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We consider variational inequalities for the Laplace operator in a domain Ω of R
n

periodically perforated along a manifold, with nonlinear restrictions for the flux on the
boundary of the cavities. We assume that the perforations are balls of radius O (εα)

distributed along a (n − 1)-dimensional manifold γ with period ε. Here ε > 0 is a small
parameter, α > 0 and n � 3. On the boundary of the perforations, we have the restrictions
for the solution uε � 0, ∂νuε � −ε−κσ (x, uε) and uε(∂νuε + ε−κσ (x, uε)) = 0, where
κ � 0 and σ is a certain smooth function. For α � 1 and κ = (α−1)(n−2), we characterize
the asymptotic behavior of uε as ε → 0 providing the homogenized problems. A critical
size of the cavities is found when α = κ = (n − 1)/(n − 2) for which the corrector in the
energy norm is constructed.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considèrons inégalités variationnelles pour l’opérateur de Laplace dans une domaine
Ω de R

n périodiquement perforé, et avec des restrictions pour le flux sur la frontière des
trous. On suppose que les perforations sont des boules de rayon O (εα) distribuées sur une
variété de dimension (n − 1), γ , de période ε. Ici ε > 0 est une petite paramètre, α > 0
et n � 3. Sur la frontière des trous nous avons des restrictions pour la solution uε � 0,
∂νuε � −ε−κσ (x, uε) et uε(∂νuε + ε−κσ (x, uε)) = 0, où κ � 0 et σ est une certaine
fonction régulière. Pour α � 1 and κ = (α − 1)(n − 2), nous caractérisons le comportement
asymptotique de uε pour ε → 0. On trouve les problèmes homogéneisés et une taille
critique des trous pour α = κ = (n − 1)/(n − 2). Pour cette taille on construit le correcteur
dans la norme de l’énergie.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this Note, we consider the solution uε of a variational inequality for the Laplace operator in a domain Ωε perforated
along a (n − 1)-dimensional manifold with a nonlinear adsorption rate on the boundary Sε of the cavities Gε . Ωε denotes
the perforated domain Ω \ Gε , Ω a domain of R

n with n � 3, and the nonlinear term involves a large parameter and a
continuously differentiable function σ = σ(x, u) defined in Ω̄ ×R, which is strictly monotonic with respect to u. We assume
that the perforations Gε are the unions of balls of radius C0ε

α with C0 > 0 and α ranges in [1,∞). These perforations are
periodically distributed along the manifold γ = Ω ∩ {x1 = 0} �= ∅ with period ε. Here, ε > 0 denotes a parameter that we
shall make converge towards zero. On the boundary of the cavities Sε (the union of the boundaries of the balls), we consider
the nonlinear restrictions (5) involving the parameter ε−κ with κ = (α − 1)(n − 1). We study the asymptotic behavior of the
solution uε as ε → 0 of the problem, namely of problem (3)–(4) for a given data f ∈ L2(Ω). Note that, among the possible
values of α and κ , here we consider those such that the parameter ε−κ multiplied by the area of Sε is of order O (1). We
also emphasize that the restrictions on Sε are different from those considered in previous homogenization problems in the
literature of applied mathematics. The problem arises in the framework of the modeling of the diffusion of substances in
porous media: see [1] and [2] for more precise models.

For α ∈ [1, (n − 1)/(n − 2)], we obtain the weak convergence of the solution uε , when ε → 0, as stated in Theorems 3.1
and 3.3, to the solution u of a problem for the Laplace operator in Ω with a certain homogenized transmission condition
on γ . This transmission condition contains a nonlinear function of u which represents the macroscopic contribution of the
nonlinear law on the boundary of the microscopic cavities. The nonlinear term is obtained from the function σ depending
on the value of α in (1): see (14) for α ∈ [1, (n − 1)/(n − 2)) and (7) for α = (n − 1)/(n − 2). Note that the case where
α = (n − 1)/(n − 2) differs from the rest of the cases since we obtain a boundary value problem and the nonlinear term is
different: it involves a new function H(x, u) defined implicitly by the nonlinear equation (8), which proves to have similar
properties to the given function σ (cf. (2)). This value for parameters α and κ , namely α = κ in (1), provides a critical size of
the balls Gε . See Remark 1 in this respect. In the case where α > (n − 1)/(n − 2) the homogenized problem is the Dirichlet
problem (15).

