
C. R. Mecanique 339 (2011) 532–551
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Surface mechanics: facts and numerical models

Experimental and numerical analysis of fretting crack formation based on
3D X-FEM frictional contact fatigue crack model

Simulation expérimentale et numérique X-FEM de fissures tridimensionnelles de fatigue
avec contact et frottement. Application au fretting

Emilien Pierres, Marie-Christine Baietto ∗, Anthony Gravouil

INSA-Lyon, LaMCoS, CNRS UMR5259, bâtiment Jean-d’Alembert, 18, 20, rue des Sciences, 69621 Villeurbanne cedex, France

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 21 June 2011

Keywords:
X-FEM
Fatigue
Fretting
Frictional contact

Mots-clés :
X-FEM
Fatigue
Fretting
Contact frottement

Nowadays, numerical simulation of 3D fatigue crack growth is easily handled using the
eXtended Finite Element Method coupled with level set techniques. The finite element
mesh does not need to conform to the crack geometry. Most difficulties associated to
complex mesh generation around the crack and the re-meshing steps during the possible
propagation are hence avoided. A 3D two-scale frictional contact fatigue crack model
developed within the X-FEM framework is presented in this article. It allows the use
of a refined discretization of the crack interface independent from the underlying finite
element mesh and adapted to the frictional contact crack scale. A stabilized three-field
weak formulation is also proposed to avoid possible oscillations in the local solution
linked to the LBB condition when tangential slip is occurring. Two basic three-dimensional
numerical examples are presented. They aim at illustrating the capacities and the high
level of accuracy of the proposed X-FEM model. Stress intensity factors are computed
along the crack front. Finally an experimental 3D ball/plate fretting fatigue test with
running conditions inducing crack nucleation and propagation is modeled. 3D crack shapes
defined from actual experimental ones and fretting loading cycle are considered. This
latter numerical simulation demonstrates the model ability to deal with challenging actual
complex problems and the possibility to achieve tribological fatigue prediction at a design
stage based on the fatigue crack modeling.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

De nos jours, la méthode des éléments finis étendus couplée aux techniques de fonctions
de niveau (level-set) a été appliquée avec succès à un grand nombre d’applications et en
particulier à la simulation de la propagation de fissures de fatigue tridimensionnelles. En
effet, la géométrie de la fissure ne doit pas être maillée explicitement. La plupart des
difficultés liées à la génération de maillages complexes autour de la fissure et les opérations
de re-maillage et de projection de champs lors de la propagation sont donc évitées. Un
modèle 3D à deux échelles, celle de la structure et celle de de la fissure, développé dans
le cadre X-FEM est présenté dans ce papier. Il permet l’utilisation d’une discrétisation
raffinée de l’interface de la fissure, adaptée à l’échelle des non linéarités de contact avec
frottement et indépendante du maillage éléments finis sous-jacent. Une formulation faible
stabilisée à trois champs est également proposée afin d’éviter les oscillations possibles
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dans la solution locale liées à la condition LBB en cas de glissement tangentiel. Deux
exemples numériques simples en trois dimensions sont présentés. Ils visent à illustrer
les capacités et le niveau élevé de précision du modèle X-FEM proposé. Enfin, le modèle
est intégré dans une démarche globale couplant expérimenation et simulation numérique
pour prédire la durée de vie de composants en fatigue. Des essais de fretting menés
pour des conditions de chargement induisant l’initiation et la propagation de fissures sont
simulés numériquement. Les conditions de chargement et les faciès de fissuration 3D sont
utilisés comme données d’entrée dans le modèle numérique X-FEM. Les conditions de
contact et frottement à l’interafce des fissures sont déterminées au cours d’un cycle de
fretting et les facteurs d’intensité de contraintes en mode I, II et III sont calculés. Cette
simulation démontre la capacité de modèle à faire face aux défis posés par les problèmes
réels complexes et la possibilité de réaliser une prédiction en fatigue tribologique des
composants de structures.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Fretting is considered as a source of wear and premature fatigue failure within mechanical parts. Fretting damage may
occur whenever a junction between contacting parts is subjected to cyclic sliding micro-motions, whose characteristic am-
plitudes are much less than the size of the contact. Such a contact loading can be induced either by vibrations or by the
application of bulk fatigue stresses to one or both of the contacting parts. The main initial damage (wear or cracking) is
closely linked to the nature of the contact conditions between the contacting bodies, which depends on the contact loading,
the material’s bulk mechanical properties and the frictional response of the contact interface. Cracks may initiate at a very
early stage and most of the component life incorporates crack growth. Due to the great need of industry to prevent fretting
damage of parts rubbing against each other, like riveted joints, blade to disk fixings in jet engines, rolling bearings, a con-
siderable attention has been devoted both experimentally and numerically. Our attention is here focused on crack initiation
with the aim to predict crack behavior and propose palliatives to extend the fatigue life. Identifying the possibility of tri-
bological fatigue at a design stage and integrate it in a predictive approach requires a multi-disciplinary phenomenological
understanding which encompasses the interdependency of solid and contact mechanics, fatigue, material, wear and fretting
mechanisms. The problem is further strongly multi-scale. Dimensions ranging from the meter (characteristic size of a com-
ponent), to the mm (two-body contact patch between contacting components, the crack itself) down to the μm (frictional
contact zone at the crack interface) are encountered. Moreover, 3D cracks located in the contact zone vicinity are submitted
to multi-axial non-proportional cyclic loadings and severe stress gradients. Cracks undergo sequences of opening-closure-
sticking and sliding contact conditions at interface, governing crack mixity, branching, self-arrest and propagation.

Many models and methods have been proposed to achieve the prediction of fretting crack lifetime. This involves to be
able to tackle four different steps: (1) the cyclic stress–strain field computation within the safe component, accounting for
the structural influence (boundary conditions, . . .) but also for the contact conditions arising at the component interface;
(2) the prediction of crack initiation locations and angles; (3) the crack modeling; and (4) the crack growth. The numerical
simulation of each of these four steps can be achieved based on different techniques. Step 1 is easily tackled using 2D
and 3D finite element techniques as long as the structural problem is relevant. Dealing with the contacting interface where
the fretting cracks initiate and requiring thus accurate contact problem solution between the contacting two bodies is
not so straightforward. Half-analytical and numerical techniques have been long preferred as they capture accurately and
for a negligible computing effort the multi-axial stress and strain fields with severe gradients in the two-body contact
vicinity. This implies to consider simplified geometries like cylinders, spheres, planes. Step 2 is concerned with multi-axial
fatigue criteria either based on the concept of the critical plane like Ruiz et al. [1] or Dang Van’s criterion [2] or on the
concept of equivalent stress [3], strain or energy based-fracture criterion. Concerning steps 3 and 4, methods based on
distributed dislocations techniques pioneered by Comninou [4], Hills and Comninou [5], Dubourg and Villechaise [6] have
allowed to account for contact and frictional effects between the crack faces which govern both the crack behavior and
the crack path. Dubourg and Villechaise [7] have combined this technique with a unilateral contact algorithm with friction
to deal automatically with complex cyclic fretting loading conditions and multiple crack interactions. These models have
been developed within the linear elastic fracture mechanics framework and 2D assumptions. They address contact fatigue
problems at a local scale, dedicated to the interface between the two bodies in contact and the cracks situated in the near
vicinity. Methods based on finite element techniques are able to capture the global scale of the structure (complex geometry,
more realistic boundary conditions, . . .) but are not accurate enough at the local scale. Further the crack growth simulation
is computer time and memory demanding as it requires re-meshing and field interpolation. Large 3D crack propagation
problems are thus unattainable. There is a need for robust and efficient 3D fatigue crack models accounting for frictional
contact at crack interface to analyze fretting or rolling crack problems.

