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This article presents two approaches of a normal frictionless mechanical contact between
an elastoplastic material and a rigid plane: a full scale finite element analysis (FEA)
and a reduced model. Both of them use a representative surface element (RSE) of an
experimentally measured surface roughness. The full scale FEA is performed with the Finite
Element code Zset using its parallel solver. It provides the reference for the reduced model.
The ingredients of the reduced model are a series of responses that are calibrated by means
of FEA on a single asperity and phenomenological rules to account for asperity–asperity
interaction. The reduced model is able to predict the load–displacement curve, the real
contact area and the free volume between the contacting pair during the compression of a
rough surface against a rigid plane. The CPU time is a few seconds for the reduced model,
instead of a few days for the full FEA.
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r é s u m é

Cet article présente deux approches d’un contact normal sans frottement entre un matériau
élastoplastique et un plan rigide : une simulation complète par élements finis et un modèle
simplifié. Les deux approches utilisent un élement représentatif d’une surface rugueuse
mesurée expérimentalement. Le calcul complet a été réalisé avec le code éléments finis
Zset en usant d’une résolution parallèle du problème et celui-ci fournit la solution de
référence pour le modèle simplifié. Celui-ci se nourrit d’une série de courbes de réponse
calibrées par des calcul éléments finis modélisant une seule aspérité ainsi que des règles
pour tenir compte de l’interaction entre aspérités. Le modèle est alors capable de prédire la
courbe charge–déplacement, l’aire réelle de contact et le volume libre laissé entre les deux
surfaces de contact au cours de la compression d’une surface rugueuse par un plan rigide.
Le temps CPU est de quelque secondes pour le modèle simplifié contre quelques jours pour
le calcul complet par éléments finis.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Dans une centrale nucléaire, l’écoulement fluide dans les circuits d’eau est maîtrisé par l’utilisation d’appareils de robinet-
terie dont l’étanchéité est assurée par un contact acier/acier. La prise en compte de surfaces rugueuses invalide l’hypothèse
d’un contact parfait entre deux pièces et laisse place à l’existence d’un champ d’ouvertures entre ces deux surfaces. Dans ce
cadre-ci, l’étanchéité ne peut être considérée comme parfaite. Un modèle numérique doit ainsi être développé pour quanti-
fier le débit de fuite engendré par ces champs d’ouverture. L’appréhension de ces fuites passe nécessairement par l’étude de
l’écrasement d’une surface rugueuse et, a fortiori, par la détermination des modes de déformation locaux de cette surface.

Depuis cinq décennies, l’étude du contact entre des surfaces rugueuses a fait l’objet de nombreux travaux. Partant du
travail de Greenwood et Williamson [1], de nombreux modèles, stochastiques et déterministes, ont pu voir le jour. Ces
modèles ont permis d’introduire certains paramètres comme la forme des aspérités [2], ou encore les interactions entre
aspérité [3].

Pour la résolution de ce type de problème, l’utilisation des éléments finis est une voie très intéressante qui a déjà pu
faire office d’un grand nombre de travaux comme dans Pei et al. [4]. Mais cette approche reste aujourd’hui limitée du point
de vue du temps de calcul. En effet, prendre en compte de façon précise l’évolution de la microgéométrie locale requiert un
maillage d’une très grande finesse. Ainsi, la nécessité de développer un autre outil numérique devient indéniable. Dans ce
cadre ci, deux approches numériques d’un contact normal sans frottement entre une surface rugueuse élastoplastique et un
plan rigide sont développées.

Dans un premier temps, partant de l’étude détaillée du contact d’une seule aspérité, un modèle numérique simplifié est
mis en place pour déterminer le chargement, l’aire de contact réelle et le volume libre à partir du déplacement imposé du
plan rigide. A l’aide d’un instrument optique, un profil surfacique de la rugosité d’une surface a été réalisé. Une analyse
rigoureuse est ensuite effectuée afin de déterminer les propriétés de cette surface et plus particulièrement de ces aspérités.
A partir de ces données, de nombreux calculs éléments finis ont été réalisé sur plusieurs géométries d’aspérité dans le
but d’établir des modèles pour les réponses force–déplacement, aire de contact–force et volume libre–force. Ces derniers
sont ensuite utilisés dans le modèle numérique pour venir décrire le comportement de chaque aspérité selon sa géométrie
donnée. Ainsi, l’étude d’une aspérité nous permet d’inclure dans ce modèle des paramètres de première importance tels que
la taille des aspérités ou encore leurs interactions mutuelles.

Dans un second temps, l’étude d’une aspérité seule permet également de renseigner certains critères utiles, comme la
finesse du maillage, à la réalisation d’un calcul élément finis sur une surface représentative élémentaire (RSE) de la surface
rugueuse. Cette simulation venant écraser un RVE de dimensions 54 × 63 × 72 micromètres discrétisé avec 1 millions de
noeuds a été réalisée à l’aide du code implicite éléments finis Zset. Les mêmes réponses que dans le modèle numérique
simplifié sont déterminées. De par sa grande précision, ce calcul éléments finis sera considéré comme référence pour la
validation du modèle numérique simplifié. Cette validation passe essentiellement par la comparaison des trois réponses
critiques globales explicitées plus haut, à savoir F (U ), A(F ) et V (F ), mais également par la comparaison des topographies
de surface obtenue en fin d’étude.

Ces deux approches offrent des résultats en très bon accord du point de vue de ces trois réponses critiques. Ainsi, nous
pouvons observer certains traits caractéristiques déjà démontrés dans des travaux précédents comme la linéarité entre la
surface de contact et la charge appliquée (phénomène également observé sur l’étude d’une seule aspérité). Par conséquent,
ces travaux ont permis de développer un modèle numérique pertinent procurant un gain de temps de calcul très important
(quelques secondes au lieu de plusieurs jours). Ce modèle présente cependant quelques limites (volume libre, précision sur
la topographie de surface obtenue) qui pourront faire l’objet de travaux plus poussés dans un avenir proche.

