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This article provides a fresh look into the concept of the contact regimes in mechanistic
analyses of indentation experiments performed in single crystals. In this context, spherical
microindentation experiments in fcc metals are examined through detailed continuum
crystal plasticity finite element simulations in order to provide meaning to the onset of
fully-plastic and elasto-plastic contact regimes, which are well-known to rule the behavior
of polycrystals exhibiting isotropic uniaxial stress–strain curves. Attention is then given to
evaluate the applicability of Tabor’s hardness relation in ruling fully-plastic single-crystal
spherical indentations as well as the extraction of the uniaxial plastic flow properties
from a series of microindentation tests performed at different penetrations. A discussion is
finally provided on the applicability of self-similarity assumptions to the analysis of single-
crystal fully-plastic indentations.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Indentation experiments are extensively used to probe the mechanical properties of surfaces. A distinctive feature to
these experiments is their flexibility in assessing the mechanical response from small microscopic length scales, where
dislocation nucleation phenomena occur during pop-in excursions in load–penetration depth curves, to large macroscopic
scales where the imprint encompasses a number of grains. In the latter macroscopic length scales, the widely accepted
framework to the interpretation of the experiments is rooted in slip-line field derivations for perfectly-plastic solids and
self-similarity analyses (see, e.g., [1–4]). This has led to the conception of the contact regimes, where hardness evolves
from that for a perfectly-elastic behavior to an elasto-plastic regime to a fully-plastic indentation response. The spherical
indentation behavior is paradigmatic to such transition as full-plasticity is gradually favored with increasing penetration of
the tip into the surface.

Elasto-plastic indentations are usually analyzed within the framework of cavity expansion problems, where material
sinking-in effects are assumed to occur at the contact boundary (see, e.g., [5–9]). The analysis of the experiments follows
the early work by Hill and by Johnson [1] for perfectly-plastic solids which has then been extended to strain hardening
media. Fully-plastic indentation finally dominates with increasing penetration thus following Tabor’s hardness empirical
formula [4,10]

p̄ = 2.8σ◦
(

0.4
a

D

)n

(1)

where p̄ is the hardness measured at a particular ratio of the imprint radius to indenter’s tip diameter, a/D , in materials
whose plastic uniaxial stress (σ )–strain (ε) relation follows a power-law hardening model with flow stress σ◦:

* Corresponding author.
E-mail address: jorge.alcala@upc.edu (J. Alcalá).
1631-0721/$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2011.05.004

http://dx.doi.org/10.1016/j.crme.2011.05.004
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:jorge.alcala@upc.edu
http://dx.doi.org/10.1016/j.crme.2011.05.004


J. Alcalá, D. Esqué-de los Ojos / C. R. Mecanique 339 (2011) 458–465 459
Fig. 1. Uniaxial stress–strain curves for pure copper (modified-BW model) and Al–Cu (PAN model) along a highly symmetric (111) orientation favoring mul-
tiple glide (cross-hardening) conditions. The figure shows development of multiple glide deformation stage-II and the strong saturation of strain hardening
occurring in the PAN model during deformation stage-III.

σ = σ◦εn (2)

By invoking continuity between the elastic and plastic branches of the σ–ε curve, it then follows that

σys = σ◦εn
ys; εys = σys/E (3)

where subscript ys denotes the onset of plastic yielding and E is the Young’s modulus. Hence,

σ◦ = Enσys
1−n (4)

A mechanistic basis to Eq. (1) was first given by Hill et al. [10] under the assumption of self-similar indentation behaviors
where: (i) the plastic zone size scales in proportion with contact radius a in the same manner as the amount of material
pile-up or sinking-in at the contact boundary is assumed to be an invariant of the indentation process; (ii) the condition
of plastic-similarity is enforced through a rigid power-law function such as in Eq. (2), where linear elasticity is neglected
(i.e., a non-vanishing value of flow stress σ◦ is imposed in Eq. (2) by disregarding Eq. (4) for the specific condition of
σys = 0); and (iii) small penetrations are enforced so that the spherical tip can be substituted by a best-fit parabolic, and
thus geometrically-similar, indenter shape. In self-similar indentation analyses, a constant value for parameter c2 is therefore
taken, measuring the relative amount of pile-up/sinking-in as [10]

c2 ≡ h/hs ≈ a2/hs D (5)

where h is the penetration depth marking the height of the contact boundary and hs is the penetration measured from the
original (undeformed) surface.