The extended finite element method (X-FEM) allows to deal with crack propagation without those drawbacks thanks to
significant improvements in crack modeling. X-FEM is a numerical method developed within the standard finite element
method framework. Its key properties are due to the partition-of-unity method developed by Melenk and Babuška [8]
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combined by Moës et al. with special enriched functions added locally to the finite element approximation [9]. These
enriched functions capture the asymptotic near-crack-tip behavior and the discontinuous displacement fields. Hence the
initial mesh does not need to conform to the crack geometry and furthermore no re-meshing is necessary as the crack
evolves during fatigue crack propagation. This method allows to deal with large 3D crack propagation problems at low
computational cost and memory size. X-FEM has been applied to 3D crack growth combined with level set techniques for
the crack shape description [10–13] with possible multi-scale effects [14]. The implementation within the X-FEM framework
of contact with or without friction has been further performed in 2D [15–19] and in 3D [20–22]. The accurate modeling
of tribological fatigue dealing with non-proportional multi-axial loading and severe stress gradients in the cracked area has
been further performed [23–26]. Moreover, a methodology encompassing the cyclic contact loading determination at the
interface of two components rubbing against each other, the prediction of the distribution of the crack nucleation risk at
this interface and the prediction of 2D fatigue crack propagation accounting for frictional contact at the crack interface has
been proposed recently within the X-FEM framework [27].

Ribeaucourt et al. [23] emphasized as an essential pre-requisite the need for a fine discretization of the crack interface to
capture accurately the complex frictional contact conditions. The crack interface discretization proposed in [15] depends on
the underlying finite element mesh. As a consequence, refining the crack discretization implies refining the finite element
mesh. This is in conflict with the concept of crack mesh Independence inherent to X-FEM and leads to important computer
time and memory cost even for two-dimensional problems. To overcome this difficulty, a two-scale X-FEM strategy was
proposed in [22] to capture in a single framework the different scales involved, those of the structure, the crack and
the possible localized non-linearities (confined plasticity, interfacial unilateral contact or frictional contact). The crack is
considered as an autonomous entity with its own discretization scheme, variables, and constitutive law. It is connected in
a weak sense to the structure and a three-mixed field formulation is used [28–30]. The interfacial discretization is further
refined independently of the mesh of the structure, by successive sub-divisions of the interface elements, up to matching
the scale of the contact non-linearities. This strategy has been developed and validated in a first attempt for unilateral
contact at the interface of three-dimensional cracks [22].

In the present article, this model is extended to address frictional effects. Section 2 is devoted to the presentation of
the X-FEM/level set numerical crack model. After recalling the definition of the global and local problems, the mixed three-
field weak formulation combined with the global–local strategy is presented. The algorithm for the interface discretization
refinement is described. The non-linear LATIN iterative solver is considered here. A first numerical example is performed to
show the efficiency of the global–local strategy in terms of accuracy and savings in memory size. Then the combination of
a non-locking LATIN and X-FEM methods (NLLA-X-FEM) is completed to avoid possible numerical oscillations when dealing
with frictional contact at crack interface. A second numerical example is presented to emphasize the improvements.

Section 3 presents the application of the NLLA-XFEM model to simulate a 3D experimental fretting test with the aim of
predicting fatigue life. An experimental 3D ball/plate fretting fatigue test with running conditions inducing crack nucleation
and propagation is conducted. Using the actual recorded experimental fretting loading cycles, the local friction coefficient
is determined. The contact pressure and traction distribution at the ball/plate interface are then computed during the
fretting cycle. The crack nucleation risk distribution d is evaluated within the volume around the contact area according
to Dang Van’s criterion. The location and shape of the zones where the risk is the highest are in a good agreement with
the two shallow cracks observed experimentally at the trailing and leading edges of the contact area. These two cracks
are considered for NLLA-X-FEM simulation. The 3D crack shapes are first reconstructed from a series of metallographic
observations performed on cross sections. In a second step, they are modeled using the level set technique. The sequences
of contact and frictional conditions at crack interfaces are determined during the fretting cycle as well as the stress intensity
factors at both crack fronts during the fretting cycle. This latter numerical simulation is performed to demonstrate the model
ability to deal with challenging actual complex problems and the possibility to achieve tribological fatigue crack prediction
at a design stage based on the fatigue crack modeling.

2. Global–local X-FEM model of 3D frictional contacting cracks

2.1. Three-field weak formulation of the fracture problem with frictional contact

A three-dimensional deformable cracked body Ω ⊂ R3 is considered with small displacement and small strain assump-
tions. Let ∂Ω be its boundary and n be the outward unit normal to ∂Ω . It is submitted to imposed tractions ft(t) along Γt

and prescribed displacement Ud(t) along Γd at a given time t with a homogeneous isotropic linear elastic behavior in the
bulk. Let u(t) be the displacement field solution, σ (t) the corresponding Cauchy stress tensor and ε(t) the strain tensor in
the body Ω . The interface displacement field w(t) and the traction field t(t) are defined on the two crack faces Γ +

C and
Γ −

C . Let nC and tC be the outward unit normal and the tangential vectors to Γ +
C .

The problem is partitioned in two, cf. Fig. 1. On one side, the so-called global problem referring to the structure scale,
and on the other side, the so-called local problem referring to the crack scale. Both problems are defined by their own set
of equations and their own primal and dual variables.

The solution of the global problem, associated to the quantities (u,σ ), satisfies the equilibrium equation (1) and the
constitutive law (2). It must also fulfill the mixed boundary conditions (3) and (4) along Γt and Γd .
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Fig. 1. The problem is divided in a global fracture problem (structure scale) and a local frictional contact problem (crack scale) with their corresponding
variables and boundary conditions at a time t .

