
C. R. Mecanique 339 (2011) 605–615
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Interactive virtual prototyping of a mechanical system considering the
environment effect. Part 2: Simulation quality

Zheng Wang

Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 October 2010
Accepted after revision 10 June 2011
Available online 18 July 2011

Keywords:
Dynamical systems
Multi-body
Stability
Accuracy
Interactivity

Perhaps the three most important issues in numerical simulation of mechanical systems
are: (1) how well do the multi-body systems represent a physical system of interest;
(2) how efficient is the simulation; and (3) how accurate is the simulation. With the
advances in computational mechanics, the efficiency of multi-body simulations is steadily
improving. Indeed, analysts are increasingly envisioning real-time simulation. With these
improvements in computation and efficiency, the modeling of physical systems is also
improving through the ability to have more comprehensive modeling. The issue of accuracy,
however, remains. Generally, the complexity of multi-body system dynamics leaves the
analyst without firm assurance about the numerical accuracy short of experimental
verification or intuitive reasonableness of the results. In the second part of the paper we
present some methods and experiments to clarify simulation quality of the basic model
described in the first article.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

At present modeling represents the basic scientific tool applied for pure-theoretical and practical purposes. With simula-
tion, one can study a problem that is not often subject to direct experiment. It allows researchers to build system models,
based on real world data collected from many studies, and then test a model under conditions when time and materials are
not available. It is a powerful tool for designing and analyzing complex and dynamic systems, for predicting their behavior
under different conditions on time scale.

In the earlier article [1], we have built a set of dynamic models for virtual prototyping of mechanical system considering
environment effects. This elementary simulating tool will be used to design, identify and control robots and it is a powerful
technique to improve quality and productivity of researchers work. Using the software environment, one can visually design
and model systems by means of simulating separate parts of these systems and investigating its behavior under conditions
that are close to real ones. However, how can we verify validity of the simulation tool? Defining a criterion of simulation
quality as a combination of stability and accuracy, real-time performance and reconfigurability analysis, we will give a
description in detail as follows.

In Section 2, an overview of related works is given. The stability and accuracy analysis in Section 3, the real-time
performance analysis in Section 4 will be seen in order. Then we developed a numerical experiment for reconfigurability
and a real robot in Sections 5 and 6. Finally, the conclusion is given in Section 7.

E-mail address: flair@126.com.
1631-0721/$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2011.06.003

http://dx.doi.org/10.1016/j.crme.2011.06.003
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:flair@126.com
http://dx.doi.org/10.1016/j.crme.2011.06.003


606 Z. Wang / C. R. Mecanique 339 (2011) 605–615
2. Related works

2.1. Stability and accuracy

Multi-body systems are frequently modeled as constrained systems, and the arising governing equations incorporate the
closing constraint equations at the acceleration level. One consequence of accumulation of integration truncation errors is
the phenomenon of violation of the lower-order constraint equations by the numerical solutions to the governing equations.
The constraint drift usually tends to increase in time and may spoil reliable accuracy and stability of the simulation results.

Several reliable and numerically efficient stabilization and projection methods have been proposed to compute a numer-
ical solution for the equations of motion of constrained multi-body systems, formulated either as DAEs or resolved to ODEs,
which remains on or close to the constraint manifold. Baumgarte’s Constraint Violation Stabilization (CVS) method proposed
in [2] and then developed in numerous contributions [3–6], is probably the most popular technique of this type that sta-
bilizes the constraint drift to some bounds. Other useful approaches are based on simultaneous consideration of more than
one of the constraint equations [7–10]. Then, in the Constraint Violation Elimination (CVE) schemes, originally introduced
in [11] and then developed in [12–14], the current constraint violations transformed into appropriate state corrections that
assure constraint satisfaction. A variety of other/similar methods for constraint violation suppression in the numerical simu-
lation of constrained mechanical system have also been developed, and a comprehensive review of them is provided in the
survey papers [15,16]. Braun and Goldfarb [17] proposed recently yet another constraint violation stabilization technique, in
which violations are used as correction terms in the modified constraint equations at velocity and acceleration levels.

2.2. Real-time performance and interactivity

The challenge in including dynamic simulation in applications is clearly that computations should be (at least) as fast
as real time, especially when dealing with low-level control, graphics render and HCI (human computer interaction). The
development of efficient dynamic simulation algorithms for tree-structured kinematic chains and the fast growth of com-
putational power in general purpose machines has helped reaching the goal of simulating rather complex structures in real
time [18–21], such as open chains of up to some tens of links. However impressive these advancements have been, they are
not yet comparable to what has been achieved in time span by graphic software and hardware accelerators. Many complex
dynamic systems remain beyond real-time simulation capabilities of present-day software and hardware.