An important normalizing parameter introduced by Johnson that measures transition from elasto-plastic to fully-plastic
indentation behaviors is aE/Dσ◦ [1]. This stems from the argument that the severity of the deformation state underneath
the indenter increases with a/D while, concurrently, the resulting response becomes increasingly plastic for solids with a
large E and a small flow stress σ◦ . Hence, large values of aE/Dσ◦ mark attainment of the fully-plastic indentation regime
while elasto-plasticity prevails as this factor decreases towards the elastic (Hertzian) prediction of aE/Dσ◦ ≈ 1.1 [1].

Although the above investigations by Tabor, Hill and Johnson set the basis to the extraction of mechanical properties
from spherical indentation experiments, this topic continues to receive intensive research efforts through measurements of
both hardness evolutions and applied load–penetration depth curves (see, e.g., [11–19]).

The purpose of this work is to check the applicability of the above framework in the analysis of indentation experiments
performed at mesoscopic length scales where the imprint is fully embedded within a single grain or microstructural unit of
material. We thus seek to apply continuum crystal plasticity analyses to indentation experiments [20–26] with the aim of
evaluating: (i) the validity of Tabor’s relation in describing fully-plastic indentations; (ii) the underlying plastic flow features
in the evolution from elasto-plasticity to full-plasticity; and (iii) the presumption of self-similar indentation responses in
the scaling of both pile-up/sinking-in effects and the plastic zone size in fully-plastic indentations. With this in mind, we
shall employ two crystal plasticity hardening models with the purpose of describing both weak and strong strain hard-
ening crystals (Fig. 1). As discussed next, these descriptions provide some representation to the perfectly-plastic (n → 0
with non-vanishing σys) and plastically-similar power-law hardening (n > 0 with vanishing σys) material models, which are
respectively the focus to the above slip-line field and plastic-similarity analyses.
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2. Finite element simulations

The present continuum crystal plasticity finite element simulations concern pure and alloyed fcc crystals. A key feature
in the analysis involves hardening matrix hαβ , dictating the increase in the critical resolved shear strength for dislocation
gliding τ◦ as in [27]

τ̇ (α)◦ =
∑
β

hαβ γ̇ (β) (6)

where superscript α denotes the primary slip system and β denotes the secondary slip system. Activation of secondary slip
thus implies a non-vanishing term for the shear strain γ (β) . Multiplication of the shear strain with the relevant component
of matrix hαβ for the specific combination of slip systems α, β results in an increase in τ◦ .

The crystals under investigation undergo distinctly different hardening responses when subjected to uniaxial strains as
prescribed by different formulations for matrix hαβ . In particular, pure copper is modeled through the modified Bassani and
Wu (BW) model described in detail in our previous work [24]. That is,

hαα =
{
(h◦ − hI) sech2

[
(h◦ − hI)γ

(α)

(τs − τ◦)

]
+ hI

}{
1 +

∑
β �=α

fαβ tanh

(
γ (β)

γ◦

)}
; hαβ = 0 (7)

where parameters h◦ , hI , τs and τ◦ are fitted to reproduce the single-glide response of copper and γ◦ is fitted to capture its
multiple glide (cross-hardening) behavior. The following summarizes the main features of this model. First, upon saturation
of the argument in the hyperbolic secant with increasing shear strain in the primary slip system (γ (α)), the first term
in curly brackets decays into parameter hI that dictates strain hardening as a result of dislocation pile-up mechanisms in
deformation stage-I. Secondary slip (cross-hardening) then activates as γ (β) increases from zero to the point where the
hyperbolic tangent saturates at 1. Finally, matrix fαβ measures the relative strength of the different dislocation junctions in
all slip systems during such deformation stage-II.

Following [24], it is found that, by virtue of Eqs. (A8) and (A11) [28]:

hI = μ

2K

[
καα ln

(
b
√

ρ(α)
)]2 = 0.12

[
ln

(
b
√

ρ(α)
)]2

(8)

where ρ(α) is the dislocation density in slip system α, b is the Burger’s vector, μ is the shear modulus and K is a material
parameter. It then naturally emerges that

fαβ =
(

καβ ln(b
√

ρ(β))

καα ln(b
√

ρ(α))

)2

(9)

where καβ is a new physically-based matrix governing dislocation interactions according to molecular dynamics simulations
for the different types of dislocation junctions. All parameters in the model are given in [24,28].