Equilibrium −→ divσ (t) = 0 in Ω, ∀t ∈ [0; T ] (1)

Constitutive law −→ σ (t) = Cε(t) in Ω, ∀t ∈ [0; T ] (2)

Neumann conditions −→ σ (t) · n = ft(t) on Γt, ∀t ∈ [0; T ] (3)

Dirichlet conditions −→ u(t) = Ud(t) on Γd, ∀t ∈ [0; T ] (4)

where C is Hooke’s tensor for a homogeneous isotropic elastic material.
The quantities (w, t) along ΓC referring to the local frictional contact problem at the crack interface are expressed in the

local frame (nC , tC ) attached to the crack as follows:

w = wN · nC + wT · tC and t = tN · nC + tT · tC (5)

The opening and slip (relative displacements) between the crack faces are defined at a given time t as the evolution of
the displacements between two points G+ ∈ Γ +

C and G− ∈ Γ −
C at a given coordinate x ∈ ΓC :[

wN(x, t)
] = w+

N (x, t) − w−
N (x, t) and

[
wT (x, t)

] = w+
T (x, t) − w−

T (x, t) (6)

The solution (w, t) of this local problem obeys an interfacial constitutive law between the crack faces Γ +
C and Γ −

C . Coulomb’s
friction law is considered here:

contact zone
[
wN(x, t)

] = 0 ⇒ t+N (x, t) = −t−N (x, t) and t+T (x, t) = −t−T (x, t) (7)

open zone
[
wN(x, t)

]
> 0 ⇒ t+(x, t) = t−(x, t) = 0 (8)

stick zone
∥∥tT (x, t)

∥∥ < μC · ∥∥tN(x, t)
∥∥ ⇒ �

[
wT (x, t)

] = 0 (9)

slip zone
∥∥tT (x, t)

∥∥ = μC · ∥∥tN(x, t)
∥∥ ⇒ ∃γ > 0/�

[
wT (x, t)

] = −γ · t+T (x, t) (10)

where � corresponds to an increment of the considered quantity between two successive time steps and μC is the friction
coefficient between the crack faces.

The link between the global and the local problems is ensured by enforcing the continuity conditions between the primal
(u and w) and dual fields (σ and t) respectively, whose strong form is given by:

u(t) = w+(t) on Γ +
C and u(t) = w−(t) on Γ −

C , ∀t ∈ [0; T ] (11)

σ (t) · nC = t+(t) on Γ +
C and σ (t) · nC = t−(t) on Γ −

C , ∀t ∈ [0; T ] (12)

In the proposed approach, Eqs. (1), (3), (4), (11) and (12) are merged into a single three-field weak formulation:

0 = −
∫
Ω

σ (t): ε(u∗)dΩ +
∫
Γt

ft(t) · u∗ dS +
∫
ΓC

λ(t) · u∗ dS

+
∫
ΓC

(
t(t) − λ(t)

) · w∗ dS

+
∫
ΓC

(
u(t) − w(t)

) · λ∗ dS

∀u∗ ∈ U∗
0, ∀w∗ ∈ W ∗, ∀λ∗ ∈ Λ∗, ∀t ∈ [0; T ] (13)

where the global and virtual displacement fields u and u∗ respectively, belong to function spaces defined by:

u ∈ U , U = {
u + regularity/u(t) = Ud(t) on Γd

}
(14)

u∗ ∈ U∗, U∗ = {
u∗ + regularity/u∗ = 0 on Γd

}
(15)
0 0
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From a general point of view, the displacement field w, traction field t and Lagrange multiplier field λ along the crack faces
used in this paper are assumed to be sufficiently smooth and regular. Similar assumptions are considered for the virtual
fields w∗ and λ∗ .

It is well known that the existence and unicity of the solution of a discrete mixed formulation require a continuous
definition of the Lagrange multiplier space in accordance with the displacement space, satisfying the LBB inf-sup condition.
Comments and details regarding this question within X-FEM models with contact and friction can be found in [31–33,21,
34,20,19]. Additional remarks will be exposed in the next sections regarding the unilateral or frictional contact problems.

2.2. Global–local X-FEM discretization of the three-field weak formulation

The Extended Finite Element Method (X-FEM) has shown to be very efficient to model fracture problems. It is an exten-
sion of the Finite Element Method (FEM) and it is based on the partition of unity concept [8]. This method alleviates much
of the burden associated with the mesh generation, by not requiring the Finite Element mesh to conform to the discontinu-
ity. Indeed, a discontinuous function and asymptotic crack tip displacement fields are added to the FEM approximation to
account for the crack. The enriched shape functions are associated to new degrees of freedom and the X-FEM displacement
field approximation at a given time t is:

u(x, t) 	
∑

i∈Nnodes

ui(t)Φi(x) + H(x)
∑

j∈Ncrack

a j(t)Φ j(x) +
4∑

l=1

Bl

∑
k∈Nfront

blk(t)Φk(x) (16)

where ui are the standard Finite Element degrees of freedom, a j are the degrees of freedom linked to the generalized
Heaviside function H and blk are the degrees of freedom linked to the singular enrichment functions Bl of the crack front
[9,12]. Φi , Φ j and Φk are first order shape functions. A similar approximation is used for the virtual displacement field u∗ .

The X-FEM gives a good approximation of the displacement field with coarse meshes compared to those employed when
dealing with the FEM, thanks to the asymptotic crack tip enrichments [9,12]. In this paper, a standard X-FEM approach
is used. However, it is not a restriction as recent improvements (treatment of blending elements or new discontinuous
enrichments for instance) [18,32,31] can be easily accounted for. Furthermore, X-FEM is well adapted for modeling crack
growth, as both field interpolation and re-meshing are not required during the possible crack propagation.

According to [12,13,35], a set of two three-dimensional level sets defines the crack geometry, one for the crack surface
and a second one, locally orthogonal, for the crack front. This level set method also allows a robust and accurate definition
of the local enrichments associated to three-dimensional cracks and greatly facilitate the update of the crack geometry
during the possible propagation [12,35]. Note that discontinuous H and singular Bl enrichment functions are expressed in
terms of the level set functions and the crack discontinuity is thus accurately located.

The numerical integration of the frictional contact law requires the discretization of the displacement and traction fields,
w and t respectively, as well as the Lagrange multiplier field λ. The method proposed by Dolbow et al. in 2D [15] is
extended to three-dimensional configurations: interface elements are created at the intersection of the 3D structure finite
element mesh and the crack geometry. Quadrature Gauss points G+/− are defined on both upper (Γ +) and lower (Γ −)
crack faces on each interface element. w = (wx, w y, wz), t = (tx, t y, wz) and λ = (λx, λy, λz) are interpolated using first
order shape functions on the resulting distribution of Gauss points. Similar approximations are used for the virtual fields
w∗ , t∗ and λ∗ .