Generally speaking, an important factor influencing real-time performance lies in the integration method. Real-time
simulator or hardware-in-the-loop test facilities have special demands on the integration methods utilized [22,23]. The
classical explicit Euler method suffers from numerical instability in the application to stiff systems, such as vehicle models,
with stiff suspension elements or strongly damped components. To avoid the iterative solution of nonlinear equations that
is typical of implicit time integration methods for stiff systems, the linear-implicit Euler method that may be interpreted as
an implementation of the implicit Euler method with an a priori fixed number of Newton steps in the iterative solution of
the arising systems of nonlinear equations [24].

Another method improving performance should be HPC (high performance computing) or parallel computing. Tasora pre-
sented a large-scale parallel multi-body dynamics algorithm for graphical processing units [25]. Their algorithm is based on
a cone complementarity problem for the simulation of frictional contact dynamics. Their approach is suited for more than
one million rigid bodies. Two open source examples are the famous Open Dynamics Engine (ODE) [26] and the OpenTissue
library [27]. However, currently none of them offers massively MPI parallel rigid body dynamics. Fleissner focus on parallel
simulation of particle-based discretization methods [28], such as the discrete element method or smoothed particle hydro-
dynamics, instead of rigid body dynamics. Although their approach offers the option to run large-scale particle simulations,
they are only considering point masses instead of fully resolved rigid bodies.

3. Stability and accuracy verification

In the absence of roundoff, index reduction and integration of the resulting ODE would be perfectly adequate. Unfortu-
nately, numerical drift of the solution from the invariant manifold Φ(q, t) requires alternative schemes. One such scheme
is based on coordinate partitioning. Here the coordinates are split into independent and dependent sets. Finding a robust
detection method for changing the parameterization is the most challenging aspect of the scheme. This scheme is not suit-
able for real-time HIL simulations, an important consideration for our solver as it supports code generation for real-time
deployment. Other schemes are based on stabilization and coordinate projection. Stabilization involves the addition of extra
terms to the equation of motion. These terms vanish on the manifold Φ(q, t) = 0, but have the effect of making the solution
asymptotically attractive to the manifold.

If the solution does drift of the manifold, it is ultimately attracted back onto it, although there are no predefined bounds
on the extent of the drift. The most popular stabilization technique is Baumgarte stabilization. Its simplicity has made it a
popular choice in engineering applications. But Baumgarte stabilization requires parameterization, and there is no known
generic procedure for choosing these parameters to make the stabilization robust. Indeed the choice of suitable parameters
depends on the discretization scheme used to integrate the equations of motion, a serious practical limitation.



Z. Wang / C. R. Mecanique 339 (2011) 605–615 607
Coordinate projection involves the numerical discretization of the ODE. At the end of the discretization step, the solution
is projected onto the invariant manifold. For example, the effect of coordinate projection on step size selection, event
location, and order of convergence are all considered. Our simulation codes can all be adapted to allow for coordinate
projection without compromising accuracy or efficiency. A fundamental change to our package has been the addition of
a projection method to the ODE suite that can be called once the discretized solution has been updated following the
acceptance of a successful step based on the error estimates. The scheme works for the one-step Runge–Kutta formulas, as
well as for variable-step variable-order codes. Finally, the standard theory for convergence in BDF codes like ode15s is still
applicable when projection is carried out in this way.

An important property of the solver is its ability to localize and detect events using discontinuity locking (to ensure that
the integrators see a continuous vector field) and its ability to output solutions at any time in the interval of integration
using continuous extension formulae. Both of these features are affected by projection. The solver allows users to refine
the output from the solvers using highly efficient interpolation schemes, and these interpolated outputs typically satisfy the
invariants to accuracy comparable with the accuracy of the numerical solution. The interpolated values are further projected
to ensure that the invariants are satisfied.

