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We examine the band spectrum, and associated Floquet–Bloch eigensolutions, arising in
a class of three-phase periodic checkerboards. On a periodic cell [−1,1[2, the refractive
index, n, is defined by n2 = 1 + g1(x1) + g2(x2) with gi(xi) = r2 for 0 � xi < 1, and
gi(xi) = 0 for −1 � xi < 0 where r2 is constant. We find that for r2 > −1 the lowest
frequency branch goes through origin with linear behaviour, which leads to effective
properties encountered in most periodic structures. However, the case whereby r2 = −1
is very unusual, as the frequency λ behaves like

√
k near the origin, where k is the

wavenumber. Finally, when r2 < −1, the lowest branch does not pass through the origin
and a zero-frequency band gap opens up. In the last two cases, effective medium theory
breaks down even in the quasi-static limit, while the high-frequency homogenization
[R.V. Craster, J. Kaplunov, A.V. Pichugin, High-frequency homogenization for periodic media,
Proc. R. Soc. Lond. Ser. A 466 (2010) 2341–2362] neatly captures the detailed features of
band diagrams.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Nous étudions le spectre de bande associé aux modes de Floquet–Bloch dans une classe
d’échiquiers périodiques. Sur une cellule de base [−1,1[2, l’indice de réfraction, n, est
défini par n2 = 1 + g1(x1) + g2(x2) où gi(xi) = r2 (une constante) pour 0 � xi < 1, et
gi(xi) = 0 pour −1 � xi < 0. Pour r2 > −1, la première bande passe par l’origine avec
un comportement linéaire, ce qui conduit à des propriétés effectives rencontrées dans la
plupart des structures périodiques. En revanche, le cas r2 = −1 est moins ordinaire, puisque
la bande de fréquences acoustiques λ se comporte comme

√
k au voisinage de l’origine,

avec k le nombre d’onde. Finallement, quand r2 < −1, la bande acoustique disparaît :
la première bande ne passe plus par l’origine et une bande interdite à fréquence nulle
apparaît. Dans ces deux derniers cas de figure, la théorie des milieux effectifs ne s’applique
pas, alors que la théorie d’homogénéisation hautes fréquences [R.V. Craster, J. Kaplunov,
A.V. Pichugin, High-frequency homogenization for periodic media, Proc. R. Soc. Lond. Ser. A
466 (2010) 2341–2362] reproduit avec précision les diagrammes de bandes.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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Nous considérons un échiquier périodique dont la géométrie est décrite dans la Fig. 1. Les ondes optiques ou acoustiques
qui s’y propagent sont solutions de l’équation de Helmholtz (1) dans les cases homogènes occupées par des matériaux ou
fluides isotropes dont le carré de l’indice de réfraction est positif, nul, ou négatif. Par ailleurs, des conditions classiques
de continuité de la composante tangentielle du champ électromagnétique (ou du champ de déplacement/pression et de sa
dérivée normale) sont imposées aux interfaces entre les différents matériaux/fluides de la cellule élémentaire et des condi-
tions de Floquet–Bloch sur les bords opposés de celle-ci. Dans le cadre de la théorie d’homogénéisation hautes fréquences
développée dans [1], nous nous intéressons plus particulièrement au cas où les conditions de Floquet–Bloch se réduisent à
des conditions périodiques ou anti-périodiques, ce qui permet de déduire l’équation homogénéisée (4) qui conduit à une es-
timation fine des courbes de dispersion à travers la fréquence effective (5), pour des nombres d’onde au voisinage des points
A, B et C de la zone de Brillouin, cf. Fig. 1. Il s’avère que l’on peut même déduire les relations de dispersion analytiquement
dans le cas d’échiquiers à trois phases, données par (7) et (6).

Grâce à ces approches de type homogénéisation hautes fréquences [1], et Krönig–Penney [2], nous mettons en exergue
trois types de comportements effectifs pour des ondes se propageant dans de tels échiquiers aux basses fréquences : ordi-
naire de type cristal photonique (r2 > −1 : bande acoustique linéaire à l’origine, voir Figs. 2(a) et 4(a)), singulier de type
cristal plasmonique (r2 = −1 : bande acoustique non linéaire à l’origine, voir Fig. 3(a)) et de type métamatériaux (r2 < −1 :
perte de bande acoustique i.e. bande interdite à fréquence nulle, voir Fig. 3(b)).