Ribeaucourt et al. [23] emphasized the need for a fine discretization of the crack interface to capture complex frictional
contact conditions. This is an essential pre-requisite to accurately simulate the crack behavior. Moreover, the traction and
shear distributions as well as the displacements at the crack interface are involved in the foreseen computation of the
stress intensity factors and, thus, in the estimation of the propagation rate and the determination of the growth direction.
The crack discretization proposed by Dolbow et al. [15] being dependent on the underlying finite element mesh, a local
refinement of the finite element mesh around the crack is required to get an accurate description of the frictional contact
conditions between the crack faces, cf. Fig. 2(a). This strategy conflicts with the concept of crack/mesh Independence inher-
ent to X-FEM. Moreover, it is very laborious and CPU time consuming in 2D and prohibitive in 3D. Therefore, a different
strategy was proposed by Pierres et al. [22]. It is based on the concept of Independence between the structure finite element
mesh and the crack interface discretization leading to the proposed “global–local strategy”. The aim is to get an accurate
interfacial frictional contact solution while keeping the X-FEM benefits. This strategy is illustrated in a two-dimensional
configuration in Fig. 2. It consists in increasing the number of interface elements by subdivision (h-refinement) while keep-
ing the underlying finite element mesh unchanged. In the three-dimensional case, unequally sized and distorted interface
elements may result initially from the intersection of the crack with the 3D finite element mesh. In this respect, specific
shape and size indicators have been developed in order that the interface element edges cannot exceed a critical length
lC and that very acute angles are avoided. As a consequence, the successive subdivisions of 2D interface elements lead to
an optimal spatial distribution of the integration Gauss points automatically adapted to the required scale. Hence, possible
inaccuracy in the numerical integration is avoided.
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Fig. 2. Crack discretization strategies within X-FEM in the 2D case according to: (a) Dolbow et al. [15]; (b) Pierres et al. [22].

Fig. 3. Geometrical representation of the domain integral used to compute the interaction integral along the crack front with associated interface Gauss
points.

2.3. Stress intensity factor calculation

The next step is concerned with the quantification of the crack severity. Fracture parameters such as the Stress Intensity
Factors (SIF) or the energy release rate are measures of the intensity of the crack front fields. Specific domain integrals
for extracting mixed mode SIFs along curved three-dimensional cracks derived [36–38] under the assumption of contact
free faces have been implemented within the X-FEM framework [9,11]. This method has been extended to evaluate elastic
T-Stress along three-dimensional cracks [39], to extract 3D SIFs dealing with confined plasticity [40] and more recently to
compute mixed mode SIFs for curved bimaterial interfacial cracks in non-uniform temperature fields [41]. J and interaction
integrals have been formulated for a finite element modeling of 2D frictional contact crack [15,42,23].

Following Refs. [37] and [15], an expression for the interaction integral is derived in the 3D case accounting for contact
and friction along the crack faces, cf. Fig. 3:

Ih = −
∫
D

(
σ h

klε
aux
kl δi j − σ h

kju
aux
k,i − σ aux

kj uh
k,i

)
qi, j dV −

∫
Γ +

C ∪Γ −
C

(
σ h

k2uaux
k,1 + σ aux

k2 uh
k,1

)
q1n2 dS (17)

It is worth noting that the term corresponding to contact and frictional effects along the crack front is the term including
the integral over Γ +

C ∪ Γ −
C . Eq. (17) is computed over a chosen 3D domain D around discrete points Pi located along the

crack front, where the virtual extension field q is assumed to be a sufficiently smooth weighting function which takes a
value of unity at the crack tip and vanishes on the edge of the integral domain D [43]. h and aux correspond respectively to
X-FEM numerical quantities and auxiliary fields according to asymptotic Westergaard analytical solutions for pure mode I,
mode II and mode III. σ aux

k2 vanishes on Γ +
C and Γ −

C as the auxiliary fields satisfy traction-free crack faces [15]. It leads to
the following expression

Ih = −
∫
D

(
σ h

klε
aux
kl δi j − σ h

kju
aux
k,i − σ aux

kj uh
k,i

)
qi, j dV −

∫
Γ +∪Γ −

th
k uaux

k,1 q1 dS (18)
C C
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For the numerical evaluation of the above integral, the local contact traction field t is computed at every interface
Gauss point located inside the 3D domain integral D , cf. Fig. 3. Stress intensity factors Kh=[1,2,3] are estimated using the
corresponding pure mode h analytical auxiliary fields according to:

Kh = E

(1 − ν2)
· Ih (19)

These formulas will be used hereafter to compute 3D SIFs in the different problems proposed in this article.

2.4. Unilateral contact solution

The solution of the problem defined in Section 2.1 is performed according to LArge Time INcrement method (LATIN)
introduced by Ladevèze in 1985 [29] and applied to frictional contact problems by Champaney [30]. See also [44]. It was
notably used in 2D X-FEM crack model with frictional contact under uniaxial static loading [15] and multi-axial quasi-static
loading [23,18]. It was also employed in a 3D X-FEM crack model with unilateral contact [22].

The LATIN method consists in dividing the set of equations into two subsets, the local non-linear one and the linear
global one. At a given time t , an approximate solution s = s(u,σ ,w, t) is obtained according to an iterative process in two
stages for each iteration i:

– A non-linear local step: solution si+ 1
2

of the local equations of the frictional contact problem at the crack interface.

A local contact indicator between each couple of integration points, described in Ref. [23], allows to update the contact
zones and to determine the local tangential frictional contact condition (slip or stick) according to wi and ti values,
with respect to the frictional contact law (7), (8), (9) and (10) and to the following equation:

ti+ 1
2

− ti = kl(wi+ 1
2

− wi) (20)

where kl is a strictly positive parameter, called “local search direction”, set by the user. The new interface fields wi+ 1
2

and ti+ 1
2

are computed for both normal and tangential problems.

– A global step: solution si+1 of the global structure problem. Here, Eq. (21) is used in conjunction with the weak form
(13), leading to (22):

ti+1 − ti+ 1
2

= −kg(wi+1 − wi+ 1
2
) (21)

0 = −
∫
Ω

σ i+1: ε(u∗)dΩ +
∫
Γ t

ft · u∗ dS +
∫
ΓC

λi+1 · u∗ dS

+
∫
ΓC

(ti+ 1
2

+ kgwi+ 1
2
) · w∗ dS −

∫
ΓC

(λi+1 + kgwi+1) · w∗ dS

+
∫
ΓC

(ui+1 − wi+1) · λ∗ dS ∀u∗ ∈ U∗
0, ∀w∗ ∈ W ∗ and ∀λ∗ ∈ Λ∗ (22)

where kg is a strictly positive parameter set by the user, called “global search direction”. It can be noticed that search
directions values kg and kl only influence the convergence rate of the numerical scheme and that the method always
converges toward the exact solution of the discretized problem [30]. In practice, a quasi optimal value k0 = kg = kl is
obtained based on a material property (Young’s modulus for instance) and a characteristic length (in 2D) or area (in
3D) linked to the crack [30,29,22].

