We will

consider a suspended molecule containing N2 internal atoms interacting with molecules of the surrounding liquid. This
approach was successfully used in Ref. [20].

2. Statistical mechanics of mass transport

For an isolated molecule in a liquid solvent, the chemical potential at constant volume can be calculated using a modifi-
cation of the expression [24,25]

μ2 = μ02 + 4π

1∫
0

dλ

∞∫
R

g21(r, λ)

v1
Φ∗

21(r)r
2 dr (5)

where R is the molecular radius and r is the distance between the center of the molecule and a molecule of the solvent.
Parameter g21(r, λ) is the pair correlative function, which expresses the probability of finding a solvent molecule at �r1
(r = |�r1|) if the internal molecule or atom is placed at �r2. The Hamaker potential, which is defined as

Φ∗
21(r) =

∫
V in

dV in

v2
Φ21

(|�r2 −�r1|
)

(6)

is commonly used in colloid science [16,17] to study the interactions of colloid particles. In Eq. (6) Φ21(|�r2 − �r1|) is the
respective intermolecular potential. The Hamaker potential is applicable at distances of about one molecular size. Since we
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are considering a molecule rather than a colloid particle, the integral in Eq. (6) should, in the strictest sense, be replaced
by the sum of the respective atomic interaction potentials, but we will ignore this difference in our calculations and use
the commonly accepted model potentials. We will also consider the molecule as a spherical particle, within which the mass
distribution may be non-uniform. This allows us to consider the spherical molecules distinct in their moment of inertia,
which reduces redundancies in the mathematics.

Parameter

μ02 = −3

2
kT ln

[
2π N2m2kT

h2

]
− kT ln N2 v2 − kT ln Zrot − kT ln Zvib (7)

is the chemical potential, or the free energy of the non-interacting internal atoms that constitute the molecule (in that
sense, the interaction potential Φ21(|�r2 −�r1|) = 0), and h is Planck’s constant. Parameter λ describes the gradual “switching
on” of the intermolecular interaction. A detailed description of this representation can be found in Refs. [24,25]. Zrot and
Zvib are rotational and vibrational statistical sums, respectively. The molecular vibrations make no significant contribution
to the thermodynamic parameters except in special situations, which will not be discussed here. The rotational statistical
sum for polyatomic molecules is written as (Ref. [26])

Zrot =
√

π

γ h3

√(
8π2kT

)3
I1 I2 I3 (8)

where γ is the symmetry value, which is the number of possible rotations about the symmetry axes when the molecule
is carried into itself. For H2O, γ = 2; for NH3, γ = 3; for CH4 and C6H6, γ = 12. I1, I2, and I3 are the main values of the
tensor of the moment of inertia. Linear molecules have only one moment of inertia.

3. Microscopic calculations

There is no satisfactory method for calculating the pair correlation functions in liquids, so we will use the reasonable
approximation

g21(r, λ) = 1 (9)

This approximation means that the local distribution of solvent molecules is not disturbed by the considered molecule.
This approximation is widely used in the theory of liquids and its effectiveness has been shown. In Refs. [27–29] the
approximation was used in a kinetic approach to the thermodiffusion of colloid molecules; in Refs. [30–32] it was used in
the hydrodynamic approach to thermodiffusion in polymer solutions.

The approximation of constant local density is used in the theory of regular solutions for the study of liquids [33]. Using
this approximation, we have

μ2 = μ02 + 4π

∞∫
R

Φ∗
21(r)

v1
r2 dr (10)

where the last term on the right-hand side is exactly the expression obtained in Refs. [27–29].
Using the symmetry between parameters μ2 and N1μ1 discussed above, we can write the combined chemical potential

at constant volume μ2 − N1μ1 as

μ2 − N1μ1 = 3

2
kT ln

(
N1m1

N2m2

)
+ kT

2
ln

(
γ2

γ1

)2
(I1 I2 I3)1

(I1 I2 I3)2
+ 4π

∞∫
R

Φ∗
21(r) − Φ∗

11(r)

v1
r2 dr (11)

In Eq. (11), the parameters with subscripts 2 and 1 are related to the considered molecule and the virtual particle consisting
of solvent molecules replaced by the molecule under consideration, respectively. Note, that in general this virtual particle
can have a higher symmetry because it contains identical molecules of the solvent, while the molecule under consideration
can contain different atoms.