Alloyed Al–Cu crystals were modeled following the Peirce, Asaro and Needleman (PAN) hardening formulation [29,30].
The general features in the PAN model are the rapid development of cross-hardening deformation stage-II without any
significant single-glide deformation stage-I, as well as a negligible hardening rate under saturation stage-III. Overall, these
features are captured through [29,30]

hαα = h(γ ) = h◦ sech2
∣∣∣∣ h◦γ
τs − τ◦

∣∣∣∣; hαβ = qhαα (10)

where γ is the total (accumulative) shear strain in all slip systems:

γ =
∑
α

∫ ∣∣γ̇ (α)
∣∣ dt (11)

The above parameters h◦ , τs and τ◦ are also given in [24], where cross-hardening parameter q = 1.2 has been advocated in
the present work. A fundamental difference between the two models emerges since the critical shear stress for dislocation
gliding τ◦ approaches 1 MPa in the modified-BW model while it increases to 60 MPa in the PAN formulation in order
to account for the influence of alloying. Furthermore, the decay in hardening rate during deformation stage-III is more
significant in the PAN than in the modified-BW models. These two features are illustrated in the stress–strain curves of
Fig. 1.

Single-crystal indentations were simulated in the (111), (011) and (001) planes, where only the last are given here for
simplicity. Nearly identical results are found for the remaining (111) and (011) planes as the degree of hardness anisotropy
is smaller than 5% throughout the entire penetration range. In addition to the crystal plasticity simulations, complemen-
tary analyses were herein performed with the J2-flow theory of plasticity with isotropic power-law hardening as described
through Eqs. (2)–(4). This model is taken to reproduce the behavior of polycrystalline aggregates when subjected to indenta-
tion experiments [31]. Different values of σ◦ , E and n were employed in such simulations with the purpose of reproducing
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Fig. 2. Evolution of normalized hardness in pure copper deforming through the modified-BW model. The evolution predicted through Tabor’s formula with
inferred parameters σ◦ and n (see Table 1 and Eq. (12)) is superimposed along with the equivalent J2-flow theory finite element simulation. Excellent
accord is found for the three analyses in the entire penetration range.

Fig. 3. Evolution of normalized hardness in Al–Cu crystals deforming through the PAN model. The evolution predicted through Tabor’s formula with inferred
parameters σ◦ and n is superimposed along with the equivalent J2-flow theory finite element simulation (Table 1). Accordance is reached passed the critical
penetration marking the fully-plastic indentation regime (E/σ◦ · (a/D) > 7) which is used to find parameters σ◦ and n through Eq. (12). Also, notice the
hardness decay occurring at large penetrations in agreement with the onset of the perfect-plasticity dominated indentation regime described in [29] for
polycrystalline aggregates deforming through the J2-flow plasticity theory. See text for details.

the contact variables from the crystal plasticity simulations as described in Section 3. The same finite element meshes were
used in both types of analyses to facilitate direct comparison of the results. Large strains and rotations were accounted for
in all simulations.

3. The contact regimes and mechanical property extractions

An important aspect in indentation experiments performed with small indenter diameter D and contact radius a is
the possible increase in hardness as compared to that measured with greater loads at identical a/D . This size-dependent
response is connected with dislocation nucleation phenomena occurring at small applied loads that are not amenable to
analysis through the present continuum mechanics scheme. In this context, it is important to clarify that the present inves-
tigation seeks to provide a fundamental clear-cut view into the onset of the contact regimes in single-crystal indentations
at sufficiently large loads where the development of such size-dependent indentation responses can be neglected.

The evolutions of the normalized hardness p̄/σ◦ with increasing parameter aE/Dσ◦ for copper (modified-BW model)
and Al–Cu (PAN model) are given in Figs. 2 and 3, respectively. Tabor’s relation is superimposed to these figures, where
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Table 1
Extracted properties through Tabor’s relation (Eq. (1)).