To ensure that events are located correctly, the outputs of the interpolants are projected before sampling the switching
functions. This makes event location more expensive, but is necessary for robust event detection. For example, the projection
approach is appropriate for a one-step method used to compute an approximate solution at time tn+1 from a solution at tn .
The step size is h, and tn+1 = tn + h. The solution takes the form

[
q∗

n+1

q̇∗
n+1

]
= hΦ(tn,qn, q̇n) (1)

If we consider the nonlinear position constraint Φ(q, t) = 0, the predicted position variables q∗
n+1 are projected onto the

closest point on the manifold, denoted by qn+1. Linearizing the constraints about the predicted value q∗
n+1 gives

0 = Φ(tn+1,qn+1) = Φ
(
tn+1,q∗

n+1

) + G
(
tn+1,q∗

n+1

)(
qn+1,q∗

n+1

) + o
(‖qn+1 − q∗

n+1‖2) (2)

To leading order, the projected solution qn+1 is obtained from solving

Gδ = Φ (3)

qn+1 = q∗
n+1 − δ (4)

If the Euclidean norm is used,

δ = G T (
GG T )−1

Φ (5)

The projection process is repeated, and so is referred to as sequential projection, until a suitable level of convergence
is attained. This is much more efficient than forming the full set of Karush–Kuhn–Tucker (KKT) equations to determine the
exact minimization on the manifold and is easily motivated by the fact that error control has made the predicted solution
q∗

n+1 close to the manifold already. In practical applications, it is advantageous to perform the projection in a weighted
norm. The projection weights reflect the weights used in the error control of the ODE solver. For an example, we give a
car engine represented with a slider crank mechanism as in Fig. 1(a), and a comparison result of different methods as in
Fig. 1(b).

4. Real-time performance verification

4.1. Index reduction strategy

In implicit time integration methods, the consideration of constraints is straightforward. Furthermore, there are implicit
methods with excellent stability properties for stiff equations. However, for real-time applications implicit methods are not
suitable since systems of nonlinear equations have to be solved iteratively in each time step. Similar stability properties
may be achieved by linear-implicit methods without any iterative algorithms. For constrained systems, we cannot expect
that a non-iterative method solves nonlinear constraints exactly. Now, we extend the linear-implicit Euler method to a non-
iterative method for constrained systems and prove that the error in the constraints Φ(q) = 0 is bounded by Φ(qn) � khr

with r � 2 and a constant k that is independent of the length of the time interval.
In the earlier article [1], the equations of motion (1) are given by a differential-algebraic system of index-3. To avoid

numerical problems which make the direct time integration of index-3 systems difficult, the system is transformed to a
new system with lower index by differentiation of the constraints [29].

M(q)q̈ + C(q, q̇)q̇ + G(q) = Fe + ΦT
q Fc ⇔ M(q)q̈ = f (q, q̇) + λΦ(q)

and



608 Z. Wang / C. R. Mecanique 339 (2011) 605–615
Fig. 1. Stabilization comparison for a slider crank mechanism.

M(q)q̈ = f (q, q̇) + λΦ(q) ⇔
{

q̇ = u

u̇ = f̃ (q, u) = M−1(q) f (q, u)

we will have

0 = Φ(q)

0 = dΦ(q)

dt
= Φq(q)q̇ = G(q)u

0 = d2Φ(q)

2
= Φqq(q)(u, u) + G(q)u̇ (6)
dt



Z. Wang / C. R. Mecanique 339 (2011) 605–615 609
If we substitute the original constraints on position level by their second derivative on acceleration level we get the
so-called index-1 formulation. Then we can calculate the Lagrange multipliers λ by solving the linear system of equations

λ = (
G(q)M−1G T (q)

)−1(
Φqq(q)(u, u) + G(q)M−1 f (q, u)

)
(7)

Accordingly we get the index-2 formulation by using the first derivative (6) on velocity level of the constraints. Because
of the special structure of the equations of motion we can insert the formula for the integration step of un+1, in (6) and
choose λn so that G(qn+1)un+1 = 0 holds:

qn+1 = qn + hun (8)(
M − h Ju G T (qn)

G(qn+1) 0

)(
un+1 − un

λn

)
= h

(
f + h Jqun

−G(qn+1)un

)
(9)

Here, Jq and Ju denote the lower blocks in the 2 × 2 block Jacobin matrix J . The main advantages of this linear-implicit
Euler method are that the velocity constraints (6) are solved exactly and there is no need for the second derivative of Φ(q).
It may be considered as a drawback of this approach that the matrix of (9) is no longer symmetric and the order of the
calculation of qn+1 and un+1 is fixed.