The chemical potentials at constant pressure and volume for a suspended molecule or colloid particle are related by the
forces acting on the molecule or particle at uniform and non-uniform pressure, respectively:

∇μ2
P = ∇μ2 +

∫
V out

∇Π dv (12)

Here Π is the local distribution of excess pressure around the dissolved or suspended molecule or particle. The local
pressure distribution is widely used in hydrodynamic theories of the kinetic effects in liquids [30–32,34–36], and is usually
obtained from the condition of local mechanical equilibrium in the liquid. This local equilibrium condition is written as
∇[Φ∗

21(r)/v1 + Π] = 0. In Refs. [20,21], the local pressure distribution was also used in a thermodynamic approach in
formulating the condition for establishment of local equilibrium in a thin layer of thickness l and area S around the molecule
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that has shifted from position r to r + dr. The condition expresses the local conservation of specific free energy F (r) =
Φ∗

21(r)/v1 + Π(r) for the isothermal system in such a shift. The change in the free energy is written as:

dF (r) = ∇
[

Φ∗
21(r)

v1
+ ∇Π

]
lS dr = 0 (13)

Thus, the expression used for the local pressure distribution around the molecule in hydrodynamic and thermodynamic ap-
proaches is obtained from the condition of zero change in the free energy after a shift in the thin layer of liquid surrounding
the molecule. However, this layer creates a closed surface around the molecule.

In such a closed layer, the change in free energy
Φ∗

21(r)
v1

l dS due to the change in layer area dS should be taken into
account. For a spherical layer, the changes in volume and surface area are related by dV = 2r dS , and we obtain the following
modified version of Eq. (13) for a closed spherical surface:

∇
[

Φ∗
21(r)

v1
+ Π

]
+ 2Φ∗

21(r)

v1r
�r0 = 0 (14)

where �r0 is the unit radial vector. The pressure gradient related to the change in surface area has the same nature as the
Laplace pressure gradient obtained in Ref. [37]. Solving Eq. (14), we obtain

Π = −Φ∗
21(r)

v1
−

r∫
∞

2Φ∗
21(r

′)
v1r′ dr′ (15)

Substituting the pressure distribution from Eq. (15) into Eq. (12), using Eq. (11), and calculating the temperature-induced
gradients related to the temperature dependence of the solvent specific molecular volume v1, we obtain the following
potential term related to intermolecular interactions:

∂μ2
P

∂T
= 2αT ∇T

v1

∫
V out

dv

r∫
∞

Φ∗
21(r

′)
r′ dr′ (16)

Here ∇T is the temperature gradient in the bulk liquid and αT is the thermal expansion coefficient of the solvent. The same
procedure can be applied to the virtual particle consisting of the liquid displaced by the real molecule, in order to obtain

ST = 3

4T
ln

(
N2m2

N1m1

)
+ 1

4T
ln

(
γ2

γ1

)2
(I1 I2 I3)2

(I1 I2 I3)1
− π2αT

v1kT

∞∫
σ12

r2 dr

r∫
∞

Φ∗
21(r

′) − Φ∗
11(r

′)
r′ dr′ (17)

The molecular interaction potential is the London potential (see Ref. [38]):

Φ12 = −ε12(σ12/r)6 (18)

where ε12 is the energy of interaction and σ12 is the minimal molecular approach distance. In the integration, the lower
limit is r = σ12. The potential Φ11 is determined in a similar way.