Introducing the enriched displacement field (16) and the discretized quantities on the crack faces in Eq. (22) yields the
linear system (23):

[ Kuu 0 −Kuλ

0 Kw w Kwλ

−KT
uλ KT

wλ 0

]( Ui+1
Wi+1
Λi+1

)
=

⎛
⎝ Ft

Kwλ · Ti+ 1
2

+ Kw w · Wi+ 1
2

0

⎞
⎠ (23)

where Kuu is the stiffness matrix of the structure. The “mortar” operators KT
uλ and KT

wλ ensure the weak link between the
local and global problems and enable the use of incompatible discretizations between the crack interface and the structure.
Kw w is the operator associated to the global search direction kg .

The linear system (23) being solved, the local traction Ti+1 is computed according to (21). The local and the global steps
are repeated until the convergence is achieved. according to a specific local convergence criterion developed by Ribeaucourt
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Fig. 4. Problem 1: cracked domain with boundary and loading conditions; (X, Y ) view of the crack plane at z = 0.07 m.

et al. [23]. It is defined as the distance between the global and the local approximations, referring to both interface displace-
ments and loads for the normal and tangential problems. Remark: When convergence is achieved, Λ = T at the prescribed
accuracy.

The proposed 3D X-FEM crack model devoted to unilateral frictional contact solution on the crack interface rests on an
original global–local strategy. The following Problem 1 is used here to demonstrate the ability of the model to accurately
capture complex discontinuous contact conditions holding at a scale lower than the scale of the finite element mesh, in
other words when the stick-slip transition or open-closed transition occurs inside a finite element.

Problem 1. A 3D (0.1 m × 0.025 m × 0.12 m) parallelepipedic specimen with a surface breaking plane crack with a curved
front is considered. The detailed geometry of the cracked sample is depicted in Fig. 4. Young’s modulus and Poisson’s ratio
are respectively E = 206 GPa, ν = 0.3. Dirichlet boundary conditions uZ = 0 are imposed on the bottom surface and rigid
body displacements are blocked. A compressive uniform loading ft = 100 MPa is applied on half of the top surface to induce
both contacting and open areas along the crack interface. A unilateral contact law without friction is considered between
the crack faces. Three configurations labeled 1, 2 and 3 are considered:

– 1: A rather fine structure finite element mesh is used (104 544 tetrahedra). The ratio between the characteristic length
of the crack and the characteristic length of the 3D finite elements in the zone of interest is R = 14. The crack interface
discretization is defined according to the method proposed by Dolbow et al. [15]. No refinement is used, leading to a
distribution of 2049 interface Gauss points. Case 1 is considered as the reference case.

– 2: A rather coarse structure finite element mesh is used (3456 elements, R = 5.5). The crack interface discretization is
defined according to [15] again, leading to a distribution of 260 interface Gauss points.

– 3: The structure finite element mesh of case 2 is used again (3456 elements, R = 5.5). The proposed global–local
strategy is achieved. The crack discretization refinement is performed considering a critical size for the interface element
edges equal to lc = 1.8 mm, leading to a 2076 Gauss point distribution at the crack interface.

For each case, the optimal convergence rate is obtained using a single value for the two search directions k0 = kl = kg =
10+13 Pa m−1. The approximation of the contact solution is performed at a given accuracy of 10−3 according to the local
convergence criterion developed in [23]. Fig. 5 shows the structure finite element mesh, the crack interface discretization
and the computed local traction field T in the area of interest for each case.

According to the reference case 1, combined fine finite element mesh and fine crack interface discretization give accurate
results and capture precisely the transition between the open (T = 0) and closed (T > 0) areas along the crack faces, located
at x = 19 mm. Nevertheless, the use of a locally refined finite element mesh in the vicinity of the crack requires important
numerical efforts and conflicts with the mesh Independence concept inherent to X-FEM.
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Fig. 5. Fine and coarse meshes of the structure, discretizations of the crack interface with triangular interface elements, and (x, z) views of the computed
traction field in Pa along the crack interface represented with lines according to cases (1), (2), and (3).

Fig. 6. (a) Amplified representation of the global displacement field in m (×200); (b) Three-dimensional representation of the traction field along the crack
interface (case 3).

In case 2, coarse finite element mesh and coarse crack interface discretization do not allow a fine description of the local
unilateral contact conditions. t and w variations are approximated roughly and the boundary between the open and closed
areas is not accurately captured: x = 17.3 mm.

In case 3, the computed local solution is very close to the one obtained according to the reference case 1. The contact
solution is accurately captured using a refined crack interface discretization adapted to the scale of the local problem,
independently from the finite element mesh in the bulk. The location of the discontinuity between the open and contacting
areas is quantified accurately at x = 18.7 mm. The CPU time is further significantly reduced with a save-up of 75% with
respect to the reference case 1. An other key issue is that no numerical oscillation of the computed primal and dual interface
variables W and T along the crack faces is observed although a consequent refinement of the Lagrangian multiplier space
is conducted, cf. Fig. 6. This result confirms the good properties of the mixed three-field weak formulation and shows the
ability of the proposed model to capture complex local unilateral contact conditions at a lower scale than the characteristic
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Fig. 7. Problem 2: cracked domain with boundary and loading conditions; Crack geometry in cross section A-A′ .

one of the finite element structure mesh [22]. Note that the stress intensity factor K I is not computed as the crack front is
closed.

2.5. Non-locking frictional contact solution

However, when tangential slip occurs between the crack faces, the model shows some limitations. Indeed, numerical
oscillations can be observed in the local frictional contact solution, restraining the convergence of the proposed method.
Numerical experiments clearly show that the choice of the normal and tangential Lagrange multiplier space influences
the stability of the three-field weak formulation. It is proposed here to improve the three-field weak formulation (13) by
introducing a penalty term on the Dirichlet boundary condition between the global and local problems. Eq. (23) becomes:[ Kuu 0 −Kuλ

0 Kw w Kwλ

−KT
uλ KT

wλ Aλλ

]( Ui+1
Wi+1
Λi+1

)
=

⎛
⎝ Ft

Kwλ · Ti+ 1
2

+ Kw w · Wi+ 1
2

Aλλ · Λi

⎞
⎠ (24)

where Aλλ = α · Id is the penalty operator and α is set by the user. This additional term only influences the convergence
rate of the iterative scheme but does not affect the problem solution. Indeed, when convergence is achieved, Aλλ · Λi+1 −
Aλλ · Λi = 0 at a prescribed accuracy. Numerical experiments seem to show that the effect of this penalty term is similar to
Nitsche-type approach [32,33]. Furthermore, this is very close to a Robin-type condition between the crack faces within the
X-FEM framework. Numerical studies are in progress to obtain the general properties of such penalty term on the stability
of the three-field weak form.