Similar geometrical configurations for linear and nonlinear boundary value problems have been considered in many
previous papers: let us mention [1–9] for some of these problems and for further references. Also let us mention [10,11]
for the homogenization of variational inequalities. We refer to [3] as the closest problem to the problem here considered.
In [3] a nonlinear boundary condition on Sε has been considered, namely ∂νuε + ε−κσ (x, uε) = 0 for the value κ = α.
[1] considers the same boundary condition but with the cavities periodically distributed on the whole volume and with
n = 3. In this connection, let us mention [4] for non-homogeneous boundary conditions, [2] and [5] for α = 1, and [6] for
evolution problems.

It is worth mentioning that for different homogenization problems, with different homogenized equations in Ω and
on γ , the kind of nonlinear equation (8) also appears in [1] and [3] respectively. The change of type of nonlinearity was
first noticed in [1] for spatially distributed cavities and in [3] for the cavities along γ . This recalls the so-called strange term
arising in many papers on homogenization problems with critical sizes: see, e.g., [8] for different linear problems and further
references, and [1] and [3] for nonlinear boundary value problems. In the present paper, we highlight the phenomena for
problems with strong nonlinear restrictions on the boundary of the microscopic cavities.

It should be noted that, since we are dealing here with homogenization of variational inequalities, and nonlinear re-
strictions on the boundary of the perforations, proofs rely on extension operators, on transformations of surface integral on
Sε into volume integrals in Ωε , on convergence of measures, and on the appropriate choice of positive test functions (cf.
(12) and Remark 1) which allows us to pass to the limit in the weak formulations. The main convergence results are stated
in Theorems 3.1, 3.3 and 3.4. Furthermore, an improved approximation for the macroscopic solution is constructed when
α = κ , and more accurate results are obtained with respect to the energy norm (cf. Theorem 3.2 and [12] for other values
of α and κ ). For the sake of brevity, we only provide a sketch of the proofs involving the critical size, leaving the technical
and laborious computations, and the rest of the proofs, to be performed in a forthcoming publication (cf. [12]). Finally, the
structure of the paper is as follows: Section 2 contains the setting of the ε-dependent problem while Section 3 contains the
homogenized problems and the corrector result.

2. Setting of the ε-dependent problem

Let Ω be a bounded domain in R
n , n � 3, with a smooth boundary ∂Ω . Assume that γ = Ω ∩ {x1 = 0} �= ∅ is a domain

on the hyperplane {x1 = 0}. We denote by G0 the ball of radius 1 centered at the origin of coordinates. For a set B , and
δ > 0, we denote by δB = {x | δ−1x ∈ B}. We set

G̃ε =
⋃

z′∈Z′

(
aεG0 + εz′) =

⋃
j∈Z′

G j
ε

where Z
′ is the set of vectors of the form z′ = (0, z2, . . . , zn) with integer components zl , l = 2, . . . ,n, aε = C0ε

α , C0 is a
positive number, ε is a small positive parameter that we shall make converge towards zero, and α is a parameter, α � 1. If
no confusion arises, we identify z ∈ Z

′ with j ∈ Z
′ , and we define
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Gε =
⋃
j∈Υε

G j
ε, where Υε = {

z ∈ Z
′: Gz

ε ⊂ G̃ε, Ḡ z
ε ⊂ Ω,ρ

(
∂Ω, Ḡ z

ε

)
� 2ε

}

As is self-evident, the number of Gz
ε with index z ∈ Υε is |Υε| ∼= dε1−n for a certain d > 0.

In what follows, we set

Ωε = Ω \ Ḡε, Sε = ∂Gε, ∂Ωε = ∂Ω ∪ Sε

Also, let us consider f ∈ L2(Ω) and the space H1(Ωε, ∂Ω) to be the completion with respect to norm H1(Ωε) of the set of
infinitely differentiable functions on Ω̄ε , vanishing in the neighborhood ∂Ω . Let ωn denote the area of the unit sphere in
R

n and κ denote a positive parameter depending on α and n. In particular, here we consider

α ∈
[

1,
n − 1

n − 2

]
and κ = (α − 1)(n − 1) (1)

and, α > (n − 1)/(n − 2) for any real κ .
Let us consider σ(x, u) a continuously differentiable function of variables (x, u) ∈ Ω̄ ×R satisfying: σ(x,0) = 0, and there

exist two constants k1 > 0 and k2 > 0 such that

k1 � ∂σ

∂u
(x, u) � k2, x ∈ Ω̄, u ∈ R (2)

Note that, for any fixed x ∈ Ω , σ(x, u) � 0 if u � 0, σ(x, u) � 0 if u � 0, and k1u2 � uσ(x, u) � k2u2.