1. Introduction

It is now widely accepted that the contact between two surfaces is in fact a one to one contact between many asperities,
depending on the roughness of the contact pair. This represents a strong deviation from the perfect contact assumed in the
Hertz theory, the real contact area being usually significantly smaller than the apparent contact area. This has important
consequences for a lot of applications as thermal and electrical conductivity, friction, wear processes or sealing. The detailed
study of this problem needs to develop a quantitative description of the real surface profile, and techniques to elucidate the
way contact between individual asperities will develop during the loading. They should involve a good description of the
local material behaviour and of the load redistribution.

Many models describing surface roughness have followed the pioneering work of Abbot and Firestone [5]. They attempt
to characterise roughness by a series of indicators, such as the arithmetic average of vertical deviations Ra and the mean
line m, the root mean squared Rs or the standard deviation σ . However, the surface cannot be fully described using only a
surface profile in the vertical direction. Bhushan thus proposed to introduce spacing parameters [6]. These parameters can
be the number of local maxima per unit length (N p), the number of surface mean line crossing per unit length (N0), or the
mean peak spacing (AR ). Most of these works are based on the roughness measurement along a line (1D measurements).

The investigation of the contact itself classically follows two types of approach, either stochastic or deterministic. One of
the first models has been proposed by Greenwood and Williamson [1], who assumed that the asperity summits are spherical
with a constant radius, asperities deform elastically and their height follow a Gaussian distribution. Statistical models have
had a considerable impact on contact analysis and have been considered by many authors, e.g. [7,2,8,9]. The main advantage
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Table 1
Norem chemical composition.

Elements C Mn Cr Si Ni Mo N2 Fe Co B
Composition 1.23% 4.3% 25.4% 3.38% 4.0% 2.0% 0.17% Bal 0.01% 0.001%

of these approaches is that they are able to provide a quick and rather good estimation of the global response — the
contact area is almost proportional to the applied normal load, which corresponds to an experimentally observed fact.
Nevertheless, these models do not take into account the real geometry of the surface and the interactions between asperities.
Deterministic approaches were then developed to introduce a more precise geometric description. Representative models of
asperities using mathematical functions were built to describe the behaviour for elastic, purely plastic [10] or elastoplastic
deformations [11], and to include interactions between asperities [3].

The Finite elements method has been used to solve the contact problem for artificial fractal surfaces [4]. Starting from
roughness measurements, synthesised fractal surfaces were also used in the studies of C. Vallet et al. ([12] and [13]) where
they used a numerical procedure [14] to solve the contact problem. This is an interesting research direction, since, after
the seminal work due to Mandelbrot [15], many studies have been made to demonstrate the self affine fractal character of
surfaces [16–20]. One of the main result that is now admitted is the linearity between the real contact area and the applied
load. This remarkable property is verified for any material behaviour and any roughness.

The article is organised as follows. The next section aims at introducing the material behaviour and the description of the
geometry of a real surface, a technique to determine a representative surface element is proposed. Height, width and spatial
distribution of asperities are the key parameters that characterise surface topography and can be used for real contact area
analysis. However to analyse the free volume between a rough surface and a rigid plane, valleys and holes distributions have
to be taken into account. The finite element analysis of an isolated asperity and of a regular network of identical asperities
is presented in Section 3. From those results, a reduced model for rough surface contact will be further deduced. Section 4
presents the results of a large parallel finite element analysis of a representative surface element in contact with a rigid
plane. This analysis is considered as a reference result used for validation of a simplified approach, proposed in Section 5.
A general discussion follows in Section 6, with comments on the global displacement–load response, the real contact area
and the free volume left between the asperities. The simplified finite element algorithm for analysis of contact with a rigid
plane is presented in Appendix A.

2. Contact problem and rough surface analysis

2.1. Description of the contact problem

The motivation of the study comes from the problem of valves used in nuclear power plants where, due to extremely
high pressure of fluids, the sealing function is ensured via steel/steel contact. Because of the roughness of the steel surfaces
in contact, the tightness is not perfect and micro-leakage can be observed. The quantitative study of the leaks can be
made by a simple phenomenological approach, looking for an heuristic relation between the roughness characteristics and
the leakage. Nevertheless, a true predictive model can only be developed by characterising the free space between the
surfaces, and by determining how fluids behave in real environment. That is the reason why, in addition to the classical
results concerning the real contact area evolution with applied normal load, the free volume left between the surface is also
studied. The numerical simulations will represent a contact between a steel specimen in Norem (Table 1) and a rigid flat
surface. Norem is a hardfacing material developed by Electric Power Research Institute.

Classical elastoplastic constitutive equations are introduced to model the material. The behaviour is time independent,
the only hardening variable is isotropic as described by the following equation:

σY = R0 + Q
(
1 − e−bp)

(1)

The material parameters allow the model to successfully represent the tensile loading behaviour observed experimentally
(Fig. 1). The same parameters are used for all the computation through the whole paper.

All Finite Element Analyses have been performed with implicit parallel Finite Element code Zset [21], using the frame-
work of updated Lagrangian formulation. A comparison between small and large deformation formulations has shown that
both force–displacement and contact area–force curves are strongly influenced by these assumptions. The contact area com-
puted with the small deformation assumption is about 35% higher than with large deformation for the same force.

Contact is considered to be frictionless. A preliminary study has been carried out to estimate the influence of friction on
contact characteristics. Whatever the asperity shapes, the force/displacement and volume/force curves are left unchanged
for frictionless case and for Coulomb’s friction coefficient 0.15, the last corresponds to non-lubricated friction between steel
and sapphire. The principal difference is that in average the contact area is 10% smaller if Coulomb’s friction is taken into
account for a given force. All 3D simulations have been performed with a simplified contact algorithm that provides fast
and robust sequential and parallel resolutions of the contact problem (see Appendix A).
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Fig. 1. Material behaviour, experimental measurement and numerical model (E = 175 GPa, ν = 0.3, R0 = 442.7 MPa, Q = 493.5 MPa and b = 242.2).

Fig. 2. (a) Peak distribution observed on the full rough surface (dashed line) and on the reduced area (points); (b) roughness map of the studied machined
rough surface.