In the following Problem 2, the ability of the so-called Non-Locking LATIN Method (NLLA-X-FEM) to accurately solve fric-
tional contacting crack problems with possible tangential sliding is demonstrated and it is shown that spurious oscillations
are avoided.

Problem 2. A 3D (0.1 m×0.025 m×0.12 m) parallelepipedic specimen identical to the one defined in Problem 1 with a 30◦
inclined crack with curved fronts is considered, cf. Fig. 7. Young’s modulus and Poisson’s ratio are respectively E = 206 GPa,
ν = 0.3. Dirichlet boundary conditions uZ = 0 are imposed on the bottom surface and rigid body displacements are blocked.
A compressive uniform loading ft = 100 MPa is applied on the top surface.

The frictional Coulomb’s law expressed by (7), (8), (9) and (10) is considered. A rather coarse structure finite element
mesh (3456 tetrahedra) is defined. The crack interface discretization is refined according to the global–local strategy pro-
posed in this paper. The critical size chosen for the interface element edges is lC = 1.8 mm. A distribution of 1670 interface
Gauss points is obtained, cf. Fig. 8. The approximation of the solution is computed with a given accuracy of 10−4, using
both the Standard LATIN X-FEM Method (SLA-X-FEM) and the proposed Non-Locking LATIN X-FEM Method (NLLA-X-FEM) to
illustrate the improvements and the stability of this latter method. The optimal convergence rate is obtained using a single
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Fig. 8. 3D structure mesh and refined crack interface discretization.

value for the two search directions k0 = kl = kg = 10+13 Pa m−1 for both methods. According to the proposed NLLA-X-FEM,
the best results regarding the quality of the frictional contact solution (no oscillation) and the convergence rate are obtained
using a penalty term value α = −10−11 m Pa−1.

Three different values of the interfacial friction coefficient are considered μC = 1; 0.5; or 0, giving rise to different
interfacial contact states: stick, partial slip, or gross slip. Illustrations of the interfacial traction field T and the relative
tangential displacement field [WT ] = (W+

T − W−
T ) are given for each μC value according to both methods in Figs. 9, 10

and 11.
In the case of full stick or partial slip between the crack faces, i.e. μC = 1 or 0.5, traction fields T computed according

to SLA-X-FEM or NLLA-X-FEM are similar. The local frictional contact solutions do not show manifest numerical oscillations.
Nevertheless, the SLA-X-FEM solution is notably perturbed in the crack front vicinity whereas the NLLA-X-FEM solution is
smooth. Moreover, w solution for μC = 0.5 is accurately captured according to the NLLA-X-FEM whereas the SLA-X-FEM
does not allow a precise location of the slip and stick areas at the crack interface at a prescribed accuracy, cf. Figs. 10(a) and
10(b). Furthermore, the CPU time is significantly reduced with a save-up of 70% when using the NLLA-X-FEM, cf. Table 1.

In the case of gross slip contact at the crack interface, i.e. μC = 0, significant oscillations perturb the SLA-X-FEM solution.
See the local traction field T in Fig. 11(a). Furthermore, these spurious oscillations produce anomalous stress peaks along
the crack interface, introducing local errors in the global solution of the problem and restraining the method convergence.
However, smooth local fields are obtained according to the proposed NLLA-X-FEM and the frictional contact solution is
accurately captured, cf. Figs. 10(b) and 11(b). The global solution of the problem is not perturbed and the convergence rate
of the model is highly increased, cf. Table 1. Furthermore, it can be noticed that the number of iterations is independent of
the value of the friction coefficient. Fig. 12 shows the convergence curves of both iterative methods. It can be noticed that
the SLA-X-FEM almost stops converging at a certain point whereas the new NLLA-X-FEM proposed in this paper does not.

Remark. One can notice some local errors in the contact solution near the front. These are not related to the previously
described numerical oscillations but result from the X-FEM specific enrichments near the crack tip. Recall that a standard
X-FEM approach is used here. However, it can easily be extended to recent improvements (treatment of blending elements
or new discontinuous enrichments for instance) [45,18,32,31].

The proposed NLLA-X-FEM model accurately captures the fine and complex solution of the frictional contact problem be-
tween crack faces at a prescribed accuracy, thanks to the independent crack interface discretization adapted to the required
scale. Unstability problems (numerical oscillations) are avoided whatever the interfacial frictional contact conditions are, i.e.
partial opening with stick contact, or partial slip contact, or gross slip contact, by the use of an additional penalty term on
the continuity conditions connecting the global and local displacement fields u and w. Note that the quality of this contact
solution is a key issue as it is involved in the computation of the stress intensity factors as described in Section 2.3, cf.
Fig. 13. The influence of the friction coefficient is clearly emphasized. A stick zone extends from the crack fronts up to an
interior region whose size depends on μC . For μC = 0.5; and 1, the size of this region is quite large, the relative tangential
displacement of the crack faces is low and similar K I I values are obtained. For μC = 0, the stick region tends to disappear
and K I I values are quite high compared to the previous ones. Note that K I I I values are small compared to K I I ones and
that K I is nil whatever μC value.

The previous example illustrates the robustness and the efficiency of the combined NLLA-X-FEM model for 3D frictional
contacting cracks based on an innovative three-field weak formulation. In the following section, the proposed NLLA-X-FEM
strategy is used to model an experimental fretting fatigue crack problem.
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Table 1
Number of iterations required to achieve convergence for each case and relative required CPU time according to
both LATIN based methods.

Friction coefficient μC 1 0.5 0

SLA-X-FEM 294 286 150
NLLA-X-FEM 87 86 86
CPU time save-up 70% 70% 43%

Fig. 9. μC = 1: (X, Z) view of the local traction field T and (X, Y ) view of the relative tangential displacements field [WT ]. (a) SLA-X-FEM; (b) NLLA-X-FEM.

Fig. 10. μC = 0.5: (X, Z) view of the local traction field T and (X, Y ) view of the relative tangential displacements field [WT ]. (a) SLA-X-FEM; (b) NLLA-X-
FEM.
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Fig. 11. μC = 0: (X, Z) view of the local traction field T and (X, Y ) view of the relative tangential displacements field [WT ]. (a) SLA-X-FEM; (b) NLLA-X-FEM.

Fig. 12. Value of the local convergence criterion with respect to the iteration index for each case μC = 0; 0.5; or 1 and for both LATIN based methods.

Fig. 13. Mode II and mode III stress intensity factors at both crack fronts for each μC value.
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Fig. 14. Flowchart of the methodology employed here.