In Ωε we consider the problem: Find uε ∈ Kε , such that the following variational inequality∫
Ωε

∇uε∇(v − uε)dx + ε−κ

∫
Sε

σ (x, uε)(v − uε)ds �
∫
Ωε

f (v − uε)dx (3)

is satisfied for all v ∈ Kε . Here set Kε is defined by

Kε = {
g ∈ H1(Ωε, ∂Ω): g � 0 a.e. on Sε

}
(4)

Problem (3)–(4) is the variational formulation of the problem

−�uε = f in Ωε, uε = 0 on ∂Ω

uε � 0, ∂νuε � −ε−κσ (x, uε), uε

(
∂νuε + ε−κσ (x, uε)

) = 0 for x ∈ Sε (5)

and the existence and uniqueness of solution uε of (3)–(4) follows from the monotonicity of the function σ(x, u) with
respect to u (see, e.g., Section II.8.2 in [13], and [3] for further references). Above, ∂ν denotes the derivative along the unit
outward normal vector ν to ∂Ωε .

Setting v = 0 in (3) we get the estimate ‖uε‖H1(Ωε) � C . Let ũε be an H1-extension of uε to Ω with the following
properties

‖ũε‖H1(Ω) � C‖uε‖H1(Ωε)
, ‖∇ũε‖L2(Ω) � C‖∇uε‖L2(Ωε)

Here and in what follows C denotes a constant which does not depend on ε. See Lemma 1 in [7] for the construction of ũε .
Hence, ‖ũε‖H1(Ω) � C .

Thus, we have that for each sequence of ε we can extract a subsequence (still denoted by ε) such that

ũε ⇀ u in H1
0(Ω)-weak and ũε → u in L2(Ω) as ε → 0 (6)

for a certain function u which we identify in Section 3 with the solution of (7) ((14), (15), respectively) when α =
(n − 1)/(n − 2) (α ∈ [1, (n − 1)/(n − 2)), α > (n − 1)/(n − 2), respectively), and (6) holds for the whole sequence.

3. The homogenized problems and the correctors

Theorem 3.1. Let α be α = κ = n−1
n−2 . Then, the limit function u in (6) is the weak solution of the problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�u = f , in Ω− ∪ Ω+

u = 0, on ∂Ω

[u] = 0, on γ[
∂u

]
= An

(
H

(
x, u+) + u−)

, on γ

(7)
∂x1
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where φ+(x) = sup(φ(x),0), φ−(x) = φ(x) − φ+(x), An is the constant An = (C0)
n−2ωn(n − 2), the brackets mean [g]|P∈γ =

limp→P ,p∈Ω+ g(p) − limp→P ,p∈Ω− g(p) for any point P ∈ γ , and H(x, u) is the solution of the functional equation

(n − 2)

C0
H = σ(x, u − H) (8)

Sketch of the proof. First, let us show that (7) has a unique weak solution u ∈ H1
0(Ω).

Note that inequality (2) and the implicit function theorem provide the existence of a unique solution H ≡ H(x, u), which
is continuously differentiable on (x, u) ∈ Ω̄ × R and satisfies k̃1 < ∂u H(x, u) < k̃2, for certain constants k̃i > 0, i = 1,2 (see
(2), and [3] for more details of this proof).

Also, we observe that the weak solution of problem (7) is the solution in H1
0(Ω) of the integral equation

∫
Ω

∇u∇v dx + An

∫
γ

(
H

(
x, u+) + u−)

v dx̂ =
∫
Ω

f v dx, ∀v ∈ H1
0(Ω) (9)

From the strict monotonicity of the function H with respect to the second argument, the existence and uniqueness of
solution of (9) holds (cf. [13] and [3]).

We show that the solution of (9) coincides with the weak limit in H1(Ω) of ũε; we use the energy method. Below, we
construct the test functions (cf. (12)) which allow us to take limits in (3)–(4) from the solution of the local problem (10).

Let P j
ε be the center of the ball G j

ε and we denote by T j
ε the ball of radius ε/4 with center P j

ε . Let us consider the
functions w j

ε ( j ∈ Υε) as the solutions of the following problems⎧⎪⎪⎨
⎪⎪⎩

�w j
ε = 0, in T j

ε \ G j
ε

w j
ε = 1, on ∂G j

ε

w j
ε = 0, on ∂T j

ε

(10)

We define the function Wε ∈ H1(Rn) by setting

Wε(x) = w j
ε(x) for x ∈ T j

ε \ G j
ε, j ∈ Υε, Wε(x) = 1 for x ∈ Gε (11)

and extending Wε(x) with the value 0 for x ∈ R
n \ ⋃

j∈Υε
T j
ε .