2.2. Rough surface analysis

The construction of the rough surface that will be used in the numerical simulations is based on eight samples (see
Fig. 2). Each of them has a size of 610 μm × 460 μm and 736 × 480 pixels. The precision of the measurement normal to the
surface is 0.02 μm. Despite machining, the peak distribution does not present a specific shape, as mentioned in [1], but a
simple Gauss distribution.

Quantitatively, the average roughness Ra and the root-mean-square σ of peak height are

Ra = 1

A

∫
A

|z − zm|dA = 0.356μ, σ =
√√√√ 1

A

∫
A

(z − zm)2 dA = 0.459μ, (2)

where A is the surface area, z = z(x, y) the height, zm = 3.11μ the mean plane. A detailed analysis of the surface shows
that the distribution of global peak heights also follows a normal distribution, with zm = 3.55μ, Ra = 0.391μ, σ = 0.589μ
(see Fig. 3). However the distribution of the local asperity heights and of the asperity radii follow a non-symmetric Gamma
distribution. This can be due to the fact that, in agreement with the fractal nature of roughness, small asperities should
be locally orthogonal to the surface: such a topography is hardly simulated, this is why, in the next realisations, all the
asperities are assumed to be orthogonal to the mean plane. Another reason explaining the non-Gaussian character of the
peak distribution is likely related to the detection procedure. To detect asperities on the rough surface, all neighbouring
data points have been analysed: peaks correspond to points for which all neighbouring points are lower. The radius of
the asperity foundation is computed by averaging distances in eight directions, assuming an axisymmetric shape for the
asperities.

A surface investigated at a small scale exhibits very high roughness, each asperity or valley being eventually represented
by only one measurement point. On the other hand, as shown below, the geometrical discretisation of each peak must be
fine enough to get reasonable result in the FEA (at least 10 × 10 elements per asperity, see also [22]). A compromise can
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Fig. 3. Construction of a representative rough surface element. Top, from left to right: (a) original part of rough surface; (b) sinusoidal asperities plotted on
the rough surface; (c) the same part smoothed with bi-cubic Bezier surfaces; (d) corresponding sinusoidal asperities. Below: (e) surface data distributions
for full rough; (f) full smoothed surface.

been achieved by enriching the rough surface using a bi-cubic Bezier smoothing step (with the parameter α = 0.5) [23].
This treatment preserves all the measured points and refines the surface between them. The number of segments on the
smoothed surface is chosen to be 25 times larger than on original surface. The beneficial effect of this approach is demon-
strated in Fig. 3, that shows a comparison between the original surface and the surface after Bezier smoothing. The size of
the presented sample is only one hundredth of the full surface. The corresponding distribution of asperities approximated by
sinusoidal shapes is projected on the rough surface. The distributions of the critical parameters (height, peak height, asperity
height, width and aspect ratio) are represented for the full surface and the smoothed one. More than 16 000 asperities have
been detected on the original surface. This number reaches 22 900 for the smoothed surface. The representative surface
element smoothed with Bezier curves consists of 230 asperities. The smoothing procedure is found to slightly change the
distributions: mean values of asperity width, height and aspect ratio are smaller for smoothed surface.

2.3. Representative surface element

For the following applications, the Representative Surface Element (RSE) is determined in terms of roughness represen-
tativity. The RSE is then chosen as the smallest part of the full measured surface, for which the height distribution follows
the height distribution of the full surface. The peaks height characterisation is not sufficient to characterise the surface. The
spatial distribution in the contact plane needs also to be respected. We found that the first point is the most important,
and this is why a particular attention was taken to define it. Concerning the repartition in the contact plane, we only tried
to include the same number of peaks in the final surface than in the measured surface.

The reduced surface is built from one of the eight measured surfaces. It is divided into 16, 25, 100 and 144 domains.
For each domain, the distribution analysis has been performed. For the case of 100 domains, 23 of them have height
distributions that are close enough to the height distribution of the initial surface (see Fig. 2(a)). On the other hand, further
division of the surface leads to height distributions which are far from the reference one. This is why the 100 subdomains
case is chosen, and one among the 23 subdomains is selected for the finite element analyses. Its dimensions are 54 μm ×
63 μm (slightly larger than one hundredth of the full surface).

Remark 1. The size of the selected surface is comparable to the grain size. This would justify to consider crystal plasticity
instead of a classical von Mises criterion to describe the material (see e.g. [24]). It would be expected to find other types of
local behaviour, and a different percolation scheme [25].

The geometry used for the finite element model is obtained by considering a Representative Volume Element (RVE)
representing the bulk material under the surface. One face of this RVE is nothing but the RSE. The third dimension (normal
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Fig. 4. Different meshed to describe the asperity geometry, (a), (b), (c) varying the element size and (d), (e), (f) varying the number of layers under the
surface.

to this surface) must be large enough to represent correctly the bulk material response and to avoid side effects from the
boundary conditions. The chosen size is h = 72 μm.

3. FEA of the contact on a single asperity

Describing the compression of a single asperity is the starting point to build a reduced model representing the contact
process with a surface featuring thousand asperities such as the one presented in Section 2.3. This problem is now investi-
gated trying to address the relevant mesh size, the influence of the aspect ratio and of the actual shape of the asperity. The
single asperity response such as the load–displacement, contact area and free volume evolutions will further nurture the
simplified model presented in Section 5.

3.1. Mesh influence

The relevance of the contact area predicted by FEA is connected to the number of nodes in contact and thus strongly
depends on the finite element mesh. Several computations were performed on axisymmetric meshes with respectively 2×1,
4 × 2, 8 × 4, 16 × 8, 32 × 16 and 64 × 32 elements in the region close to asperity surface (see Figs. 4(a)–(c)). The influence
of the number of element layers used under the asperity surface has also been studied. The number of layers has been
modified from 2 to 64 (Figs. 4(d)–(f)).