Nous concluons notre étude par une application de type lentille échiquier par réfraction négative [3,4] quand r2 > −1,
avec l’image d’un point source à la fréquence donnée par l’estimation (8), voir Fig. 4(b). Nous notons que dans ce cas de
figure, la réfraction négative résulte d’une vitesse de groupe négative pour des ondes se propageant suivant la direction C A
du réseau de Brillouin, voir Fig. 4(a), ce qui induit une rotation des cellules de base de l’échiquier d’un angle de 45 degrés,
comme il transparaît en Fig. 4(b). Géométriquement, la fréquence donnée par (8) correspond à l’intersection de la bande
acoustique suivant C A et de la droite de pente −1 issue de A (en traits pointillés), généralement appelée cône de lumière
dans la littérature optique (qui correspond à la dispersion d’une onde optique ou acoustique en milieu homogène) [5,6]. Des
effets de focalisation similaires peuvent-être obtenus dans des structures périodiques pour les ondes de pression dans les
fluides ou les vagues à la surface d’un liquide [7–10].

1. Introduction: Beyond effective medium theory with high-frequency homogenization

Negative refraction is an emerging field in photonics introduced by Victor Veselago in the late 1960’s [3], with renewed
interest following the controversial claim of John Pendry that negative refraction makes a flat lens with unlimited resolution
possible [4]. The quest for this superlens has fuelled research in structured photonic materials during the last decade. These
composites are known as photonic crystals when the wavelength of light is of the same order as the typical heterogene-
ity size (Bragg frequency regime), and metamaterials when the wavelength is much larger (low-frequency homogenization
regime). The propagation of waves with anti-parallel group and phase velocities, an essential ingredient for negative refrac-
tion, was discussed in the late 1940’s by Léon Brillouin [11].

In order to investigate the properties of photonic crystals, we consider the Helmholtz equation (1) in a periodic medium.
This equation could, with appropriate notational and linguistic changes, hold for acoustic, electromagnetic, water or out-of-
plane elastic waves and so encompasses many possible physical applications. We solve

∂2u

∂x1
2

+ ∂2u

∂x2
2

+ λ2[1 + g1(x1) + g2(x2)
]
u = 0 (1)

for u(x1, x2) on the square −1 < x1, x2 � 1, where λ2 is the frequency squared. In the case of a three-phase checkerboard
with a square cell as shown in Fig. 1, gi(xi) is taken to be the piecewise constant

gi(xi) = r2 for 0 � xi < 1, and gi(xi) = 0 for − 1 � xi < 0 (2)

We note that in the context of optics, the unknown u in (1) stands for the longitudinal component of the electric field
Ez and λ2 is associated with ω2/c2 whereby ω is the electromagnetic wave frequency and c is the speed of light in vacuum.
Moreover, εrμ0 = 1 + g1(x1) + g2(x2) where μ0 = 1 and εr are the relative permeability and permittivity of the dielectric
(non-magnetic) medium, respectively.

For waves through an infinite, perfect, doubly periodic checkerboard one can invoke Bloch’s theorem [11] and simply
consider the square cell with quasi-periodic Bloch boundary conditions applied to the edges:

u(1, x2) = eiκ1 u(−1, x2), ux1(1, x2) = eiκ1 ux1(−1, x2)

u(x1,1) = eiκ2 u(x1,−1), ux2(x1,1) = eiκ2 ux2(x1,−1) (3)

that involves the Bloch wave-vector κ = (κ1, κ2) characterizing the phase-shift as one moves from one cell to the next. There
is also continuity of u, ux1 , ux2 along x1 = 0 and x2 = 0. This Bloch problem is solved explicitly and dispersion relations that
link the frequency and Bloch wavenumber are deduced; as is well-known in solid state physics [11] only a limited range of
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Fig. 1. Left: A single cell for the checkerboard geometry, for piecewise constant media. Right: The reciprocal Brillouin lattice in wavenumber, κ = (κ1, κ2),
space.

wavenumbers need be considered, namely the wavenumbers along the triangle shown in the reciprocal Brillouin lattice of
Fig. 1 and these form the irreducible Brillouin zone. The dispersion curves reported in Figs. 3–4 illustrate several interesting
features: stop-bands for which wave propagation is not possible, and regions of flat dispersion curves for which the group
velocity is zero and features of slow sound or light occur. In this paper, we focus our attention to the lowest curves,
associated with averaged properties of the checkerboards, and discuss the extension of existing effective theories to higher
frequencies.

