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Yield strength of masonry-like structures containing thin adhesive joints:
3D or 2D-interface model for the joints?
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It is shown in this Note that the use of a 2D-interface model for the joints in the limit
analysis of a structure made of bricks which are bounded with adhesively thin joints leads
to an upper bound estimate of the bearing capacities of the structure, as the thickness of
the joints goes to zero. Considering the compression in the vertical direction of a running
bond masonry made of Drucker–Prager bricks and mortar, it is found that the use of the
interface model overestimates by 15 percent the compressive strength of the masonry
computed with 3D finite elements. Moreover, comparisons with compression test results
show that the damaging behavior of the bricks has an important effect on the actual
compressive strength of the masonry.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On montre dans cette Note que l’utilisation d’un modèle d’interface 2D pour les joints
lors de l’analyse limite d’une structure faite de briques assemblées par des joints adhésifs
minces conduit à une estimation par excès des capacités portantes de la structure, quand
l’épaisseur des joints tend vers zero. Considérant la compression dans le sens vertical d’une
maçonnerie constituée de briques et de mortier obéissants au critère de Drucker–Prager,
on trouve que l’utilisation du modèle d’interface surestime de 15 pourcent la résistance
en compression calculée avec des éléments finis 3D. De plus, des comparaisons avec les
résultats de tets de compression montrent que l’ endommagement des briques a un effet
important sur la résistance en compression de la maçonnerie.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The use of an interface 2D joint model instead of the full 3D model in the analysis of a structure containing adhesively
bonded thin joints is very common in many applications, including masonry-like structures, because the use of small 3D
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Fig. 1. A plane joint.

finite elements for the joints would be memory and time consuming. This has been fully justified in the elastic case in
[1] where asymptotic expansion methods involving two small parameters: the contrast between the joint material and the
brick material, and the relative thickness of the joints, where used. Considering the limit analysis of masonry-like structures
made of bricks which are bonded with thin joints, the purpose of this Note is to show that the use of an interface 2D model
for the joints leads to an upper bound estimate of the bearing capacities of the structure, as the thickness of the joints goes
to zero, and to evaluate on an example the discrepancy between the interface 2D model and the full 3D model. Considering
the compressive strength in the vertical direction of a running bond masonry made of Drucker–Prager bricks and mortar,
the predictions of both the interface and 3D models are computed and compared to experimental results.

2. From 3D to 2D joint model

We study in this Note the limit analysis of a structure made of bricks occupying the domain Ω B which are bonded
with thin joints occupying the domain Ω J . The strength domain is G J in the joints, x ∈ Ω J , and G B in the bricks, x ∈ Ω B .
G J and G B are two given convex domains of the six-dimensional stress space. Their support functions π J and π B are the
two positively homogeneous functions of the strain rate symmetric second order tensor d = (dij), i, j = 1,2,3, defined by:

πα(d) = sup
σ∈Gα

σ : d, σ ∈ Gα ⇐⇒ σ : d � πα(d) for all d (1)

for α = J or B . The loading of the structure is described by providing (a) the set KA of kinematically admissible velocity
field vectors v =(vi), i = 1,2,3, with the prescribed boundary conditions; and (b) the linear functional L(v) representing
the power of the prescribed external forces. According to the well-known kinematic approach of the yield design theory [2],
the structure cannot sustain the loading if there exists a velocity field in KA such that:∫

Ω J

π J (∇ ⊗s v
)

dΩ J +
∫

Ω B

π B(∇ ⊗s v
)

dΩ B < L(v) (2)

where ∇ ⊗s v is the symmetric part of the gradient of v.
For the sake of simplicity, only plane joints with uniform thickness are studied in this paper. See Fig. 1. n is the normal

to the middle surface ω J of the joint, (l,m,n) is a local basis, e is the thickness of the joint, v+ and v− are the values
of the velocity v at the joint boundaries. The idea is to consider the following linear interpolation of the velocity in the
thickness of the joint:

v(xl, xm, xn) = v+(xl, xm) + v−(xl, xm)

2
+ v+(xl, xm) − v−(xl, xm)

e
xn (3)

Due to the fact that π J is positively homogeneous, it can be shown under some regularity conditions on v+ , v− and π J

that, fixing ω J , v+ and v− , the limit of the first term of the left-hand side of (2) is finite and is given by:

lim
e→0+

∫

Ω J

π J (∇ ⊗s v
)

dΩ J =
∫

ω J

π J (n ⊗s [v]) dω J (4)

where [v] = v+ − v− is the velocity jump. The right-hand side of (4) is the maximal resistant power of the interface 2D
joint model. The interface yield strength domain g J is the convex domain of the three-dimensional space of stress vector
t = σ .n such that σ ∈ G J . Using standard duality techniques, it is equivalently defined by:

t ∈ g J ⇐⇒ t.u � π J (n ⊗s u
)

for all vectors u (5)