For each case, the ratio between real and apparent contact area (A/A0) and the ratio between the real and the initial
free volume (V /V 0) were plotted as a function of the applied load. They are not shown for the sake of brevity, but the
study is summarised in Fig. 5, that presents the load–displacement response. One can observe that the difference between
the various meshes is more sensitive for small displacements/small forces, when the excessive rigidity plays a major role.
On the other hand, the number of layers has little influence on the global response. The force is overestimated by a few
percents. Accordingly, the contact area is underestimated, and the free volume is overestimated. A reasonable convergence is
reached with 32 × 16 elements. In the following, all computations will use a 32 × 16 configuration (32 elements to describe
the asperity shape and 16 layers under the asperity).

3.2. Influence of the boundary conditions

The study which is shown here deals with the influence of the surrounding of the asperity on its global response.
This can be represented by various boundary conditions, either in 2D-axisymmetric or in 3D computations. An important
parameter is the space around the asperity, that is figured by the relative size of the asperity and of the full mesh. For
each calculation, the boundary conditions are imposed at different distances from the asperity summit (see Fig. 6). For all
the different meshes, the size of an asperity is fixed (width = 10 μm and height = 1 μm). A thin mesh (32 × 16 elements)
is used for the asperity summit and a coarser one is define for the volume meshed around the asperity. Each node which
belong to the asperity summit (and so to the thinner mesh) is displaced, according to a sinus curve in 2D (see Eq. (3)) and
to a sinusoidal surface in 3D (see Eq. (4)), in order to obtain the asperity geometry desired:



V.A. Yastrebov et al. / C. R. Mecanique 339 (2011) 473–490 479
Fig. 5. Effect of the mesh density on the force–displacement response in a single asperity contact.

Fig. 6. Schema representing the different axisymmetric problems.

2D axisymmetric computations: y × 1.2 + y × 0.2 × cos(π × x) (3)

3D computations: y × 1.2 + y × (
0.2 × cos

(
2π ×

√(
x2 + z2

) ))
(4)

For the 3D case, two types of patterns were considered, either square or hexagonal (see Fig. 7). Thanks to symmetry
considerations, the mesh was reduced to a quarter in the first case and two neighbouring quarters in the case of an
hexagonal network.

The respective behaviours are highlighted through three plots, the relative contact area versus force, the relative free
volume versus force, and the force/displacement response (see Fig. 8). The boundary conditions does not affect so much the
contact area, as shown in Fig. 8(a), since both “1L” and “4L” cases have the same solution. The difference observed is rather
due to the pattern (12% difference between the square and the hexagonal pattern). For the three “compact” meshes, where
the surface of the asperity is between 80% and 100% of the whole surface, the difference between the solutions remains
lower than 10% for the force–displacement and the volume–force curves. For these three cases, the stress level is high, and
plastic deformation occurs. The amount of plasticity is lower for the “4L” case, consequently the force reaches larger values.
The free volume is also larger in this latter case, since the geometrical change of the asperity has a small effect on the
whole mesh.

3.3. Influence of the asperity shape

Models found in the literature generally use a particular shape for all asperities. For example, Greenwood–Williamson
model [1] uses spherical asperities, while Bush et al. model [2] uses ellipsoidal asperities and ZMC model [11] features a
parabolic shape. However, an accurate study on the shape influence has never been made. Here, the response of four typical
asperity shapes will be compared: sinusoid, paraboloid, ellipsoid and conic (see Fig. 9(a)).

It is worth noting (see Fig. 9(b)) that the contact area evolution as a function of the load is linear and identical for each
cases (the difference is less than 2%). The volume variation is slower for massive asperities: less variation with the elliptic
shape, then for the parabola. Sinus and conic shape have comparable amounts of matter, but the free volume changes less
with the sinusoidal inclusion. This rather intuitive result confirms that inclusions with a tiny top will crush more rapidly
than those with a larger summit (Fig. 9(c)).

The influence of the asperity aspect ratio (that is both height/width ratio and width) has also been investigated, based
on the study of real rough surface distributions done in Section 2. Several computations were carried out, with ratios of
0.05, 0.075, 0.1 and 0.15. For these computations, the asperity width are taken equal either to 4 μm or to 6 μm, and the
sinusoidal shape is retained.

As shown in Figs. 10(b), (c), (e), (f), the contact area and the free volume evolutions weakly depend on the height/width
ratio (maximum difference of 10% between the various cases). However, the force/displacement response is ratio dependent,
with a non-linear relation between the ratio and the force obtained for a given displacement (Figs. 10(a), (d)).
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Fig. 7. 3D patterns: (a) 3D mesh used for the case of a square distribution; (b) 3D mesh used for the case of an hexagonal distribution; (c) a view to the
square pattern; (d) a view to the hexagonal pattern.

Fig. 8. Influence of boundary conditions: (a) real contact area evolution; (b) force/displacement response; (c) free volume evolution.

Fig. 9. Influence of the shape: (a) different shapes used; (b) contact area evolution; (c) free volume evolution.
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Fig. 10. Influence of height/width ratio: (a), (b), (c) respectively contact area, force/displacement and free volume for a width equal to 4 μm. (d), (e), (f)
respectively contact area, force/displacement and free volume for a width equal to 6 μm.

4. Large scale contact: finite element analysis

The study of a single asperity and of a periodic microstructure of identical asperities provides us with a deep under-
standing of the local deformation process. However the global deformation is much more complicated: asperity shapes are
not so simple as it has been considered, the width, height and vertical position follow distribution rules and, due to the
fractal nature of rough surfaces, a large asperity is “decorated” by series of smaller ones. Moreover close asperities interact.
Simple geometrical and analytical models cannot account for all these aspects. So, full scale finite element analyses are
needed to better understand the global deformation of rough surfaces. The loading is assumed to be quasi static, neither
dynamic nor viscosity effects have been taken into account.

