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The thermophoresis of a linear polymer chain in a solvent is examined theoretically and is
shown to be due to the action of two forces. The first one is Waldmann’s thermophoretic
force (stemming from the departure of the molecular-velocity distribution from Maxwell’s
equilibrium distribution), which here is extrapolated to a dense medium by using scaling
considerations. The second force is due to the fact that the viscous friction varies with
position owing to the temperature gradient, which brings a zeroth-order correction to the
Stokes law of friction. The present scaling theory is compared with recent experiments and
is found to account for: (i) the existence of both signs of the thermodiffusion coefficient;
(ii) the absolute magnitude of the coefficient; (iii) the fact that it is independent of the
chain length in the high-polymer limit; and (iv) the dependence on solvent viscosity. The
variation of the coefficient for short chains is also examined.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

There is a large body of experimental evidences [1–5] showing that the thermodiffusion coefficient DT of a polymer
chain in a good solvent in the dilute concentration range becomes independent of the polymerization index N in the limit
N � 1. An early theoretical treatment, by Brochard and de Gennes [6], justified that finding on the basis of Onsager’s
reciprocity theorem between heat and matter transports. Information on matter transport under a temperature gradient
was derived from examination of isothermal heat transport. The authors considered the single-particle level which they
described in terms of particle and energy generalized velocities (in m s−1 and J m s−1, respectively, in SI units) instead of
considering an ensemble of particles usually described in terms of particle and energy current densities in non-equilibrium
thermodynamical approaches (in m−2 s−1 and J m−2 s−1, respectively). However, as shown by Coleman and Truesdell [7], the
reciprocity theorem may not retain its usual form when expressed with such unusual variables. We also showed that there
is no proportionality between DT and the particle velocity [8]. Moreover, in [6] the reciprocity theorem provides neither a
pictorial view of thermodiffusion nor the dependence on physical parameters other than N .

In this communication, the treatment is revisited at the particle level without the reciprocity theorem, by using de Gen-
nes’s scaling methods for a long polymer chain [9] and a specific mechanism for the drift due to the temperature gradient
[10]. Sections 2 and 3 are devoted to the velocity response to a deterministic force and to a temperature gradient, respec-
tively. In Section 4, we switch from the picture of motion (thermophoresis) to that of transport (thermodiffusion) in order
to confront the theoretical formula to the experimental thermodiffusion findings. Section 5 briefly looks at short chains.

2. The velocity response of a single polymer chain to a deterministic force

In the treatment of [6], the drift velocity vd of a single polymer chain through a solvent is written as a linear combination
of an external force f and of the temperature gradient ∇T ,
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Fig. 1. The polymer chain is a sequence of N rigid rods of length l each. The rods are pictured as slender, i.e. l � a. The nth rod is subjected to forces Fn

and −Fn+1 from the two neighboring rods and to a thermophoretic force ftp directed against ∇T .

vd = μf + L′′
12(−∇T /T ) (1)

In (1), μ has the meaning of the mechanical mobility of the chain and L′′
12 is a thermophoretic coefficient. In this article,

the chain is viewed as a sequence of rigid rods [9,11], of length l (persistence length) and diameter a. The rods are indexed
by n ranging from 1 to N , so that N henceforth denotes an effective polymerization index (Fig. 1). Over scales shorter
than l the chain is a rigid rod and above l it is a flexible coil. We take the rod as slender, i.e. l � a, and our formulae are
asymptotic, in keeping with the spirit of scaling [9]. The end-to-end distance is determined by the quality of the solvent: in
a good solvent the root-mean-square value L scales as N0.6l. A scaling relation involving a purely numerical factor of order
unity is denoted by ∼= instead of =. As an example, we write L ∼= N0.6l. Thereby we do not make a distinction between the
persistence length, the Kuhn length and the effective-bond length [5,11,12].