If the contribution of the interpolated velocity in the joint, (3), to L(v) vanishes, as the thickness of the joints goes to
zero, then the above kinematic analysis clearly shows that substituting the interface 2D joint model for the 3D joint model
leads asymptotically to an upper bound estimation of the bearing capacities of the structure. Using the same interpolation
techniques for the velocity field in the joints, the same conclusion holds true for curved joints with possibly intersecting
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Fig. 2. The running bond masonry geometry and the extracted unit cell.

zones. This result could be easily obtained with the static approach under the additional assumption that the bricks are
more resistant than the joints: G J ⊂ G B . Indeed, in this case, the condition σ (x) ∈ G J for x ∈ Ω J can be relaxed into
the conditions σ (x) ∈ G B for x ∈ Ω J

� ω J and σ (x).n ∈ g J for x ∈ ω J . In other words, in the case G J ⊂ G B , an upper
bound estimation of the bearing capacities of the structure is obtained for arbitrary thickness of the joints by replacing the
joint material with the brick material everywhere except at the middle surface of the joints, ω J , where the interface yield
condition σ .n ∈ g J is imposed.

3. The vertical compressive strength of a running bond masonry

The running bond masonry geometry is described in Fig. 2. It is made of identical parallelepipedic bricks (side length b
in the horizontal direction 1, a in the vertical direction 2 and t in the third direction) separated by horizontal continuous
bed joints and alternate vertical head joints. eh is the thickness of the horizontal joints, ev is the thickness of the vertical
joints. Bricks and joints are both made of Drucker–Prager materials. The Drucker–Prager yield function is:

σ ∈ G ⇐⇒ f (σ ) � 0 with f (σ ) = q + p tanβ − c (6)

where p = 1
3 tr(σ ) is the hydrostatic stress, s = σ − pI is the deviatoric stress, q =

√
3
2 s : s, c > 0 is the Drucker–Prager

cohesion and β is the Drucker–Prager friction angle with (c, β) = (c J , β J ) in the joints and (c, β) = (cB , βB) in the bricks.
According to [2], the Drucker–Prager interface yield strength defined by (5) coincides with the Mohr–Coulomb one given by:

τ + σ tanϕ − c′ � 0 (7)

where σ is the normal component of σ .n, σ = n.(σ .n), τ is its shear component |σ .n − σn|, ϕ is the Mohr–Coulomb
friction angle such as 3 sinϕ√

3+sin2 ϕ
= tan β and c′ = c tanϕ/ tan β is the Mohr–Coulomb cohesion.

The corresponding π -function writes:

π
(
n ⊗s [v]) =

{
(c′/ tanϕ)[v].n if [v].n � |[v]|. sinϕ

+∞ otherwise

where [v] is the velocity jump across the joint interface ω J .
According to the homogenization method for the limit analysis of thin periodic plates, first proposed by Bourgeois [3]

and then independently by Sab [4] and Dallot and Sab [5], the overall compressive strength in the vertical direction, Σc ,
of the considered masonry is determined as follows. Let Y denotes an elementary unit cell which contains all information
necessary to completely describe the periodic plate both in directions 1 and 2. This cell is denoted by:

Y = A ×
]
− t

2
,

t

2

[

where A ⊂ R
2 is the middle section of Y in the (1,2)-plane; The plate unit cell problem is actually different from the

well-known unit cell problem for 3D periodic media. The main differences concern the boundary conditions. Indeed, let the
boundary ∂Y of Y be decomposed into three parts:

∂Y = ∂Yl ∪ ∂Y +
3 ∪ ∂Y −

3 , with ∂Y ±
3 = A ×

{
± t

}

2
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Periodic boundary conditions will be imposed to the lateral boundary ∂Yl while stress free boundary conditions will be
imposed to ∂Y ±

3 . Taking into account the symmetries of the microstructure, [5,6], the static determination of Σc is as
follows: find the maximum value of Σ such that there exists a stress field σ = (σi j) of the unit cell Y verifying:

σ (y) ∈ G(y), ∀y ∈ Y

〈σ11〉 = 〈σ12〉 = 0, 〈σ22〉 = −Σ

divσ = 0 on Y

σ · n skew-periodic on ∂Yl; σ · e3 = 0 on ∂Y ±
3 (8)

where 〈·〉 is the volume average on Y . It can be shown that the average out-of-plane components 〈σi3〉, i = 1,2,3 of σ in
(8) are null. However, σ is not a plane stress field in the general case.

According to [5,6], the kinematic definition of Σc is obtained by considering the set of kinematically compatible velocity
fields of the unit cell, v = (vi) defined by:

KA(D) = {
v

∣∣ ∇ ⊗s v = D + ∇ ⊗s uper, uper A-periodic in (1,2)
}

(9)

where D =(Dij), Di3 = 0, i, j = 1,2,3 is the in-plane part of the macroscopic strain.