σ◦ (MPa) n Ea (GPa)

Al–Cu (PAN model) 590 0.2 70
Pure Cu (Modified-BW model) 670 0.65 110

a Young’s modulus assumed for an equivalent polycrystalline aggregate.

the values of σ◦ and n (Table 1) were found a priori by fitting the data of the single-crystal hardness evolutions to the
logarithmic reformulation of Eq. (1)

ln p̄ = ln(2.8σ◦) + n ln

(
0.4

a

D

)
(12)

It is noted that while unique values of σ◦ and n can indeed be used in conjunction with Tabor’s relation to describe the
entire normalized hardness evolutions for pure copper, this is not the case for Al–Cu where the constancy in n is only found
in the range of 0.07 < a/D < 0.16. Hence, in the latter simulations, a consistent shift to smaller hardnesses is found in the
lower region of aE/Dσ◦ as compared with predictions from Tabor’s relation (Fig. 3).

Following Ref. [1], the above results are taken to indicate that Tabor’s relation can be accurately used to describe single-
crystal indentation experiments and that a decrease of hardness from the predicted values at low a/D marks attainment of
the elasto-plastic indentation regime. The present analysis thus favors the view that Tabor’s relation represents an upper
bound for the hardness evolutions [31]. Moreover, this interpretation illustrates the pivotal role that the critical shear stress
for dislocation gliding τ◦ plays in inducing elasto-plasticity, as this regime only becomes evident under marked values of τ◦
as in the PAN model.

Interestingly, note that the J2-flow theory finite element simulations performed for the extracted values of σ◦ and n from
the modified-BW and PAN models (Table 1), accurately trace the crystal plasticity simulations throughout the entire range
of parameter aE/Dσ◦ (see Figs. 2 and 3). Although this result is not surprising because Tabor’s relation is supported under
J2-plasticity theory analyses (e.g., [31]), it is interesting to find that such simulations reproduce the single-crystal hardness
evolution for the PAN model even though the inferred n and σ◦ were obtained by neglecting the lower elasto-plastic
penetration range of a/D < 0.07. It thus necessarily follows that since elasto-plasticity is a natural outcome of J2-flow
simulations at small penetrations, where the full set of Eqs. (2)–(4) with non-vanishing σys is enforced, the mechanical
properties inferred within the fully-plastic regime are valid for the entire hardness evolutions as they are indeed consistent
with the actual σys in the material.

It is worth noting that the task of extracting mechanical properties from Tabor’s relation may be difficult to accomplish
in crystals with marked values of τ◦ , where the range of validity of this relation is reduced as the aforementioned elasto-
plastic regime rules the indentation behavior within a wide range of values of a/D . Under such contact conditions, a general
formulation for the hardness evolution in terms of the mechanical properties and a/D has been recently found by the
present authors covering both elasto-plastic and fully-plastic spherical indentations (see Flow Chart 1 in [31]). The use of
this relation in mechanical property extractions is therefore recommended over Tabor’s formula, which can only be enforced
in crystals exhibiting predominantly fully-plastic indentation responses throughout a sufficiently large range of a/D .

Finally, attention is directed to the hardness decay found for the PAN model at large penetrations (see (E/σ◦)a/D > 14
in Fig. 3). This decay has been found to occur in weak strain hardening solids obeying the J2-flow plasticity theory (i.e.,
the so-called perfect-plasticity dominated regime in our recent work [31]). In this sense, it is worth noting that the inferred
value of n ≈ 0.2 for the PAN model is not small enough as to favor a decay in hardness for the equivalent J2-flow theory
analysis superimposed in Fig. 3. This indicates that while the inferred mechanical properties can be used in reproducing
the single-crystal behavior at small penetrations, the same is not true at greater penetrations where strain hardening may
become gradually milder as illustrated in Fig. 1 for the PAN model. This is an interesting result illustrating the potential
of spherical indentation in probing the cross-hardening deformation stage-II at small values of a/D as well as the strong
stage-III hardening saturation behavior of alloyed fcc crystals at greater values of a/D .

4. The possible violation of self-similarity in fully-plastic indentations

It is noteworthy that the fundamental mechanistic origin to the onset of elasto-plasticity concerns attainment of sig-
nificant elastic strains in the indentation behavior. This aspect can be readily extended to single-crystal indentations by
invoking a parallel between the roles of marked values of τ◦ and σys upon the contact response.