Conventional homogenization is widely assumed to be ineffective for modeling photonic crystals as it is limited to low
frequencies when the wavelength is long relative to the microstructural lengthscales. Here the recently developed high-
frequency homogenization theory [1], which is free of the conventional limitations, is used to generate effective partial
differential equations on a macroscale, that have the microscale embedded within them through averaged quantities. We
focus our attention on periodic checkerboards, some of them with sign-shifting coefficients [20,22]: the latter are known
to support a host of surface plasmons associated with highly resonant features less than conducive for any effective theory.
Our aim is actually to push the newly introduced high-frequency homogenization beyond its limits.

At leading order, the field u(x) propagating inside the periodic checkerboard can be represented as U (ξ ) f (X) where ξ
and X are the short- and long-scales [1]. The function U represents the local short-scale solution at a specific standing
wave frequency, λ0 (which is in the high-frequency regime), and f the long-scale variation. Ultimately a homogenized PDE
emerges for f entirely on the macroscale [1]

Tij
∂2 f

∂ Xi∂ X j
+ (λ2 − λ2

0)

ε2
f = 0 (4)

where the spatially constant tensor Tij incorporates the short-scale information associated with the standing wave frequency
λ0; λ is the full frequency and there is summation over repeated suffices. For the checkerboard, the general formulae for
the coefficients Tij are expressed in terms of double integrals over the cell, as in [1], and can be reduced to completely
explicit trigonometric expressions.

The PDE can be augmented by additional terms if there is material variation leading to localized defect modes [13] or
localized forcing [14]. The PDE (4) can then be utilized for, say, Bloch waves where f ∼ exp(ik ·X/2), to find local dispersion
relations

λ ∼ λ0

(
1 + ε2 Tijkik j

8λ2
0

)
(5)

valid near the standing wave frequency λ0; this formula is explicitly for those periodic–periodic standing waves at
wavenumber A and almost identical formulae hold for the other standing waves. Thus, the constants Tij , once identified,
completely encapsulate the effect of the microstructure on the dispersion properties of the system; the disparity of scales is
represented by ε which is assumed positive and � 1. Some typical values of the tensor Tij are given for the cases r2 = −1
and −0.9 in Table 1 and r2 = −2 in Table 2. One should note that in some cases the diagonal entries, are identical (effective
isotropic parameters), different (anisotropic parameters) and even of opposite signs (a hallmark of anomalous dispersion).

2. An exact dispersion relation for a class of three-phase checkerboards

We have first investigated the dispersion curves associated with three-phase periodic checkerboards using the finite
element software COMSOL Multiphysics. However, the convergence of the numerical algorithm can be hazardous, due to
sign-shifting coefficients [22]. Thankfully, the Bloch problem for such checkerboards can be solved analytically and this
provides probably the only non-trivial two-dimensional structure with an exact solution; it is a natural generalization of
the classical Kronig–Penney [2] one-dimensional piecewise constant periodic medium. The dispersion relation follows from
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Table 1
The standing wave frequencies, λ, the μ and the corresponding T11 and T22 for the lowest three dispersion curves for r2 = −1 and r2 = −0.9.

r2 = −1 r2 = −0.9

λ μ T11 T22 λ μ T11 T22

A 0 0 N/A N/A A 0 0 N/A N/A
A 4.801 2.605 −2.907 0.195 A 4.678 2.544 −4.436 0.278
A 4.801 2.605i 0.195 −2.907 A 4.678 2.544i 0.278 −4.436
C 2.652 0 −1.813 −1.813 C 2.6086 0 −2.1778 −2.1778
C 4.519 2.345 2.951 −0.380 C 4.263 2.1596 4.079 −0.678
C 4.519 2.345i −0.380 2.951 C 4.263 2.1596i −0.678 4.079
B 2.336 0.767i −3.445 1.394 B 2.2473 0.8165i −4.3226 1.4607
B 4.477 2.350i 3.215 0.384 B 4.1814 2.1623i 4.7095 0.6936
B 4.821 2.595 −0.199 −2.774 B 4.708 2.530 −0.2883 −4.1548

Table 2
Values of λ and the corresponding μ at the wavenumbers for standing waves with the associ-
ated values of T11 and T22 for the lowest dispersion curve for r2 = −2.