4. Results and discussion

The molecular Soret coefficient can be written as

ST = 3

4T
ln

(
N2m2

N1m1

)
+ 1

4T
ln

(
γ2

γ1

)2
(I1 I2 I3)2

(I1 I2 I3)1
+ π2αT σ 3

12
ε12

18v1kT

(
1 − v2σ

6
11ε11

v1σ
6
21ε12

)
(19)

Eq. (19) yields the main features for the thermodiffusion of molecules in a dilute system. These features include the kinetic
term 3

4T ln(N2m2/N1m1), expressed through the mass difference between the suspended molecule and the virtual particle
of displaced liquid. This term is related to thermal translational motion of non-interacting atoms and molecules, whose
intensity is altered by the temperature gradient. A similar kinetic term related to translational thermal motion was obtained
in Refs. [27–29], but that term did not contain a mass dependence, and it is non-zero, even in the case when the molecule
and liquid have the same density. Any volume of liquid may play the role of such a molecule and should move in the
temperature gradient, which means that the motion of pure unbound liquid in a temperature gradient is occurred, what
impossible, by definition.

The term 1
4T ln(

γ2
γ1

)2 (I1 I2 I3)2
(I1 I2 I3)1

describes rotational effects related to the difference in the symmetry, size, and mass. The

difference in symmetry is expressed through the ratio γ1
γ2

, which is always equal to or greater than unity for the reasons

discussed above; its contribution to the Soret coefficient is always positive. The ratio (I1 I2 I3)2
(I1 I2 I3)1

may be responsible for both
positive and negative contributions to the Soret coefficient, depending on molecular parameters. It is also dependent on the
symmetry of the molecules, but to a much less extent.
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The terms in Eq. (19) may describe the isotopic effects in thermodiffusion reported in Refs. [4–19]. When the difference
in the internal molecular parameters is small, Eq. (19) can be written in the form

ST = 3(M2 − M1)

4T M1
+ (γ1)

2(I)2 − (γ2)
2(I)1

4T (γ2)2(I)1
+ π2αT σ 3

12
ε12

18v1kT

(
1 − v2σ

6
11ε11

v1σ
6
21ε12

)
(20)

where (I)1,2 = (I1 I2 I3)1,2 and M1,2 = N1,2m1,2. Eq. (20) has the same structure as the empirical equation (2) obtained in
Ref. [19]. In the case of isotopic substitution, the indices 1 and 2 should be related to molecules with different degrees of
substitution. Formally, we consider mixture of the same molecules with a distinct degree of isotopic substitution. Theoretical
expressions for the constants included in this equation can be written as

am = 3

4T M1
(21)

bi = (γ1)
2

4T (γ2)2(I)1
(22)

Ref. [19] yields am = 0.99 · 10−3 K−1, while Eq. (21) yields am = 0.03 · 10−3 K−1 for cyclohexane (M1 = 84) at room temper-
ature (T = 300 K). As for the parameter bi , there is no information in the literature. There are several possible reasons for
the discrepancy between theoretical and empirical values. First, the theory used an oversimplified molecular geometry. The
cyclohexane molecule has a shape distinct from a sphere or spheroid, which could change the structure of the basic equa-
tions [Eqs. (14), (15)]. Second, isotopic substitution can change the interaction potential. Third, the first right-hand term in
Eq. (20) is not the only term containing a mass dependence; the second right-hand term also contains such a dependence.
An implicit mass dependence is also present in the empirical parameter am but not in the theoretical expression given by
Eq. (21). The latter mass dependence is potentially much stronger when the change of mass occurs near the periphery of
the molecule.

The discrepancy between theory and experiment may also be related to the sharp change in molecular symmetry upon
isotopic substitution. For example, cyclohexane studied in [19] has a high symmetry value. It can be carried into itself by
six rotations about the axis perpendicular to the plane of the carbon ring and by two rotations around the axes placed in
the plane of the ring and perpendicular to each other. Thus, cyclohexane has γ1 = 24. However, partial isotopic substitution
violates this symmetry. We can start with the assumption that for substituted molecules γ2 = 1. When the molecular
geometry is unchanged by substitution, so that only the moment of inertia related to the axis perpendicular to the ring
plane is changed, we obtain

(γ1)
2(I)2 − (γ2)

2(I)1

4T (γ2)2(I)1
= (γ1)

2(M2 − M1)

4T (γ2)2M1
+ (γ1)