As it is well known, the solution of (10) can be constructed explicitly, this being an essential fact for the proof of the
statement in the theorem. Also, the weak convergence Wε ⇀ 0 in H1

0(Ω), as ε → 0, holds.
Let us consider the function

vε = φ+(x) − Wε(x)H
(
x, φ+(x)

) + (
1 − Wε(x)

)
φ−(x) (12)

where φ is an arbitrary function from C∞
0 (Ω). Let us prove that vε � 0 on Sε , and thus it belongs to Kε . Since Wε = 1 on

Sε , we show that φ+ − H(x, φ+) � 0 on Sε . This is clear if H(x, φ+(x)) � 0 on Sε . Suppose that for some point x ∈ Sε we
have that H(x, φ+(x)) > 0 and φ+(x) − H(x, φ+(x)) < 0. Then, we get that σ(x, φ+ − H(x, φ+(x))) � 0 and H(x, φ+(x)) =

C0
(n−2)

σ (x, φ+(x) − H(x, φ+(x))) � 0. Thus we obtain a contradiction.

Using (2) the left hand side of (3) can be written as:
∫
Ωε

∇v∇(v − uε)dx + ε−κ
∫

Sε
σ (x, v)(v − uε)ds. Then, we take

v = vε defined in (12), and we pass to the limit when ε → 0 (cf. Theorems 1 and 2 in [3] for the technique, and [12] for
details of the proof) to obtain the following inequality for u ∈ H1

0(Ω)

∫
Ω

∇φ∇(φ − u)dx + An

∫
γ

(
H

(
x, φ+) + φ−)

(φ − u)dx̂ �
∫
Ω

f (φ − u)dx, ∀φ ∈ H1
0(Ω) (13)

Now, we consider φ = u ±λv in (13) with λ > 0, and v an arbitrary function of H1
0(Ω), and passing to the limit as λ → +0,

we obtain the integral identity (9) for the limit function u. �
Theorem 3.2. Let α be α = κ = n−1

n−2 . Let uε be the solution of the variational inequality (3)–(4), u ∈ H1
0(Ω) the weak solution of the

boundary value problem (7), with the additional regularity u ∈ C1(Ω̄+) and u ∈ C1(Ω̄−), and Wε defined by (11). Then, we have

∥∥∇(
uε − u + Wε H

(
x, u+) + Wεu−)∥∥2

L2(Ωε)
+ ε−α

∥∥uε − u+ + H
(
x, u+)∥∥2

L2(Sε)
� C

√
ε

Sketch of the proof. Let us consider (3) and take v = vε with vε = vε defined by (12) for φ ≡ u. Let us consider (9) and
take v = vε − ũε for ũε arising in (6). Subtracting both equations, we use among other tools, Lemma 2 in [7] and Lemma 1
in [8] to obtain the inequality in the statement (see [12] for details of the proof). �
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Theorem 3.3. Let α be α ∈ [1, n−1
n−2 ) and κ = (α − 1)(n − 1). Then, the limit function u in (6) is the solution of the problem: find

u ∈ K0 = {g ∈ H1
0(Ω): g � 0 a.e. on γ }, such that inequality∫

Ω

∇u∇(v − u)dx + Bn

∫
γ

σ (x, u)(v − u)dx̂ �
∫
Ω

f (v − u)dx (14)

is satisfied for all v ∈ K0 . The constant Bn is defined by Bn = Cn−1
0 ωn.

Theorem 3.4. Let α be α > n−1
n−2 and κ ∈ R. Then, the limit function u in (6) is the weak solution of the Dirichlet problem:

−�u = f in Ω, u = 0 on ∂Ω (15)

Remark 1. We observe that we need to construct test functions different from (12) to show Theorems 3.3 and 3.4 (cf.
[12]). Note that α = 1 means κ = 0; namely, the size of the cavities and the periodicity are of the same order of magni-
tude. For α ∈ [1, (n − 1)/(n − 2)), in order to prove Theorem 3.3, we must introduce new local problems on the unit cell
ε(−1/2,1/2)n \ aεG0 (cf. [8] and [9] for related problems) and obtain precise bounds for their solutions. The proofs differ
depending on whether α = 1 or α > 1. Also, note that the asymptotic behavior of the solution uε , as ε → 0, is described
by a variational inequality for the Laplacian with a nonlinear restriction for the flux transmission on γ . In contrast, for
α � (n − 1)/(n − 2), the asymptotic behavior of the solution is described by boundary value problems (cf. (7) and (15)).
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