Σc = inf
v∈KA(D), D22=−1

〈
π

(∇ ⊗s v
)〉

(10)

In the general case, uper(y1, y2, y3) has three components (u3 �= 0) and it is periodic only in the directions 1 and 2. Hence,
the average out-of-plane components of d = ∇ ⊗s v for v ∈ KA(D) are not null. We have 〈dαδ〉 = Dαδ , α, δ = 1,2, and
〈di3〉 �= 0, i = 1,2,3. So, in the general case, the 3D unit cell problem (8)–(10) is not a plane stress one nor a plane strain
one.

If the interface 2D joint model is substituted for the 3D joint model in the above described limit analysis problem, then
the first condition in (8) becomes σ (y) ∈ G B for all y in Y ∗ , and t(y) ∈ g J for all y located at the interface ω J between
the bricks. The maximum value of Σ is noted Σ∗

c . Here, Y ∗ is the unit cell obtained from Y by setting eh = ev = 0. G B is
given by (6) with (c, β) = (cB , βB) and g J is given by (7) with (c, β) = (c J , β J ). Moreover, Σ∗

c can be computed using the
kinematic approach (10) where the average 〈π〉 becomes 〈π B(∇ ⊗s v)〉 + 1

|Y ∗|
∫
ω J π J (n ⊗s [v])dω J . In the case of infinitely

resistant bricks with rigid body kinematics, this 3D unit cell problem with 2D-interface joint model coincides with the one
introduced by de Buhan and de Felice [7].

We claim that if the joints are modeled as 2D interfaces as described above, then the vertical compressive strength of the
running bond masonry is equal to the compressive strength of the bricks, Σ B

c , i.e. Σ∗
c = Σ B

c . Indeed, consider the uniform
stress field in Y ∗: σ22 = −Σ , σi j = 0 for all (i, j) �= (2,2), in the static approach. It is clear that the balance equation,
the static boundary conditions, the averaging condition and the interface condition are verified for all Σ > 0. Hence, the
maximum compatible value of Σ is Σ B

c , and we have Σ B
c � Σ∗

c . Moreover, using the following continuous velocity field
D12 = 0, uper

1 (y) = uper
2 (y) = 0, uper

3 (y) = D11 y3 in the kinematic approach, we have

d = ∇ ⊗s v =
⎛
⎝ D11 0 0

0 −1 0
0 0 D11

⎞
⎠

and optimizing (10) over D11 leads to Σ∗
c � Σ B

c .

4. Finite elements computations

The limit analysis problem with 3D joints has been solved on the unit cell of Fig. 2 with the ABAQUS finite elements
software. Elasto-plastic simulations with perfectly plastic Drucker–Prager materials (no hardening) obeying the normality
rule were performed with the following material constants for the brick and the joints, respectively: Young’s modulus,
6740 Mpa and 1700 Mpa; Poisson’s ratio, 0.167 and 0.06; β , 30° and 40°; c, 4.328 Mpa and 0.348 Mpa. Actually, the
ABAQUS software may exhibit some convergence problems due to the non-differentiability of the Drucker–Prager yield
function at q = 0. Hence, a regularized (hyperbolic) version of the Drucker–Prager yield function has been used where√

l20 + q2 is substituted for q in (6). Here, l0 is a small positive constant compared to the cohesion (0.022 Mpa in the brick

and 0.002 Mpa in the joints).
The periodicity conditions on the lateral boundary of the unit cell have been imposed by matching the degrees of

freedom of the pairs of nodes situated on these boundaries as follows:

v(yE) − v(yB) = D.(yE − yB) =
⎛
⎜⎝

( b+ev
2 )D11 + (a + eh)D12

( b+ev
2 )D12 + (a + eh)D22

0

⎞
⎟⎠
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Fig. 3. The periodicity conditions.

Fig. 4. The normalized stress–strain curve and the determination of the compressive strength.

v(yD) − v(yA) = D.(yD − yA) =
⎛
⎝ (b + ev)D11

(b + ev)D12
0

⎞
⎠

v(yF ) − v(yC ) = D.(yF − yC ) =
⎛
⎝ −( b+ev

2 )D11 + (a + eh)D12

−( b+ev
2 )D12 + (a + eh)D22

0

⎞
⎠ (11)

where A, B , C , D , E , F are the six faces of the lateral boundary shown in Fig. 3 where a section in the (1,2)-plane of the
unit cell is represented. This can be justified as follows: for example, the infinite microstructure is obviously kept invariant
if translated by the vector joining node (1) to node (5). Hence, face E , which is the image of face B by this translation
should me matched by periodicity conditions with face B . The six nodes (k) with k = 1,2, . . . ,6, match as follows: (4) with
(6) and (2); (5) with (1) and (3). Using the above equations, it is possible to express the D components in terms of the
degrees of freedom, v(k), of these nodes. Indeed, setting v(1) = 0, we obtain