We briefly review the calculation of μ, i.e. the velocity response to a deterministic force f, before considering the re-
sponse to a thermophoretic force caused by ∇T in Section 3. At a low Reynolds number, the dynamics of each rod is
governed by the Stokes law of force balance,

fn − vn/μn = 0 (2)

where fn = f/N is the external force acting upon the nth rod, μn is the mechanical mobility of the rod and vn is the vector
drift velocity of the rod relative to the surrounding solvent. Averaging over orientations and dropping a numerical factor
ln(l/a) [13], μn ∼= 1/ηl, where η is the solvent viscosity. The inverse mobility 1/μn is what Ahlrichs and Dünweg [14] call
the bare friction coefficient. The Reynolds number is ρvnl/η, where ρ is the mass density of the solvent. Just as vd , the drift
velocity vn is a coarse-grained quantity pertinent over time scales much longer than the Zimm time τ of the rod, such
that Dnτ ∼= l2 (Dn ∼= kT /ηl is the rod’s diffusivity and k is the Boltzmann constant). Taking η ≈ 10−3 Pa s (cyclohexane) and
l = 1.4 nm, we find τ ≈ 10−9 s.

Each rod, when moving through the solvent under the force f/N , creates a back-flow velocity field. Summing up the
contributions from all rods, it is found [15] that the velocity field u(r, t) of the solvent inside the coil does not vanish with
respect to the remainder of the solvent outside the coil, which is taken to be at rest in the laboratory frame. The relative
velocity vn is thus Vn −u(rn, t), where Vn is the velocity of the nth rod relative to the laboratory frame and rn is the location
of that rod. It is found [14,15] that u(rn, t) is nearly equal to the drift velocity of the chain, thereby reducing the friction
force −vn/μn undergone by the rod. The drift velocity of the chain is that of the center of mass in the laboratory frame,

vd = (1/N)
∑

1�n�N

Vn (3)

Summing up the equations of motion (2) of all rods yields that of the chain,

vd = μn(f/N) + (1/N)
∑

1�n�N

u(rn, t) (4)

The coefficient of f in (4) is μn/N ∼= 1/Nηl but the actual equation of motion is [6,15]

vd = μf, with μ ∼= 1/ηL ∼= 1/N0.6ηl (5)

Thereby the effect of the back-flow term in (4) is to renormalize the mobility μ by a factor N0.4 � 1 compared to its bare
value 1/Nηl. That physical picture has been checked in detail in numerical simulations [14,16].
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3. The velocity response of a single polymer chain to a temperature gradient

We now come to the response to a temperature gradient in (1). It differs from the response to a deterministic force in
two ways. First, the back-flow effects are absent, as noticed by Brochard and de Gennes [6] (« les effets de rétrocourant qui
contrôlent μ n’ont pas d’influence sur l’effet Soret »). The deterministic force f/N applied to each rod gave rise to a directed
flow of solvent u inside the coil because f is static and uniform (actually, f may vary over times much longer than the Zimm
time of the whole chain and over lengths much larger than L). In contrast, a stochastic force field such as that generated
by thermal fluctuations has a very wide spectrum of temporal and spatial frequencies. The standard representation of a
stochastic force [17] is a white noise containing the full spectrum of temporal frequencies. This is an idealization, for the
force has a finite (albeit very short) correlation time. In the same way, the spatial correlation length of a position-dependent
stochastic force is finite but extremely short. Virtually all wavevectors are present, so that the back-flow contributions to vd
add up destructively. A stochastic force field cannot build up a directed contribution to vd as appears in (4). The upshot is
that mobility is not renormalized by the back-flow (Vn = vn).

Secondly, besides the thermophoretic force acting upon each rod as a result of the thermal disequilibrium of the solvent
(see below), there exists an effective force kT∇ (lnμn) dragging the rod toward locations of larger mobility or smaller
friction [10,18]. It is a correction to the drag force, which changes the Stokes law (2) for the nth rod into

fn − vn/μn + kT∇(lnμn) = 0 (6)

The effective force arises because the random kicks of the thermal bath do not average out to zero but are biased towards
larger values of μn . Expression kT∇(lnμn) of the differential friction force was derived for a Brownian particle (i.e. much
heavier than the molecules of the medium), using the theory of Brownian motion [10,18]. In keeping with the ladder of
scales a � l � L underlying the present work, we shall therefore use expression kT∇(lnμn) valid for Brownian particles.
In the experimental examples [5], the rod is heavier than the solvent molecules as the Kuhn length is made up of 6–12
monomers.