3. Numerical application: 3D experimental fretting-fatigue test modeling

A considerable attention has been devoted both experimentally and numerically to identify the possibility of tribological
fatigue at a design stage, to integrate it in a predictive approach based on fatigue crack modeling and to propose palliatives
to extend the fatigue life. An analysis of an actual experimental test is presented here. It combines experimental and
numerical results. The 3D fatigue crack model based on NLLA-X-FEM approach is used here for 3D fretting crack modeling.
Fretting damage may occur whenever a junction between contacting parts is subjected to cyclic sliding micro-motions,
whose characteristic amplitudes are much less than the size of the contact. Such a contact loading can be induced either by
vibrations or by the application of bulk fatigue stresses to one or both of the contacting parts. Various forms of damage can
be observed under those conditions, such as wear and/or crack nucleation. Significant efforts have been made to acquire a
better insight into fretting through a methodology combining experiments and modeling. Material Response (MRFM) and
Running conditions (RCFM) Fretting Maps [46,47] have been introduced to classify through an experimental method, the
type of damage (no damage, crack, wear) predominantly encountered depending on the running conditions. Those running
conditions record the evolution against time of the fretting conditions (stick, partial slip or gross slip) characterized by
friction loops showing the tangential force (Q ) versus the contact relative displacement (δ) during a complete fretting cycle.
Crack nucleation is the dominant degradation response under very small displacement amplitude at two-body interface,
associated to both partial slip regime and mixed fretting regime. It is further observed at a very early stage and most of
the component life incorporates crack growth. Those 3D cracks are located in the contact zone vicinity and are submitted
to multi-axial non-proportional cyclic loadings and severe stress gradients. They undergo complex sequences of opening-
closure-sticking and sliding contact conditions at interface, governing crack mixity, branching, self-arrest and propagation [3].

The fretting problem analysis presented here combines experimental and numerical results. Fretting tests have been car-
ried out and the corresponding modeling has been performed. In this example, normal load-displacement pairings leading
to partial slip regime have been selected. Cracking is thus the main degradation response. The methodology employed here
involves five different steps summarized in the flowchart of Fig. 14: (1) fretting tests are conducted, data are recorded and
analyzed, including the 3D crack geometry reconstruction from observations (2) the contact conditions at the two-body
interface are computed during the fretting cycle, (3) the prediction of the crack nucleation risk according to Dang Van’s
criterion is performed, (4) two elliptical fretting cracks, defined from the observations performed at step 1, are modeled
within X-FEM/level set framework, (5) the crack growth is achieved. Points (2) to (5) defining this methodology have been
detailed in [27] in 2D. Points (1) to (4) are performed in 3D in this paper.

Step 1: Fretting experiments. An experimental fretting test is thus considered. Experimental data have been recorded con-
tinuously during the tests with careful monitoring of the displacement amplitude between the specimens, recording of the
frictional forces versus the cycles. The upper body is a standard steel ball bearing with a 6.4 mm radius. The lower body is a
thick steel plate (25 mm×16 mm×4 mm). The mechanical properties of the samples are stated in Table 2. The fretting test
rig used to perform the test allows applying a controlled normal force P and a sinusoidal tangential displacement parallel
to x-axis of amplitude δ on the ball at a frequency F of 20 Hz. The resulting tangential force Q is monitored. Performing
measurements gives the ratio between the tangential and normal loads f = Q /P that is equal to the friction coefficient μ
in case of gross sliding but differs from it as soon as sticking occurs. The tests are therefore characterized by (Q –δ) curves
along with the evolution of f . The loading conditions given in Table 2 have been selected so that partial slip regime is
obtained throughout the test. Fig. 15(a) displays a photography of a typical fretting scar, with the circular contact area made
of a central stick zone and an annulus sliding zone. Two main elliptical cracks are initiated symmetrically at both contact
area edges at a very early stage in the fatigue life and have governed the component lifetime. At the end of the fretting test,
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Table 2
Steel mechanical properties and fretting test loading parameters.

E ν P Q F δ

210 GPa 0.3 120 N 95 N 20 Hz 9 μm

Fig. 15. (a) Microscopic view of the cracked sample surface after 50 000 fretting cycles; (b) 3D re-construction of the experimental fretting-fatigue cracks
using micro-metallographic cross sections of the cracked sample.

Fig. 16. Experimental evolution of f ratio versus the number of fretting cycles under partial slip regime. Determination of μ, c/a and u.

the specimen was removed and sectioned for metallographic observations. Cross-sections have been performed at different
y values. 3D crack shapes have been reconstructed from the micro-metallographic analysis as seen in Fig. 15(b).

Those data coming from the experiments are used in step 4 as input data for the 3D fretting crack modeling within the
X-FEM framework.

Step 2: Two-body contact solution and fretting cycle. The (Q –δ) fretting loops along with the evolution of f are used to
determine the actual value of the coefficient of friction μ (see Fig. 16). The application of an energy based sliding criterion
developed by Fouvry et al. [48] based on the quantification of the dissipated energy Ed corresponding to the interfacial
shear work defined by the area of (Q –δ) hysteresis loop as illustrated in Fig. 17(a) combined with Mindlin’s approach [49]
enables one to deduce from the f ratio the actual friction coefficient μ acting in the sliding annulus using Eqs. (25) and
(26):

A = 6

5
· (1 + (1 − u)5/3) − 5

6 u(1 + (1 − u)2/3)

u(1 + (1 − u)2/3)
(25)

u = Q ∗

μP
= f

μ
(26)

where A is the sliding energy ratio. Since the fretting loop is recorded against time, A is computed by integrating the loop.
Solving Eq. (25) yields u and finally μ is deduced. It is here equal to 0.92. Further, the comparison of the fretting loops
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Fig. 17. Stabilized experimental fretting loop (Q –δ) and Q evolution versus the time steps.

Fig. 18. (a) Pressure p(x, y) and (b) traction q(x, y, t) distributions for t = 1.

obtained by the present model based on Mindlin’s solution with the experimental one provides a satisfactory agreement
[50].

The pressure distribution p(x, y) is then analytically computed according to Hertz’s theory, cf. Fig. 18(a). The radius
of the contact area a, the maximum pressure P0 and the stick-slip ratio k = c/a are equal to 171 μm, 2.05 GPa and 0.52
respectively. A sinusoidal evolution of tangential force is considered in agreement with the experiment and 25 time steps are
considered to describe the fretting cycle, cf. Fig. 17(b). The resulting global traction distribution q(x, y) within the contact
area is obtained during the fretting cycle following Cattaneo’s technique described in [51], cf. Fig. 18(b).