4.2. HPC strategy

Currently, high-end GPUs offer floating-point parallel computing power close to one Teraflop, thus exceeding those of
multi-core CPUs. This computational resource, usually devoted to the execution of pixel shading fragments for the rendering
of 3D visualization, can be also exploited for scientific computation.

We implemented our code on graphics board of the 9800 GX2 family, from NVIDIA. Each board features two GPU
processors, for a total of 256 streaming processors and capable of running 24,576 live threads. The processed data resides
in the 2 GB of DDR3 device memory. The basic idea is that, at each simulation step, the CPU uploads data into the GPU
memory, launches a kernel to be performed simultaneously on many parallel GPU threads, and gathers the results of the
computations by downloading select portions of the GPU memory back into the host RAM. Out of the entire computational
time, the time slice spent on the CPU should be as small as possible to exploit the scalable nature of the GPU parallelism.

For the problem at hand, not all of the multi-body simulation has been ported on the GPU. In particular, this is the case
of the collision detection engine, which is still executed on the CPU and becomes the bottleneck of the entire simulation.
Nonetheless, the proposed algorithm fits well into the GPU multithreaded model because the computation can be split in
multiple threads each acting on a single contact or kinematic constraint.

We built the data structures on the GPU as large arrays (buffers) to match the execution model associated with NVIDIA’s
CUDA. Specifically, threads are grouped in rectangular thread blocks, and thread blocks are arranged in rectangular grids.
Four main buffers are used: the contacts buffer, the constraints buffer, the reduction buffer, and the bodies’ buffer.

When designing the data structures of these buffers, special care should be paid to minimize the memory overhead
caused by repeated transfers of large data structures. Moreover, data structures should be organized to exploit fast GPU coa-
lesced memory access to fetch data for all parallel threads in a warp, which is a set of 32 threads all running simultaneously
in parallel. Provided that bytes are contiguous and that the kth thread accesses the kth element in the data structure, up to
512 bytes can be fetched in one operation by a warp of threads. Failing to perform coalesced memory access may slow the
kernel significantly.

Numerical experiments show that for high memory throughput, it is better to pad the data into a four-float width
structure even at the cost of wasting memory space when several entries end up not being used. Also, the variables in the
data structures are organized in a way that minimizes the number of fetch and store operations. This approach maximizes
the arithmetic intensity of the kernel code, as recommended by the CUDA development guidelines.

The components of mechanical system are distributed according to their location in the simulation domain in order
to keep the communication between fluid solver and rigid body dynamics solver minimal. In other words, for all objects
that are contained in the local sub-domain of one process, the solvers can communicate with each other by procedure
calls. Only bodies on process interfaces need to be synchronized with the directly neighboring processes. Due to the local
communication and the strictly local collision treatment, this approach supports large scale simulations of several million
bodies immersed in the fluid. But still, compared to methods with point masses, the parallelization is not trivial because
of the geometrical extent of the bodies. Each body is managed by the process where the center of mass belongs to. Bodies
which are contained in the sub-domain of more than one process need to be synchronized between the processes.

In contrast to the nonparallel algorithm, the parallel version contains a total of four communication steps to handle
the distributed computation. The rest of the algorithm remains unchanged in comparison to the nonparallel formulation.
Instead of immediately starting with the first position and velocity half-step for every rigid body, the external forces are
synchronized. Before the generation of all contacts and the resulting constraints, remote rigid bodies are updated and bodies
entering the local domain for the first time are notified. When all constraints have been set up, these are exchanged between
the processes. At the end, remote rigid bodies are updated again and bodies entering the local domain for the first time are
notified. We test GPU and CPU performance with a chain increasing bodies from 10 to 250 as in Fig. 2(a), and the result
can be seen in Fig. 2(b).



610 Z. Wang / C. R. Mecanique 339 (2011) 605–615
Fig. 2. Test GPU and CPU performance with a chain.

Fig. 3. Force and torque icon.

5. Reconfigurability verification with an interactive numerical experiment

5.1. Reconfigurability of the package

Reconfigurability and openness are features already recognized by many as essential in the development of advanced
control algorithms. Not only is it important to have easy access to the system at all levels (e.g. from high-level supervisory
control all the way down to fast servo loops at the lowest level), but it is a necessity to have open control architectures
where software modules can be modified and exteroceptive sensors like force/torque sensors and vision systems can be
easily integrated. Reconfigurability should also be reflected when more fundamental changes to the controller architecture
are required, in the necessity of quickly being able to make modifications in the original design and verify the effect of
these modifications on the system. In other words, the user should be able to quickly modify the structure of the control
without having to alter the simulation system itself.