D11 = v(3)
1

b + ev
, D12 = v(3)

2

b + ev
, D22 = v(5)

2 − 0.5v(3)
2

a + eh
(12)

These equations are inserted in the periodic conditions (11) so that these conditions become linear relations between the
nodal degrees of freedom of the lateral boundary of the unit cell. The “Equation” feature of ABAQUS is used to implement
these relations and the loading parameter −D22 is increased from zero until the flow of the structure occurs. The overall
vertical compressive stress Σ = −〈σ22〉 is computed by averaging the stress values at the Gauss points. Fig. 4 shows the
obtained stress–strain curve from which the vertical compressive strength Σc is obtained as the asymptotic value of Σ . We
have found Σc ≈ 0.87Σ B

c . In our simulations, the C3D8 ABAQUS 8-node element has been used with three elements in the
joint thickness. Fig. 5a shows the mesh details in the in-plane directions. The thickness of the cell in the third direction is
10 mm. Actually, the brick is plastically deformed by compression except in the central zone situated between the vertical
joints as shown in Fig. 5b where the stress σ33 is represented. Its average value in the joint is nearly equal to −2 Mpa while
it is very small in the brick. Hence, σ is not a plane stress field. Moreover, it is clear from Fig. 5b that the collapse mode is
not a plane strain one.
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Fig. 5. (a) The mesh details in the in-plane directions; (b) the plastic collapse mode and σ33.

Fig. 6. Compression tests. (a) Partially compressed brick specimen; (b) loading conditions on the partially compressed brick; (c) three-layer masonry speci-
men.

5. Experimental results

The strength of full clay bricks under compression tests was measured. Three compression test configurations have been
considered: (i) uniform compression of one single brick on its upper and lower faces; (ii) partial compression of one single
brick on its upper and lower faces except at the location of the vertical joints as shown in Figs. 6a and 6b; (iii) uniform
compression of the three-layer running bond structure shown in Fig. 6c. The dimensions of the bricks were 220 mm ×
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105 mm × 50 mm. Two values for the joint thickness have been considered in the configurations (ii) and (iii): e = 5 mm
and e = 20 mm. For each configuration and each e, three samples have been tested. The strength of a tested specimen is
the ratio of the applied force at failure over its bed area (23 100 mm2).

The uniform compressive strength of the brick in the configuration (i), Σ B
c , ranges between 72 Mpa and 101 Mpa with

an average value of 86 Mpa. The authors are aware that the number of tested specimen (3) does not allow for accurate
quantitative estimation of the average compressive strength. Hence, the following results should be considered as qualitative.
Nevertheless, it was found that e has no significant effect on the compressive strength measured in the configurations (ii)
and (iii). It ranges between 53 Mpa and 66 Mpa with an average value of 61 Mpa (71% of Σ B

c ) in the configuration (ii),
and between 38 Mpa and 49 Mpa with an average value of 44 Mpa (51% of Σ B

c ) in the configuration (iii). The later result
is consistent with [8] where the compressive strength of the running bond masonry in the vertical direction is 58% of the
compressive strength of the bricks.

Now, consider the partially compressed brick of Figs. 6a and 6b – configuration (ii) – and the piecewise uniform vertical
compressive stress field taking null value at the central zone of the specimen and Σ B

c value elsewhere. This stress field
being statically and plastically compatible, the strength of the partially compressed specimen should be greater or equal to
(1 − e/l)Σ B

c (� 0.91Σ B
c ) according to the static approach of limit analysis. The actual strength being 71% of Σ B

c , this test
exhibits the gap between the real damaging behavior of the brick and limit analysis.

In conclusion, we have shown that the use of an interface 2D joint model in the limit analysis of a structure containing
adhesively bonded thin joints leads to an upper bound estimate of the bearing capacities of the structure, as the thickness
of the joints goes to zero. We have evaluated the discrepancy between the 2D joint model and full 3D finite elements for
the determination of the compressive strength of a running bond masonry. Indeed, in this case, the prediction of the 2D
joint model is analytical and coincides with the compressive strength of the bricks, Σ B

c . For a small thickness joint to brick
size ratio e/l = 0.04, it is found that the full 3D finite element model is 87% of the 2D joint one. Moreover, compression
tests have shown that the actual vertical compressive strength of the masonry is about 51% of Σ B

c , and that the strength of
a partially compressed brick is 71% of Σ B

c . Hence, there are three explaining effects for the difference between the actual
vertical compressive strength of the masonry and the compressive strength of the brick: the 3D effect of the joints, the
damaging behavior of the bricks and the kinematics of the tested masonry sample which is not rigorously periodic in the
in-plane directions.
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