We now have to specify the force fn undergone by the nth rigid rod. First, the rod undergoes forces from its two neigh-
bors: if we denote by Fn the force exerted by the (n − 1)th rod on the nth rod, the latter will exert a force Fn+1 on the
(n + 1)th rod (Fig. 1). Those forces were tacitly disregarded in [6,15] for reasons which will become clear shortly. Secondly,
because of the temperature gradient the medium is not in equilibrium around the rod. When the medium is a rarefied gas,
the disequilibrium gives rise to a net force upon the rod due to the non-canceling impacts of fast and slow molecules. The
impacts should not be calculated as Einstein did [19]. When performed properly, such a calculation delivers zero in the ab-
sence of a pressure gradient [20]. Waldmann showed [21] that, because the gas is not in equilibrium, the mechanical action
of the molecules does not reduce to the sum of the pressure forces. There is an extra force, called the thermophoretic force
and henceforth denoted as ftp, due to the anisotropy in the molecular-velocity distribution function. Fast and slow molecules
depart from Maxwell’s local-equilibrium distribution in different ways. Their departure from equilibrium is beyond reach of
thermodynamics and involves the product of ∇T and of the molecular mean free path λ of the rarefied gas. Denoting by n2
the number density of gas molecules and by σt the momentum-transfer cross section of the rod, we have [10]

ftp ∼= −n2σtλ∇(kT ) (7)

The minus sign is the one pertinent for scattering of monatomic molecules with a hard sphere [21]. The general expression
of ftp [10] suggests that both signs are possible, depending on the energy dependences of both the molecule-particle cross
section and the non-equilibrium energy distribution. Polyatomicity affects the shape of the latter distribution so as to alter
the numerical prefactor in (7). However, because of the presence of a density-of-states factor favoring faster molecules [10]
in the scattering integral defining ftp, it is likely that the numerical prefactor retains its negative sign.

For a hard rod, instead of the hard sphere envisaged by Waldmann, σt ∼= al, where a is a molecular dimension typifying
the rod’s diameter (we are using a geometrical, energy-independent cross section). In a liquid medium, (i) molecules are
polyatomic instead of monatomic and (ii) the simple picture of two-body collision events is not accurate. Yet, in keeping
with the scaling approach taken in this communication, we shall extrapolate Waldmann’s result in the crudest way, letting
n2 ∼= 1/a3 and λ ∼= a. We thus get ftp = −αtp∇(kT) with a thermophoretic force coefficient

αtp ∼= l/a (8)

Note that ftp is the same on all rods because we are considering a coarse-grained description over a time scale enabling
random disorientation of each rod with respect to the vector ∇T . Disorientation modifies σt ∼= al so as to introduce a
geometrical factor of the order of unity, not considered here.

The upshot of all this is that the force undergone by the nth rod is

fn = Fn − Fn+1 + ftp (9)

where the minus sign stems from Newton’s third law. From expressions (6) and (9), we get the velocity of the center of
mass (3):

vd = μn
[(

(F1 − FN+1)/N
) + ftp + kT∇(lnμn)

]
(10)
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The forces F1 and FN+1 are loose end effects: the beginning of the first rod and the end of the last rod do not undergo a
force from another rod, but from the solvent. In the limit N � 1 of a long chain, (i) end effects are negligible, which is why
they were disregarded a priori in [6] and [15], and (ii) the drift velocity

vd ≈ μn
[
ftp + kT∇(lnμn)

]
(11)

does not depend on N . However, the measured quantity is not the drift (or thermophoretic) velocity, but the thermodiffusion
coefficient DT which is defined together with the diffusivity D by means of a particle-current equation, and this is dealt
with in the next section.