r2 = −2

λ μ T11 T22

A 2.8898 0 0.4519 0.4519
C 3.0217 0 −0.3412 −0.3412
B 2.9632 0.3524 −0.41 0.3596

setting u(x1, x2) = Q 1(x1)Q 2(x2) in the governing equation (1). From the piecewise constant function (2), and from the
Bloch conditions (3), the following coupled equations emerge [12]

2γiβi(cosκi − cosγi cosβi) + (
β2

i + γ 2
i

)
sinγi sinβi = 0 (6)

for i = 1,2. These are dispersion relations for λ2,μ2 (the latter is a separation constant) in terms of κ1, κ2; the parameters
γi, βi act to couple the equations as

β2
i = λ2/2 ∓ μ2, γ 2

i = λ2(1/2 + r2) ∓ μ2 (7)

for i = 1,2 with the minus, plus signs for i = 1,2 respectively. This two variable dispersion relation is solved via matrix
Newton iteration. For the exact solution found in this section, one finds λ,μ explicitly and some sample eigenvalues are
given in Table 1. Notably some frequencies, λ, have two associated μ values, one real and one imaginary and these corre-
spond to degenerate cases where the dispersion curves touch.

3. Illustrative electromagnetic paradigms whereby effective medium theory fails

Effective properties of periodic checkerboards are of particular mathematical interest, and their study goes back a long
way, with the seminal paper by Keller [15] for two-phase checkerboards, and those of Mortola–Steffe [16], Craster–Obnosov
[17] and Milton [18] for four-phase checkerboards. Physicists have further analyzed the effective properties of two-phase
checkerboards with continuously varying parameters in the context of photonic crystals [19]. In this note, we investigate
the case of three-phase checkerboards with negative and vanishing refractive index squared (when r2 takes values lower
or equal than −1). Such a study is motivated by the fabrication of nano-scale gold and silver checkerboards whose cells
alternate positive and negative refractive index squared media in the visible range of frequencies. Potential applications lie
in extra-ordinary transmission of light through the sub-wavelength aperture holes in such checkerboards, and tremendously
enhanced local density of states for light confinement [20]. These physical phenomena are underpinned by the effective
properties of such checkerboards. Hence, an adequate homogenization model for such structures is of pressing importance.

We start with the canonical case of a three-phase checkerboard with r2 = 1. Dispersion diagrams reported in Fig. 2(a)
compare the solution from the exact dispersion relations (dashed lines) with those from the high-frequency homogenization
approach (solid lines). We note that most curves are well approximated by the asymptotics, and in particular the optical
band (second curve) which cannot be captured by standard homogenization techniques. The negative slope of the optical
band along the AC direction leads to a negative group velocity associated with all-angle-negative-refraction, see [5,6] for
applications in optics and [7–10] in acoustics.

We now explore the case of a checkerboard with r2 = −0.9,−1 and 1. A close-up view on a log–log scale of the acoustic
band in Fig. 2(b) reveals that the long wave low-frequency limit for r2 = −0.9 differs substantially from that when r2 = −1.
For r2 = −1 the usual effective medium result that frequency is linearly related to wavenumber no longer holds; a different
asymptotic relation arises, see Fig. 2(b) where λ ∼ 61/4√|κ |. The change in behavior occurs due to a degeneracy in the
asymptotics for r2 = −1, although they still work and the new relation emerges.
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Fig. 2. Dispersion diagrams for r2 = 1 and local behavior of the acoustic band for vanishing wavenumbers when r2 = −1, −0.9 and 1. Panel (a) shows the
dispersion curves from the exact solutions (dashed curves) that are visually close to those from the asymptotic estimates (solid curves). Panel (b) shows
the lowest dispersion curve along AC on log–log axes. The dashed line is for r2 = −1 and its slope is 1/2, the superimposed dots are λ ∼ 61/4√|κ |. The
solid line for r2 = −0.9 and the lowest line for r2 = 1 show the usual λ ∼ |κ | linear behavior.

Fig. 3. Dispersion diagrams for r2 = −1 (a) and r2 = −2 (b). Panel (a) shows the lowest three exact dispersion curves from the explicit dispersion relations
and the asymptotic dispersion curves with the behavior at the lowest curve that touches the origin shown dotted. The lower inset shows the detail near
the origin comparing the exact (dashed) and asymptotic (dotted) solutions. The upper inset shows a similar comparison (asymptotics given by the solid
line) for the lowest curve near wavenumber position C . Panel (b) shows that there is no acoustic band and that the dispersion curves are nearly flat. The
inset shows an enhanced view of the lowest dispersion branch with the numerics (dashed) shown together with asymptotics (solid).