4.1. Mesh and boundary conditions

The studied contact problem requires a very fine mesh close to the surface to represent complicated geometry of a rough
surface and to capture high stress gradients in the zone close to the surface. On the other hand the total height of the mesh
has to be sufficiently high in order to represent bulk material deformation and to avoid edge effects. To derive an adequate
finite element mesh (fine close to the surface and coarse everywhere else), a special composition of 8-node bricks, 6-node
prismatic and 5-node pyramidal elements have been combined in a special arrangement, in order to produce a very fast
refinement. One switches from one to 9 elements within one finite element layer, so that refinement is of 9n elements at
n-th layer (Fig. 11(a)). The finite element mesh used for the analysis has 964 000 nodes, and more than 945 000 nodes are
situated in 8 layers forming a regularly meshed zone adjacent to the contacting surface (Fig. 11(b)). The rough surface itself
consists of 105 625 nodes. Consequently, the average number of nodes used for one asperity is about 460. Moreover, we
remarked that asperities which come in contact first have generally large dimensions, and so possess a higher number of
nodes. The element size of the regularly meshed surface is 0.167 μm × 0.1944 μm. It also has to be pointed out the fact that
only 1.5% of the elements are used to represent the bulk material where stress is more or less homogeneous.

To treat such a large problem in a reasonable time, the use of parallel computation is highly required. Here a classical
implementation of the FETI (Finite Element Tearing and Interconnection) method [21] is used together with the sparse
DSCPACK solver for the local resolution [26]. Finite element mesh has been divided into 16 equal sub-domains (highlighted
by different colours in Fig. 11(b)) in a manner to avoid rigid body motion. Symmetric boundary conditions are applied at
all side facets, and a vertical displacement towards the rigid plane is prescribed on the bottom facet. All other displacement
components of this facet are blocked, i.e. the problem is symmetric over all lateral facets of the RVE. To analyse the problem
a workstation with 8 bi-core processors Intel Xeon X5550 2.67 GHz and 160 Gb of RAM has been used. The problem requires
a very large number of computational steps, mainly because of the very large displacements at the interfaces between
subdomains, and also due to material and geometrical non-linearity. An updated Lagrangian scheme and a corotational
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Fig. 11. Full finite element analysis: (a) representation of the transition mesh allowing an efficient refinement from 1 to 9 elements; (b) mesh of the rough
surface 54 × 63 μm2; (c) distribution of the vertical displacement for a contact area of 6% (blue regions correspond to contact area); (d) distribution of the
von Mises stress for a contact area of 6%.

framework are then used to account for finite strain and large displacements. Material is the same which has been used in
the study of one asperity. Totally, 220 time steps have been computed, which correspond to a displacement of the sample
of 1 micrometer. The convergence for each time step is reached within 3–4 iterations and requires almost 1 hour.

4.2. Results

Fig. 11(c) shows a contour plot of the vertical displacement of the rough surface. The colour scale has been chosen to
highlight the contact area and make clear the deformation of the rough surface in a large zone close to asperities. It reveals
interactions between asperities which extends at large distances from the local contact zones. It will be shown further how
to account for this interaction in the reduced rough surface model. The von Mises stress distribution on the rough surface
is presented in Fig. 11(d). It saturates very fast, and the contacting process results in the growth of saturated zones of von
Mises stress far beyond the limits of the contacting asperities. For the ultimate displacement of 1 micrometer, the equivalent
accumulated plastic strain reaches 200% in several asperities.

Global results such as contact area evolution, free volume changes, etc. will be discussed and compared with a reduced
model in Section 6.

5. A new reduced model for the analysis of rough surfaces

Since the percolation analysis is strongly connected with statistics, it requires performing of numerous tests on RSE.
The full finite element analyses on an RSE require long CPU times and high performance computers. They should be used
essentially as reference computations, and reduced models able to derive global and local characteristics of the contact are
highly desirable and of a great practical importance. Such a reduced model is presented in this section. It is based on the
study of the contact of one asperity and on the real distribution of asperity shape and position according to the studied
rough surface. So the model allows to analyse both global and local characteristics: reaction force, total contact area and total
free volume as well as contact area and free volume topology, which is very important for percolation analysis. The main
idea is to detect and represent each asperity of the original rough surface by an element (rod) with a force–displacement
behaviour derived from the FEA of one asperity with a specific shape, boundary conditions and height/width aspect ratio.
The interaction between asperities is ensured by displacing the neighbouring asperities accordingly to the phenomenological
law which has been deduced from the study on one asperity and will be presented below.

To find and characterise asperities on the rough surface, a detection technique has been used (see Section 2). For each
asperity of the rough surface, this procedure determines the position of the summit (x, y, z), together with asperity height
and width. If contacting asperities are situated far from each other, then the interaction between them is negligible, so
that the reaction force developing at each asperity can be easily predicted using the study on a single asperity. As an
extension of the study shown in Section 3, series of computations have been carried out for different representative as-
perities, according to statistical data (Fig. 3). They include 6 different widths, {2,3,4,5,6,7} micrometers and 5 aspect
ratios, {0.05,0.075,0.1,0.15,0.25}. It is worth mentioning that the distribution of asperity characteristics which first come
in contact is quite different from the distributions presented in Fig. 3; for example the mean aspect ratio of asperities in
contact at ultimate force of 0.5 N is 0.2–0.22 instead of 0.1. Then, for each detected asperity, the constitutive model has
been interpolated from these 15 studies. However when the deformation of an asperity is confined by the deformation
of surrounding asperities, the response is quite different. To account for this effect, an interaction between asperities has
been taken into account. All these aspects are explained below, and the global response as well as the topography of rough
surface in contact are compared with the reference result from the full scale finite element analysis.
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The ultimate algorithm of the proposed simplified analysis is the following:

– starting from the initial rough surface data smoothed with bi-cubic Bezier surface, all asperities (position, global height,
average local height, radius, local area) are located and retained for the following steps;

– each determined asperity is approximated by an axisymmetric asperity with a sinusoidal shape and an aspect ratio
corresponding to a ratio of local height to local width;

– asperity widths are scaled in order to get the total area equal to the reference one;
– a rigid plane is gradually moved against the asperity set;
– if a global height of an asperity appears to be over the rigid plane position so it deforms according to the deduced

constitutive law;
– all neighbouring asperities are displaced to follow the deformation of the contacting asperity as well as points of rough

surface situated outside contact zones of asperities;
– the total force and contact area are computed as sums over all contacting asperities;
– the free volume is analysed by integration of the gap between rough surface situated outside contact zones of asperities

and the rigid plane.