4. From thermophoresis to thermodiffusion

There is no simple proportionality between the particle drift velocity and the particle current density, as the former is a
vector whereas the latter is a vector field. The transport of a chain through the solvent consists of drift and diffusion. Drift
refers to the rate of change of the vector displacement 〈r〉, with 〈·〉 denoting an ensemble average, while diffusion refers to
the rate of change of variance in r. This picture holds when the chain is very dilute among the solvent molecules which
make up the reference frame. Otherwise diffusion should be understood as mutual diffusion in a binary mixture, and the
simple kinematic picture of diffusion used here would not hold [22]. Specifically, the diffusivity can be defined here as

D = (1/6)
(
d
〈(

r − 〈r〉)2〉
/dt

)
(12)

starting from an ensemble of particles sharply localized at r0. In an inhomogeneous medium, D is a function of position r0.
Here, inhomogeneity is due to the T (r) field.

The rate of change of the chain’s number density n (not to be confused with the rod index used in Sections 2 and 3) is
the negative divergence of the particle-current density j. In the theory of stochastic processes [17,23], j is given by

j = vdn − ∇(Dn) (13)

The first contribution to j stems from the motion of the centroid 〈r〉 whereas the second one is associated with the spreading
about 〈r〉. The contributions are sometimes known as orthokinetic and perikinetic, respectively [24]. It is straightforward to
rewrite j as

j = (vd − ∇D)n − D∇n (14)

Identifying j with its phenomenological expression −D∇n − nDT ∇T relates the thermodiffusion coefficient DT to the ther-
mophoretic velocity,

DT (−∇T ) = vd − ∇D (15)

An alternative demonstration of (15) can be found elsewhere [8].
For a long polymer chain, it is well established [6,15] that D = kTμ ∼= N−0.6kT /ηl. It vanishes as N → +∞. From

relations (11) and (15), we have in that limit

DT (−∇T ) = μn
[
ftp + kT∇(lnμn)

]
(16)

Using the thermophoretic force coefficient αtp and mobility μn of a rod, we obtain

DT ∼= k/(ηl)
[
αtp + (

d ln(ηl)/d ln T
)]

(17)

That formula shows that DT is independent of N , in agreement with experiments [1–5]. DT is the sum of two contributions:
one is due to the thermophoretic force acting upon each rod, with a coefficient αtp ∼= l/a roughly ranging from 6 to 12,
and the other is due to the temperature dependence of ηl. The first contribution is positive whereas the second one is
negative: both viscosity and the persistence length drop as T increases. Table 1, after [25], lists values of (d lnη/d ln T )
under standard conditions in some solvents; they lie about −4. An estimate [11,12] of (d ln l/d ln T ) is −1, but it can be
more negative in molecular models [26] where the flexural rigidity may depend on T . Therefore the two contributions in
(17) have the same order of magnitude (a few times unity) but different signs. Depending on the polymer/solvent system
studied, DT may be positive or negative, but a positive DT is more likely. This accounts for the opposite signs of DT
observed in polystyrene and n-alcane solutions. A stiffer chain has a larger αtp ∼= l/a but a lower k/l so that DT is not
strongly sensitive to stiffness. The typical magnitude of η|DT | expected from (17) is k/l, which is hardly dependent on
the solvent viscosity η. Taking l = 1.4 nm yields η|DT | ∼= 10−14 J K−1 m−1, in line with the values actually measured for
long chains, namely 0.6 × 10−14 J K−1 m−1 for polystyrene in various solvents and −0.5 × 10−14 J K−1 m−1 for n-alcane in
cyclooctane [5].

Because our approach rests upon scaling considerations, it cannot predict numerical factors of order unity, which are sen-
sitive to the very chemical microstructure, reminiscent of two-body scattering cross sections which are molecule-dependent,
and practically speaking lie outside the realm of analytical theories of the liquid state. However, our approach does predict
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Table 1
Temperature dependence of dynamical viscosity η under standard
conditions in various solvents, after [25].