However, it is difficult for current commercial programs such as ADAMS to allow users’ reconfiguration of some inter-
ested parameters in any time step of simulating process. To overcome this problem, we embed the control interface into
simulation loop.

In our simulator, a user can select any component of the virtual mechanism to implement user-defined online control
regardless of run-time state. Four types of simulation manipulator are provided to control the simulation of mechanical
system:

(1) Adding force/torque/motion manipulator. Force, torque and motion are presented by corresponding 3D icons. Users can
interactively apply force and torque to simulation model by altering the position, orientation, length and parameters of the
icons. The force icon is a 3D arrow entity, whose head or tail is mapped to the contact points of push or drag actions. Push
force is along the direction of force arrow (see Fig. 3(a)), and the opposite direction is drag force. Users can interactively
modify the length of arrow so as to change the value of the force. The torque icon is a 3D arc arrow (see Fig. 3(b)). The
center axis of the arc is the center axis of the applied torque, and the radius of the arc expresses the value of the torque.
The motion icon is a 3D sphere entity near the applied joint.

(2) Dragging manipulator. Users can directly pick and drag the components in the simulation system. By using 3D mouse,
the operator can pick the component and drive it directly. In this way, the mechanical system can be seen as a set of
geometrical objects with dynamical constrained properties. When the user modifies the position of one of them, all the
others have to resolve the appropriate position and orientation according to the constraints. This task must be done in real
time in order to give the user an acceptable visual feedback.



Z. Wang / C. R. Mecanique 339 (2011) 605–615 611
Fig. 4. Constraint modification manipulator.

(3) Parameter modification manipulator. Users can pick the force/torque/motion icons in the simulator and activate their
corresponding parameter modification dialogs. Users can modify the parameters in these dialogs. By this method, it is easy
for a designer to change how the simulation functions. For an instance, if a control should feel stiffer, the designer can
change a spring rate or damping coefficient by adjusting parameters.

(4) Constraint modification manipulator. Users can interactively pick joints between components of dynamic model in the
simulation system and modify the DOFs or parameters of interested joints (Fig. 4). For example, a cylindrical joint, which
has one rotational degree and one translational degree, can be modified to be a revolute joint by reducing the translational
degree. Users can also change properties of the joint, such as motion limit or friction of the joint.

Thus with the help of the simulation manipulator, the user can study if a specific product is well adapted to the task, and
adjust the product and fluid environment parameters to optimize the task. We have found that the use of a user interface
to simulate mechanical system in a parameterized fluid environment drastically improves the “feeling” of the simulation
and presentation. In particular, the interface allows us to understand the behavior of a virtual prototyping in a special
environment, and to find why a new designed product does not work as expected.

5.2. Simulation with user-defined online control

An example of the developed MiniBaja is shown in Fig. 5; we input a movement stimulus on a front wheel of the
vehicle, and then the vehicle will be driven, at the same time the linear velocity, angular velocity, linear acceleration,
angular acceleration, total force and torque about the interested object will be plotted at the bottom of simulation window.

The interaction with MiniBaja is achieved by mouse clicking on any component of the mechanism to drive, then adjusting
input quantity on control panel or adjusting the generalized force/torque/motion icon based on tasks. As shown in Fig. 6,
MiniBaja is driven by torque icon. Data analysis tools are also developed that will allow for a variety of data presentation
and analysis options, which includes both the tracking of timings as well as the values of specific variables or combinations
of variables. For example, the total force applied on a component may be constantly tracked.

To verify and validate our simulator, we have conducted a numerical experiment to compare the simulation result of
ADAMS to ours. The same virtual vehicles were built and simulated in ADAMS and our package. The two simulations were
started under the same initial condition. At the 10th second, an additional torque is interactively applied to the simulation
model by torque icon in our simulator, and the same torque is applied by user-written subroutines in ADAMS. Fig. 7 shows
the comparison of the change curves of driving torque during simulation. The red curve shows the simulation result in
ADAMS and the blue one is in our simulator. Comparing the two curves, we can see that the simulation result in ours has
good correlation with ADAMS and the tolerance is acceptable.