5.1. Constitutive models

The study performed in Section 3 allows to determine constitutive deformation models for asperities in contact. In this
model, the motion of the rigid plane is governed by the vertical displacement. The force/displacement model enables us to
get out the force associated to this displacement, and also contact area can be deduced for each asperity.

Asperities are supposed to be axisymmetric, the shape of asperity is chosen to follow cosinus. The constitutive laws
depend on the asperity width and aspect ratio. The constitutive laws are based on FEA simulation on a single asperity and
therefore, represent only the elastoplastic behaviour of the material Norem (see Section 2). Thus, for each pair of width
and aspect ratio, two mathematical functions describing the responses F (U , w, r) and A(F , w, r) have been deduced (see
Figs. 12(a) and (b)):

Force/displacement response: F (U , r, w) = c1U 4 + c2U 2 + c3U

Contact area/force response: A(F , r, w) = A0c4 F

For each asperity width, ci parameters are then approximated by a mathematical function ci = ci(r), i = 1,4, depend-
ing on the asperity aspect ratio r and involving other parameters ci j, j = 1,3 (see Figs. 12(c), (d), (e) and (f)). These last
parameters ci j are also approximated by mathematical functions depending on the asperity width w (see Figs. 12(g), (h)
and (i)). Thus, starting with the determination of ci j , we calculate the ci parameters and, finally, we define the F (U ) and
A(F ) responses for a specific shape of asperity.

For real rough surfaces, the free volume is not determined by asperity deformation but mainly by valleys and scars. That
is why no constitutive model V (F ) is determined.

5.2. Asperity interaction

When a point of the rough surface comes in contact with a rigid foundation, the adjacent bulk material deforms, the
general displacement being in the direction opposite to the contact area both in the contact plane and in orthogonal direc-
tion. The size of the deformed region in the contact plane is limited, and points that are far enough retain their original
positions. It means that if one asperity comes in contact with a rigid foundation, surrounding asperities move outward the
center of contacting asperity as well as outward the rigid plane. It is assumed that the local shape of interacting asperi-
ties remains unchanged. An analytical estimation of the surface deformation near a contacting asperity is a quite intricated
task in the framework of large deformations and non-linear material. It has been then decided to use a phenomenological
interaction law deduced from a set of axisymmetric calculations on a single asperity.

Let us consider a single sinusoidal asperity coming in contact with a rigid plane. The radial displacement in the neigh-
bourhood of the contact zone is of the order of magnitude of the axial displacement, but this radial displacement does not
change the contact pressure or the contact area. Its influence on the topology of the contact area and on the free volume is
not significant as well, and it will be neglected further. The axial displacement of the surface close to a sinusoidal asperity
(width = 4 micrometers, height = 0.4 micrometers) is represented in Fig. 13(a). This displacement can be approximated by
the following function

uz = au0
z

√
2d

w
exp

(
−b

2d

w

)
(5)

where u0
z is the displacement of the asperity summit, d the distance from the center of asperity, w the asperity width and

a, b model parameters which might depend on the asperity aspect ratio. In the present study, these coefficients are taken
constant.
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Fig. 12. (a) and (b): representative mathematical functions for F (U ) and A(F ). (c), (d), (e) and (f): mathematical functions which represent respectively c1,
c2, c3 and c4 in function of asperity ratio r (w = 4 μm). (g), (h) and (i): mathematical functions which represent respectively c41, c42 and c43 in function
of asperity width w .

Fig. 13. Illustration of the interaction between contacting asperities: (a) axial displacement close to a single sinusoidal asperity and its approximation;
(b) axial displacements for confined asperities and approximations evaluated by assuming displacement additivity.
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Fig. 14. An example of surface deformation computed with the phenomenological interaction law. The colour scale corresponds to the vertical displacement;
blue circles embedded in coloured field designate asperity limits.

As it can be seen, the value of the axial displacement at the surface is rather small but it decreases relatively slowly and
approaches zero only at a distance equal to 16 asperity radii. There is then a long range influence of the contacting asperities
on the deformed surface profile (see Fig. 11(d)). To account for asperity interactions, an additivity of displacement fields
arising from every contacting asperity is assumed. The proposed interaction law has been validated for the same asperity
shape on several axisymmetric tests: the lateral boundary fixed in radial direction is placed at 4, 8, 16 micrometers from
the center of asperity. Such boundary conditions imply approximately that there is a set of identical asperities distributed
over a circle. It can be checked in Fig. 13(b) that the results provided by the upcoming phenomenological rule are in good
agreement with the surface deformation computed with by FEA. However the assumption of additivity is very rough and
requires a validation on numerous full 3D analyses for different asperity configurations. For the given set of scale and
material properties, the parameters in the deformation law are the following: a = 23.6410−3; b = 0.4367. An example of
surface deformation computed by the proposed law for different asperities in contact is presented in Fig. 14.

The constitutive model for one asperity provides us with force–displacement relations F (U ). As demonstrated in Fig. 8,
there is a strong difference between the deformation process of a single asperity and of a periodic structure of closely
packed asperities. If interaction between asperities is not taken into account, then a constitutive deformation model would
give the same result for both cases. This is why all the constitutive models (made explicited in Section 5.1) correspond to
the case of an isolated asperity to which we add an interaction law. So in the present study, the vertical displacement of
the asperity summit U is decomposed into two parts: one due to the interaction between asperities Ui and the second
related to local deformation itself Ud . Consequently, the force–displacement relation becomes F (Ud) = F (U − Ui). The force
is a monotonically increasing function of the displacement, so that such a procedure results qualitatively in a lower force
for multiple asperities (Ui is high) than for an isolated asperity (Ui = 0). It remains clear that the assumptions of additivity
and independence of interaction remain questionable and have to be further investigated.

6. Results

A qualitative analysis of the contact between a rough RSE and a rigid plane has been studied by means of the same
quantities as the analysis of a single asperity. The evolution of the contact force versus the displacement of the rigid
foundation is non-linear, with a power 3.4. The maximal force reached in the large FEA is about 0.5 N, which corresponds
to a displacement of 1 micrometer of the rigid plane. The RSE’s dimensions are 54 μm × 63 μm, so this force corresponds to
an apparent pressure of 147 MPa, which is three times smaller than the initial yield strength, however local stress is much
higher, since less than 6% of the apparent contact area is in contact for the ultimate load. The evolution of the real contact
area with increasing reaction force in large scale analysis is strictly linear, regardless the fact that for a single asperity with
high aspect ratio this evolution is slightly concave.