The dispersion diagrams reported in Fig. 3 compare the solution from the exact dispersion relations with those from
the asymptotics when r2 = −1 and −2. Fig. 3(a) clearly demonstrates the superiority of the high-frequency homogenization
approach which reproduces very precisely the acoustic and optical branches, thereby extending classical homogenization
to the stop band (Bragg) regime of frequencies. Moreover, the region where the lowest branch cuts the origin, the long
wave low-frequency regime, is no longer linear and asymptotics of the dispersion relation show that the local behavior
is that λ ∼ 61/4|κ |1/2 (cf. also Fig. 2(b)). The insets show details of the asymptotics versus the exact solution. Fig. 3(b)
shows the case of a checkerboard with r2 = −2; the acoustic band is lost for r2 < −1, which is reminiscent of singular
problems in homogenization of periodic arrays of infinitely conducting fibres in transverse electric polarization (modeled
with Dirichlet boundary conditions) [21]. In the present case, we do not consider Dirichlet conditions (corresponding to
hard walls in acoustics) but we rather have sign-shifting conditions across some interfaces [22]. It is clear that effective
medium theory breaks down, however the high-frequency homogenization approach captures the fine features of the nearly
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Fig. 4. Dispersion diagrams for r2 = −0.9. Panel (a) shows the dispersion curves that are visually close to those for r2 = −1 however, the behavior near A
for low frequency is asymptotically different between these cases. The dot–dash line is the light-line for waves impinging upon the rotated checkerboard.
Panel (b) shows the absolute value of field u (e.g. the transverse electric field in optics, or the pressure field in acoustics) solution of the Helmholtz equation
(1) for a harmonic point source at frequency λ = 2.1 above a finite size checkerboard for r2 = −0.9 with each cell rotated by an angle π/4; it displays an
image below the checkerboard in accordance with the Snell–Descartes law for a negative refractive index. We note that the resolution of the image is about
half the wavelength along the x-axis and twice the wavelength along the y-axis (elongated image). This means the focused signal is constrained within an
area no smaller than a wavelength squared (i.e. no sub-wavelength resolution).

flat dispersion curves, see the inset to Fig. 3(b), which are associated with slow waves, another topical subject in photonics
(with applications in delay lines and highly-directive antennas).

We finally wish to explore in more details the spectrum for the case of a checkerboard with r2 = −0.9. Fig. 4(a) looks
visually similar to Fig. 3(a); however, a closer view on a log–log scale (see Fig. 2(b)) of the acoustic band reveals that the
long wave low-frequency limit differs from that when r2 = −1. For r2 = −0.9 one gets the usual effective medium result
with frequency linearly related to wavenumber however for r2 = −1 the effective medium theory no longer holds and a
different asymptotic relation holds (λ ∼ 61/4|κ |1/2); we further observe that the high-frequency homogenization approach
(dotted line) captures the fine features of this curve (dashed line).

Importantly, Fig. 4(a) also shows the light-line emerging from C relevant for waves impinging upon a checkerboard
structure rotated through π/4. Notably the light-line crosses the lowest dispersion curve in such a way that their group
velocities are opposite and therefore one can induce negative refraction at this frequency. The asymptotic theory explicitly
identifies this frequency as

λ = λ0/
√

1 − T /4 (8)

where T11 = T22 = T for that case. The estimate is that λ ∼ 2.1 and computations for this are shown in Fig. 4.

4. Conclusions

We have investigated the Bloch spectrum of periodic, three-phase, checkerboards. While in [12] we apply the high-
frequency homogenization theory [1] to localization and lensing effects in dielectric photonic checkerboards, the focus has
been here on special cases in which the refractive index squared (i.e. the relative permittivity in the context of optics)
in homogeneous cells can take vanishing and/or negative values (which is a good model for Drude metals, e.g. gold or
silver), and we have found that anomalous dispersion effects of waves are possible, including acoustic bands with non-linear
features for vanishing wavenumbers, zero frequency stop bands, and nearly flat dispersion curves. The last two items are
known to be respectively associated with singularly perturbed problems in electromagnetism that cannot be homogenized
in a conventional way [21], as no wave is allowed to propagate in the periodic structure at low frequencies, and slow waves,
whereby delay lines can be achieved.
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