Step 3: Prediction of the crack nucleation risk. In order to assess the fatigue strength of the material submitted to a
cyclic fretting loading, Dang Van’s stress based criterion [2] has been chosen since it allows the determination of a time
loading path, for t varying over a cycle, imposed on a local volume which supports multi-axial fatigue. The critical damage
accumulation is based on a combination of the shear stress τ (t) acting on the plane of normal n along with the hydrostatic
stress σH (t). The characteristic relationship of this critical plane approach is then:
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Fig. 19. Distribution of Dang Van’s crack nucleation risk d computed in volume in the vicinity of the two-body contact surface.

Fig. 20. (a) Mesh of the sample plate (46 266 tetrahedra); (b) Level set surfaces defining the cracks and refined crack interface discretization (1804 interface
Gauss points).

max
(n)

(
max
(t)

(
τ (n, t) + ασH (t)

)) = β (27)

where α and β are:

α = 6t−1 − 3 f−1

f−1
β = 2t−1 (28)

and f−1 and t−1 being the plain fatigue and torsion fatigue limits for a R ratio equal to −1. To observe the fatigue resistance,
the couple (τ ,σH ) needs to be calculated during the loading cycle on each point for each plane direction, defined by its
normal n and orientation θ . This process is very long and laborious and has been simplified [2] assuming Tresca’s law (29)
is valid.

max
(n)

(
τ (n, t)

) = Tresca(t) (29)

d = max
(t)

(
sup(i, j)(

σi(t)−σ j(t)
2 )

β − ασH (t)

)
(30)

where σi and σ j are the principal stresses. This criterion has been already applied successfully to predict the distribution of
fretting crack nucleation risk. The reader is referred to [52] for further details.

The distribution of the crack nucleation risk d is here computed within the volume around the contact area and presented
Fig. 19. This crack nucleation risk is close to unity in two zones, located at the border of the contact zone and whose shapes
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Fig. 21. Amplified representation of displacement field U(×10) for the maximum tangential load at t = 1.

Fig. 22. (a) Relative normal displacement field at crack interface [WN (t)] = W+
N (t) − W−

N (t); (b) Relative tangential displacement field at crack interface
[WT (t)] = W+

T (t) − W−
T (t); (c) Local traction field T(t) at t = 1.

are similar to those of the experimental cracks observed. This result emphasizes a good qualitative agreement between the
prediction and the experimental observations, both on the crack locations and shapes.

Step 4: 3D fretting crack modeling. A parallelepipedic steel domain is considered with dimensions (25 mm × 16 mm ×
4 mm) and mechanical properties identical to the experimental ones (see Table 2). The time-discretized two-body contact
solution, i.e. pressure p(x, y) and traction q(x, y, t) distributions defined in step 2, is used as an input data in the X-FEM
crack model. 25 time steps are used to describe the fretting cycle, cf. Fig. 17(b). A positive value of the tangential force Q
acts on the x direction. These pressure and traction distributions are interpolated on “load set” surfaces relying on the finite
element mesh. This technique has been detailed previously [27] and is not recalled here for succinctness. The mesh of the
sample (46 266 tetrahedra) is thus locally refined on the upper surface, cf. Fig. 20(a), to provide an accurate definition of
the experimental fretting loading.

Dirichlet boundary conditions uZ = 0 are imposed on the bottom surface and rigid body displacements are blocked.
The shapes of the two symmetrical cracks are defined on the basis of the experimental observations, cf. Fig. 15(b). These
are qualitatively represented using level sets, cf. Fig. 20(b). Their surface-breaking length and maximum depth are equal to
298 μm and 95 μm respectively. They are located at x = −171 μm (crack 1) and x = 171 μm (crack 2). The crack interfaces
are discretized using the global–local method. The critical size set for 2D interface element edges is lC = 14 μm, leading to
a distribution of 902 Gauss points per crack, cf. Fig. 20(b).

The non-linear frictional contact conditions along the crack faces inducing hysteresis phenomena, the discretized local
contact fields W(t) and T(t) at each time step t are initialized with the values computed at the previous load-step t − 1.
The approximation of the solution is computed at a level of accuracy of 10−4 according to the local convergence criterion
developed [23].

Complex sequences of frictional contact states occur along both crack faces during the fretting cycle simulation. Amplified
representations of global displacement field U, local relative normal displacement field [WN (t)] = W+

N (t) − W−
N (t) (gap

between the crack faces), local relative tangential displacement field [WT (t)] = W+
T (t) − W−

T (t) (slip between the crack
faces) and local traction field T(t) are displayed in Figs. 21 and 22 at time step t = 1.

As displayed on Figs. 21 and 22(a), at maximum tangential load, crack 1 is opened while crack 2 is closed. Mode I, II
and III stress intensity factors are computed along both crack fronts according to Eq. (17) and are displayed in Fig. 23. It is
observed that mode I is predominant. Note that a ratio of nearly 10 holds between K I and K I I values.
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Fig. 23. Stress intensity factors K I , K I I and K I I I along the crack fronts for the maximum tangential load at t = 1, represented in plane (x, y).

The next step consists in combining experimental and numerical simulations at different number of cycles with corre-
sponding crack fronts in order to formulate a specific crack growth law and to achieve fatigue life prediction. Fatigue tests
are in progress.

4. Conclusion

A methodology aiming at understanding and predicting crack initiation, formation and possible self-arrest is proposed in
this article based on the development of a 3D fatigue crack model.

This 3D quasi-static fatigue crack model allows dealing with frictional contact at the crack interface during complex
cyclic fatigue loadings. It rests on key techniques, like the combination of the extended finite element technique with the
level set technique, a global–local strategy resting on the cracked problem partition in two, a three-field weak formulation
for the frictional contact problem and a dedicated Non-Locking LATIN solver (NLLA) avoiding spurious oscillations in the
contact tractions when sliding is important. Numerical examples exhibiting the model robustness, accuracy and stability
have been presented.

The application of this procedure to a 3D fretting fatigue test is then presented. An actual sphere/plate fretting test
conducted under partial slip regime and inducing crack initiation and propagation is performed. Fretting loops are mon-
itored and analyzed, the morphology of the two main cracks is microscopically examined using successive parallel cross
sections. Input data for the numerical procedure are defined from the experimental data. The local friction coefficient at the
sphere/plate contact is quantified from recorded loading conditions during the fretting cycles. Pressure and cyclic tangential
tractions are then computed. The definition of the 3D crack shapes is then performed from the metallographic cross sections
and the 3D crack geometry reconstruction is achieved. Level set crack surfaces and fronts are then described accordingly.
NLLA-X-FEM simulations are then conducted based on the actual crack shapes. The sequences of frictional contact states at
the crack interfaces are computed and mode I, II and III stress intensity factors computation is then achieved at the crack
front.

The next step is to deal with fatigue crack growth behavior. Fretting tests will be conducted at different number of
cycles to get representative data in terms of crack front evolution versus the number of cycles. Combining these data with
the NLLA-X-FEM model will allow us to propose a fatigue crack growth law.
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