Solvent (d lnη/d ln T )

Chloroform CHCl3 −3.1
Tetrahydrofuran C4H8O −3.2
Ethylacetate C4H8O2 −3.6
Ethylbenzene C8H10 −3.7
Toluene C7H8 −3.8
Cyclooctane C8H16 −4.2
Cyclohexane C6H12 −4.5

universal trends such as (i) the absolute magnitude of DT , (ii) the existence of two signs reflecting the existence of two
forces (thermophoretic force and differential friction) and (iii) the fact that η|DT | ≈ k/l does not significantly depend on
the solvent. While the latter feature is conspicuous for polystyrene [4,5], the fact that a long chain of n-alcane exhibits
ηDT = +0.087 × 10−14 J K−1 m−1 in toluene, instead of −0.5 × 10−14 J K−1 m−1 in cyclooctane, is consistent with (17)
since both αtp and [d ln(ηl)/d ln T ] change with the solvent used. The replacement of cyclooctane by toluene increases
(d lnη/d ln T ) (see Table 1) and therefore DT , in line with the observation. It is not expected to change (d ln l/d ln T ) signifi-
cantly, but the change in αtp is hard to guess.

5. Short chains

Scaling considerations have proved their efficiency in the case of long chains but sometimes yield a fair result near the
limit of validity [9], i.e. N = 1. A chain of length l has a drift velocity given by (10) instead of (11). Let us temporarily ignore
the force F1 − FN+1 = F1 − F2 in (10). Then the variation of DT with N is only due to the non-proportionality (15) between
DT and vd . Denoting by DT ,N the DT of a chain of N persistence lengths, we obtain

DT ,1 = kμn
[
αtp + d ln(ηl)/d ln T

] + d(kTμn)/dT = kμn(αtp + 1) (18)

We have recovered the usual relation between DT and the force coefficient αtp pertinent to a particle sufficiently dilute in
a medium for the mixture to be thermodynamically ideal [10,20]. The fact that [d ln(ηl)/d ln T ] ≈ −4 (for N � 1) in (17) is
replaced by 1 (for N = 1) in (18) means an algebraic decrease in DT ,N as N increases. The expected relative variation is

(DT ,∞ − DT ,1)/DT ,∞ = −[
1 − (

d ln(ηl)/d ln T
)]/[

αtp + (
d ln(ηl)/d ln T

)]
(19)

Numerically, this is roughly −100% if αtp = 10. The opposite behavior is actually observed, with DT ,N algebraically increasing
as N increases [5]. This means that we may not ignore end effects. It should be remarked that, in using the same αtp in (17)
and (18), we have also ignored end effects in the expression of Waldmann’s thermophoretic force for N = 1. Likewise, using
the same μn for long and short chains is open to criticism. However, the calculation (19) shows that the non-proportionality
between thermodiffusion and thermophoresis has the same order of magnitude (albeit with a different sign) as the observed
difference between the DT of a short and a long chain. Therefore the non-proportionality between vd and DT cannot be
ignored in interpreting the behavior of short chains.

6. Conclusions

In this communication, we have theoretically investigated the velocity response of a flexible polymer chain in a good
solvent to a temperature gradient, by breaking up the flexible chain into rigid rods, each of which is treated as a Brownian
particle. The response has been pictured as the upshot of two forces. One is due to the anisotropy in the molecular-velocity
distribution function when the solvent is subjected to a temperature gradient; it is Waldmann’s thermophoretic force in a
rarefied gas, here scaled down to the molecular mean free path. The other force is the differential friction, which is the
correction to the Stokes friction force caused by the temperature gradient. The first force is thermophobic whereas the
second is thermophilic but frequently weaker. Whereas a deterministic force is uniform and static, the force field due to
thermal fluctuations is spatiotemporally uncorrelated and unable to generate back-flow effects. The main features observed
in experiments (e.g. η|DT | ≈ 10−14 J K−1 m−1 is little dependent on η and independent of N � 1) are reproduced quali-
tatively without adjusting parameters. The treatment has used scaling relations omitting numerical prefactors but keeping
all dimensional factors. The prefactors are system-dependent and their values are unlikely to be calculable analytically. The
same was already true of thermodynamic quantities in polymer physics [9] and we have found no argument suggesting that
kinetic quantities could be easier to calculate than thermodynamic ones. Finally, for a short chain the difference between
thermophoresis and thermodiffusion is of the same order of magnitude as the experimental variation in DT and thus cannot
be ignored in interpreting the observations.
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