As discussed next, an interesting feature that emerges from the present simulations is that the onset of full-plasticity
does not ensure attainment of self-similar indentation responses, where both the relative plastic zone size with respect to
contact radius a as well as parameter c2 would have been taken to remain constant as the experiment progresses. This
issue can be readily examined from Fig. 4, showing the evolution of parameter c2 for the modified-BW and PAN models.
The present results show that while c2 remains constant in the simulations under the modified-BW model, in agreement
with the assumption of fully-plastic self-similar indentations, this constancy is not attained for the PAN formulation even
within the intermediate penetration range (0.07 < a/D < 0.16) where Tabor’s relation becomes valid. It therefore follows
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Fig. 4. Evolution of pile-up/sinking-in parameter c2 for the PAN and modified-BW models. Notice that while self-similarity rules the response under the
modified-BW model, the constancy in c2 is violated for the PAN model even in the range of E/σ◦ · (a/D) > 7 setting the fully-plastic indentation regime
according to Tabor’s relation (see Fig. 3).

(a) (b)

(c) (d)

Fig. 5. Evolution of the plastic zone shape for the PAN model as given by the three-dimensional isocontour of total accumulated shear strain γ = 5 × 10−4

for (001)-indentation: (a) a/D = 0.035; (b) a/D = 0.060; (c) a/D = 0.090; (d) a/D = 0.140. Notice that the spreading of plasticity at the surface is gradually
enhanced even above the value of a/D > 0.07 (E/σ◦ · (a/D) > 7) marking the onset of the fully-plastic regime in Fig. 3.
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Fig. 6. Plastic zone shape for the modified-BW model as given by the three-dimensional isocontour of total accumulated shear strain γ = 5 × 10−4 for
(001)-indentation at a/D = 0.08. The plastic zone is found to scale in a self-similar fashion with increasing a regardless of the imposed value of a/D .

that while Tabor’s relation is a general fully-plastic upper hardness bound, its validity does not truly require fulfillment of
self-similarity [31].

The above conceptions are further sustained upon examination of the plastic zone shapes in Figs. 5 and 6. In this sense,
it is found that while the plastic zone size scales in a self-similar manner in the simulations with the modified-BW model,
this feature is violated for the PAN model where the outwards spreading of the plastic zone is greater than the increase in
contact radius a. It is again interesting to notice that the lack of the self-similar scaling in the plastic zone extends into the
regime where Tabor’s equation becomes an accurate representation to the hardness evolutions.

4.1. Concluding remarks

We have illustrated the use of Tabor’s hardness relation, which was originally postulated for polycrystalline aggregates,
into the analysis of single-crystal spherical indentations. In pure fcc crystals with vanishing critical shear strength for dis-
location gliding τ◦ , hardness p̄ thus increases as the ratio between contact radius and indenter diameter, a/D , is raised
following Eq. (1). Tabor’s formula thus preserves its character as upper fully-plastic bound found in prior investigations for
polycrystalline aggregates [31]. In contrast to the results from the present simulations with the modified-BW model, elasto-
plastic single-crystal spherical indentation behaviors are illustrated in the simulations performed for alloyed crystals with
marked τ◦ through the PAN model. In these crystals, hardness lies below predictions from Tabor’s formula for small values
of a/D while, with increasing penetration, this formula becomes applicable. In view of these results, a few remarks are given
in the text concerning the extraction of flow properties σ◦ and n from Tabor’s relation ruling single-crystal cross-hardening
deformation stage-II, as well as the assessment of strain hardening saturation (deformation stage-III) at large values of a/D .

This investigation also illustrates on the strictness of the assumption of self-similarity to single-crystal indentations. It is
found that while Tabor’s relation is an accurate fully-plastic bound as indicated above, the onset of fully-plastic indentation
responses does not necessarily underly attainment of self-similarity. In this sense, the simulations with the modified-BW
model show that while the plastic zone size and the material pile-up/sinking-in response respectively scale in proportion
with contact radius a and penetration depth h, these features are not preserved in the fully-plastic indentation regime of
alloyed crystals with a marked τ◦ deforming through the PAN model. The self-similar scaling of the contact response with
penetration in the simulations with the PAN model is therefore violated even within the fully-plastic indentation regime
where Tabor’s formula rules the indentation behavior.
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