Global results (force/displacement and contact area/force) obtained with the reduced model in comparison with the
full FEA are presented in Fig. 15. The distribution of the contact zones predicted by the reduced model and the FEA are
presented in Fig. 16 for different displacements. As expected, this plot reveals the importance of accounting for the inter-
action between asperities in the reduced model. For the maximum displacement, the simplified prediction made without
interaction overestimates the force by 40%. In fact, considering the interaction between asperities influences the force–
displacement curve almost from the beginning due to an incidental presence of two close asperities which come in contact
almost at the same moment. As it can be seen from Fig. 15(a), the interaction reduces significantly the reaction force and
makes the reduced model a very powerful tool to analyse rough surface contact. Varying the interaction network between
asperities situated close to edges of the RSE allows to model periodic or symmetric boundary conditions (the latter is used
in the present simulation). The reduced model presents a good general agreement with the reference curve from FE. The
difference between the two curves is negligible for the maximum load. For moderate displacement values, the maximal
relative error reaches 23% for the model with interaction. This can be explained by the approximation of the asperities by
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Fig. 15. Comparison between the FEA and the reduced model with and without interaction between asperities: (a) dependence of the contact reaction force
on the displacement of the rigid plane; (b) force–real contact area plot.

Fig. 16. Comparison of the contact area topology for the reduced model with interaction (black circles) in comparison to the full FEA (red zones) at different
loading steps: (a) uz = 0.5 μm, F = 0.05 N, contact area 0.56%; (b) uz = 0.75 μm, F = 0.19 N, contact area 2.10%; (c) uz = 1 μm, F = 0.5 N, contact area
5.58%. The arrow marks the only non-detected contact zone.

a sinusoidal axisymmetric shape, the phenomenological interaction model and the approximated definition of the asperity
width and height. The global performance of the reduced model is then very satisfactory, if one thinks that the computing
time is now a few seconds instead of a few days.

As shown in Fig. 15(b), the modelling of the real contact area by the reduced model is better if the interaction is not
taken into account, otherwise the contact area is overestimated by about 7%. Nevertheless it remains in a good qualitative
and quantitative agreement with the full FEA. The straight line in Fig. 15(b) reveals the slight non-linearity in the change of
contact area versus load due to the coalescence of contact zones of neighbouring asperities. If no attention is paid to regions
where contact zones of close asperities intersect, i.e. the contact area has been calculated several times in intersecting
regions, the global contact area follows the straight line rather accurately. The topology of the contact area obtained with
the reduced model is in good agreement with the reference solution. Only one relatively large contact zone has been missed
on the RSE (marked with an arrow in Fig. 16). All other contact zones have been determined with a very good precision.

The analysis of the free volume is a more complicated task, because the free volume is mainly determined by valleys
and not by asperities. So the main tool to analyse the free volume is a projection of the initial rough surface on a regular
mesh and its deformation due to asperities descent and to the interaction between them. In the reduced model, the rough
surface is approximated by asperities only where they come in contact with a rigid plane, everywhere else the initial
rough surface is projected on the mesh and is deformed due to deduced interaction law. The free volume topologies for
load F = 0.01 N, uz = 0.25 μm and for the ultimate load F = 0.5 N, uz = 1 μm obtained by the FEA are presented in
Fig. 17. Also the free volume topology predicted by the reduced model for the ultimate load is presented in this figure.
The overall topologies obtained with the reduced model and FEA are in good agreement. Long scars due to machining are
explicitly readable. However, in the reduced model, asperities shade somewhere parts of valleys. The global change of the
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Fig. 17. Comparison of the free volume topology for reduced model with interaction in comparison to the full FEA: (a) FEA for uz = 0.25 μm, F = 0.011 N;
(b) FEA for the ultimate load uz = 1 μm, F = 0.5 N; (c) reduced model for the same ultimate load. Red regions correspond to valleys, blue regions to
contact zones.

Fig. 18. Full FEA in comparison to reduced model: (a) free volume evolution versus load; (b) free volume evolution versus displacement.

free volume with increasing load is presented in Fig. 18(a) both for finite element analysis and for the reduced model
with and without interaction. As expected, it has nothing to do with the evolution of the free volume in case of a single
asperity. Qualitatively, two stages can be distinguished: a fast decrease of the free volume for the small load levels, followed,
after a smooth transition, by an almost linear evolution, with a much lower slope. The ultimate force of 0.5 N results in a
volume reduction of about 54%. The reduced model without interaction slightly overestimates the free volume variation. In
fact, this response corresponds to the simple result that would be obtained by means of a pure geometrical analysis, i.e.
by cutting the rough surface at the level of the descending rigid plane and integrating the free volume under this plane
(Fig. 18(b)). The model with interaction provides a better prediction (less than 2% error with respect to FEA at the ultimate
load), demonstrating the interest of this specific study. However for small loads the difference is more pronounced due to a
less precise prediction of the force–displacement curve (Fig. 15).

7. Conclusions

Several propositions are made in this article to improve our knowledge concerning the contact of a rough surface and
a rigid plane. A representative surface element (RSE) is built by means of an enriching interpolation scheme. This allows
us to have in hand a geometrical model, that can be exploited for two purposes. The first one is a full scale finite element
analysis (performed on a parallel computer), with more than 100 000 nodes in the contacting surface, that provides a
reference solution. The second one is the development of a reduced model which provides a solution to our rough contact
problem in a few seconds in very good agreement with full FEA needing a few days. The ingredients of this new reduced
model are:
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– a series of basic curves obtained by means of elementary finite element computations on a single asperity;
– phenomenological relations to take into account the interaction between neighbouring asperities of the rough surface.

The proposed reduced model predicts very accurately the global responses for the contact between a rough surface and
a rigid plane (force/displacement, contact area/force, free volume/force). It provides also the exact contact topologies. Up
to now, the agreement has been tested on one RSE only. The work must then be continued, in order to further investi-
gate the assumption of additivity of displacements (those coming from asperity deformation and those coming from the
surroundings) that is used in the reduced model.