2 − (γ2)
2

4T (γ2)2
(23)

Eq. (23) yields

am = 3

4T M1
= 1

4T M1

[
3 +

(
γ1

γ2

)2]
(24)

Using the above parameters and Eq. (24), we obtain am ≈ 5.7 · 10−3 K−1, which is about six times more that the empirical
value from Ref. [19]. This discrepancy means that we have overestimated the degree of symmetry violation by isotopic
substitution. The true value of this parameter is obtained when γ2 ≈ 2–3. One should understand that the value of pa-
rameter γ2 is to some extent conditional, since isotopic substitutions in the experiment occur at random positions. In the
temperature gradients, the molecules with the equal degree of the isotopic substitution but with different symmetry are
the multicomponent mixture. Thus, Eq. (24) can be used in the evaluation of a characteristic degree of symmetry from the
experimental parameter am rather than specific theoretic values of this parameter can be used in calculations.

According to Eq. (23), the Soret coefficient also contains the term (γ1)2−(γ2)2

4T (γ2)2 , which is related to the change in molecular

symmetry for structural isotopes of the same mass. For example, this term contributes to the Soret coefficient of short olefin
chains or benzene rings that contain side residuals in symmetric versus asymmetric positions.

The expressions for the Soret coefficient contain also the potential term related to Hamaker interactions. In respect to this
potential term, the thermodynamic and hydrodynamic approaches predict practically the same thermodiffusion behavior
for an isolated molecule (or polymer chain), and the differences are due to approximations used in calculations. In both
theories, the direction of molecular thermophoretic motions is determined by the parameters 1 − v2σ

6
11ε11/v1σ

6
21ε12 [20].

The molecular Soret coefficient is proportional to the ratio σ 3
12

/v1, which is practically independent of molecular size. It
is fully consistent with scaling estimates obtained using the hydrodynamic approach in Ref. [39]. The present theory may
also explain why the contribution of the kinetic term and the isotope effect has only been seen in molecular systems. In
colloid systems the Soret coefficient is dominated by the intermolecular interaction term due to the magnitude of Rσ 2

21/v1.
In fact, the colloidal Soret coefficient is about R/σ21 times that measured on its molecular analog (see Ref. [20]), which is
consistent with numerous experimental data, as well as with the hydrodynamic theory.
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5. Conclusion

Theory shows that the isotopic effect in cyclohexane thermodiffusion is in large part related to the change in molecular
symmetry upon isotopic substitution. The theory also shows that there is a contribution to thermodiffusion related to the
difference in molecular symmetry between components even when there is no difference in molecular mass or in the
interaction characteristics between components.

The consistence between thermodynamic and hydrodynamic theories regarding the size dependence of the thermodiffu-
sion parameters is made possible by the concept expressed in Eqs. (14), (15). Thus, the Laplace-like pressure established in
the force field of the considered molecule yields the correct size dependence for the Soret coefficient.

Eqs. (19), (20) yield potential terms related to the intermolecular interactions, which are equivalent to the respective
hydrodynamic expressions and yield kinetic terms related to the translational and rotational thermal motion expressed
through the relative mass, moment of inertia, and difference in the symmetry values between the molecule and displaced
liquid. These terms also include the proportionality between thermodiffusion and the thermal expansion coefficient of the
solvent. Such dependence was observed in experiments [40] on a number of solvent–particle combinations. Presently, our
theories are the only reasonable explanation for this experimental result. The thermodynamic theory also yields terms
related to the translation and rotation of the molecules.

Thus, a thermodynamic approach supplemented by statistical mechanical calculations is consistent with the hydro-
dynamic approach and can provide additional information on the kinetic contribution to thermodiffusion. The approach
provides the range of molecular sizes where the kinetic contribution should be seen. This range is limited to the molecular
solutes, and potentially to polymers with very high degrees of isotopic substitution, while the effect should be negligible for
colloidal systems. Finally, we note that the theory is applicable only to dilute molecular solutions in non-electrolyte liquids
but can be extended easily to concentrated systems.
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