In the present state, the reduced model is a useful tool for studying very large surfaces that cannot be computed by
means of finite element codes, and doing statistics. It should allow to perform quick studies of various roughness scales,
and could then be used to check the Greenwood–Williamson model. Only a few roughness scales are classically taken into
account due to FE limitations and measurement, but this model will allow to introduce more complex shapes.

The reduced model can be used for the analysis of a soft material in contact with a rigid one. The extension to a real
metal/metal contact depends on the validity of Johnson’s hypothesis for elastoplastic materials in the framework of large
deformations. The next step of this type of study will then be to switch from a rough/smooth contact to a rough/rough
contact type. In this case, tangential forces and friction will be of greater importance and should be taken into account. The
well-known problem related to geometry accidents (hooks) has also to be considered.

The finite element analysis also demonstrated that even relatively moderate normal load (150 MPa) leads to extremely
high local deformations: in the finite element analysis of the considered RSE, accumulated plastic deformation reaches 200%.
Normal metal materials are not supposed to bear such high deformations. Consequently a damage or/and a fracture model
has to be incorporated in the analysis to get more physical results.

Finally, a simplified contact algorithm (see Appendix A) has been proposed, which allowed to solve fast and efficiently
all 3D contact problems presented in the article.
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Appendix A. Simplified contact algorithm

The hypothesis once made by Johnson is frequently used to study contact between rough surfaces: the contact between
two solids with rough surfaces can be replaced without loss of generality by a contact of a rigid plane and one deformable
solid with effective elastic properties and a roughness profile following the undeformed gap between both surfaces [27].
However this hypothesis seems to be questionable in presence of plasticity, friction or large deformations, so in the present
paper material properties and surface roughness remain unchangeable. Consequently, we confine ourself to a contact analy-
sis between a metallic surface (both in case of one asperity and full RSE contact) and a rigid plane, which in reality can be
presented by a cleavage plane of diamond or sapphire having 10 and 9 Mohs scale hardnesses respectively.

There are several methods which are widely used in the FEA to treat contact problems: penalty method, Lagrange mul-
tiplier method [28], augmented Lagrangian method [29]. A method associated with a discretisation technique (for instance
node-to-segment [28], mortar method [30], contact domain method [31], etc.) provides solution for a contact problem (see
for details [32]). However all of them have drawbacks. The penalty method gives just approximated solution and allows fi-
nite penetration between contacting solids, penetration is proportional to the contact pressure, coefficient of proportionality
is inversed penalty parameter. The greater the penalty, the smaller penetration but at the same time the higher condition
number of the finite element stiffness matrix and the higher probability of divergence. The Lagrange multiplier method is
more precise but on the other hand it increases the number of unknowns, which leads to significantly longer resolution
time, especially in the considered case where the number of nodes in contact is very high. There is a method which allows
to avoid both drawbacks — the augmented Lagrangian method with Uzawa algorithm, but in general this method takes a lot
of iterations to converge. However in case of contact occurring between a deformable solid and a rigid plane, a much more
simple and reliable method can be used.

Classically in contact mechanics, non-penetration/non-adhesion condition also called Signorini’s or Karush–Kuhn–Tucker
condition can be written as

σn gn = 0, σn � 0, gn � 0 (6)

where σn = n · σ · n — normal component of stress vector on the contact surface, gn — normal gap between solids, σ —
stress tensor, n — normal to the contact surface. This set of conditions means that if there is a contact gn = 0 then contact
pressure is not positive, otherwise if contact pressure is zero σn = 0 then normal gap is not negative, there is no contact.
A simplified method used for numerical analysis consists in replacement of Signorini’s contact conditions by gradually
imposed Dirichlet boundary conditions on the contact surface. “Gradually” means here that boundary conditions are updated
during iterations and time steps.
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To demonstrate the idea let us consider an example. There is a contact surface Γc , all nodes of this surface can come
in contact with a plane z(x, y) = z0. The contact condition is the following: ∀i ∈ 1, Nn : xi

z � z0, where i is a node number,
Nn — number of nodes at considering surface Γc , xi

z — z component of the i-th node vector in the current frame, i.e.
xi

z = Xi
z + ui

z , Xi is the vector of position in the reference frame and ui is the displacement vector of the i-th node. The
main idea is the following: if node i penetrates the surface z0, then the z position of the node is imposed to be xi

z = z0. In
such a way the condition of non-penetration is fulfilled

gi
n = z(x, y) − xi

z = z0 − xi
z � 0 (7)

Additionally, for each iteration, it is necessary to verify the non-adhesion condition Ri
z � 0: the z reaction of each node

for which Dirichlet “contact” boundary conditions have been imposed should be opposite to the surface (in the current
case negative). If this is not the case, then the imposed boundary conditions at considered node have to be removed. Such
verification is repeated at each iteration until convergence.

Remark 2. This method is applicable for linear finite elements for frictionless contact with a rigid surface. Rigid surface can
be a plane, a cylinder or a sphere in Cartesian, polar or spherical coordinate systems respectively. However if one make use
of so-called Multi-Point Constraints the method can be applied for contact with arbitrarily curved surfaces f (x, y, z) = 0. If
Neumann boundary conditions are imposed additionally to Dirichlet boundary conditions in a special manner then frictional
forces can be taken into account as well.

Contrary to the other methods, the present technique does not require any change of the stiffness matrix, even if fric-
tional contact is considered, i.e. stiffness matrix remains symmetric (if material model provide a symmetric matrix) and
therefore any solver can be used. Since one of contacting solids is a rigid plane, there is no need in contact detection. All
aforementioned things also leads to a very simple parallelisation of contact problems, i.e. if any parallel method is imple-
mented in the Finite Element code, then no additional efforts should be overtaken to perform parallel FEA of problems
including contact. This method complemented with a specific post-processing for displacement, contact force/pressure, con-
tact area and free volume analysis has been successfully applied for all sequential and parallel 3D FE simulations in the
current study.
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