6. Practical experiments

To clarify the validity of our simulation package, some developers of our group created a methodology that guaran-
tees close relations with real world systems, and continuous reality checks. The idea is rather simple. Whenever a new
component, is added to the package, one or more experiments should be designed in order to assess the accuracy of the
simulation. These validation experiments will be performed twice, once in the real system, and once in a simulation setting
resembling as much as possible the real system used. After the two experiments, results should be quantitatively compared.
The methodology was lifted at a higher level, and more complex units were validated: for example human–robot interfaces.



612 Z. Wang / C. R. Mecanique 339 (2011) 605–615
Fig. 5. Apply a movement stimulus on a front wheel.

Fig. 6. Steering virtual vehicle by the torque icon.

In order to exemplify, the procedure followed to validate the most recently added sensor, i.e. the GPS is presented (to design
a realistic GPS simulation module within our package).

In order to validate the newly added sensor, a robot equipped with a GPS received was driven around the CASIA, as in
Fig. 8(a). The robot was purposely driven in open areas far from buildings as well as in close proximity to them. During
these runs, the number of satellites visible by the GPS receiver was logged, as well as the path returned by the reader. Next,
the same experiment was performed in simulation. A model of the relevant part of the institute was developed, including
appropriately scaled buildings. The simulated robot was then driven through the same path at the same simulated time of
day (to experience the same positions of the NAVSTAR satellites), and the same information was logged and compared, as
in Fig. 8(b). Figs. 9 and 10 show the results obtained.

In Fig. 9 there is a comparison between results obtained in simulation (dark paths) and with the real GPS sensor (bright
paths). Paths provided by the GPS were overlaid to the appropriate map retrieved from Google Earth.

In Fig. 10(a) there is a comparison between the numbers of satellites tracked by the simulated GPS sensor (dark series)
and by the real GPS sensor (bright series). Even though the simulated sensor almost always tracks one more satellite than
the real one and exhibits a less jagged profile, the trends are clearly the same. In Fig. 10(b), we calculated the position of
centers of mass corresponding to GPS signal excluding coordinate-y for simplicity, and it is concluded that the simulated
follows the real.

7. Conclusion

In view of the dynamics model presented in the first part of the paper, fatherly we clarify its simulation quality in some
important respects including stability and accuracy, real-time performance and reconfigurability with interaction. These
clarifications resorted to some theoretical, technical and numerical methods, as well as practical experiment. As for a most
significant difference with ADAMS, some types of simulation manipulator are provided in our package to control the sim-



Z. Wang / C. R. Mecanique 339 (2011) 605–615 613
Fig. 7. Simulated driving torque in ADAMS and our simulator. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

Fig. 8. Real and simulated robot.

Fig. 9. Simulated and real path.

ulation of mechanical system interactively. With the real-time interaction, solution and visualization of simulation model,
our package affords better support for designers to participate in the simulation. On the one hand, a numerical example
is implemented in the dynamic simulation of a MiniBaja and the simulation result is compared with ADAMS. On the other
hand, we design a real robot and a simulated robot respectively to verify the fidelity of our package to real system through
a trend comparison.

With the above experiments and results, validation efforts convinced us otherwise skeptical about simulation that our
package is indeed a useful tool to develop code to be eventually run on real robot systems, and that’s indeed a target we
shall work on in a foreseeable future.



614 Z. Wang / C. R. Mecanique 339 (2011) 605–615
Fig. 10. Simulated and real results comparison.

Acknowledgement

The author will be grateful to the State Key Lab of CAD&CG in Zhejiang University for the original basis into this paper.
We should also acknowledge the reviewers to the paper for a series of improvement suggestions.

References

[1] Z. Wang, Interactive virtual prototyping of a mechanical system considering the environment effect. Part 1: Modeling dynamics, C. R. Mecanique 399
(2011), doi:10.1016/j.crme.2011.06.001.

[2] J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Engrg. 1 (1972) 1–16.
[3] C.O. Chang, P.E. Nikravesh, An adaptive constraint violation stabilization method for dynamic analysis of mechanical systems, J. Mech. Transmissions

Autom. Design 107 (1985) 488–492.
[4] G.P.O. Stermeyer, On Baumgarte stabilization for differential algebraic equations, in: J. Haug, R.C. Deyo (Eds.), Real-Time Integration Methods for Me-

chanical System Simulations, in: NATO ASI Series, vol. F69, Springer, Berlin, 1990, pp. 193–207.
[5] S. Yoon, R.M. Howe, D.T. Greenwood, Stability and accuracy analysis of Baumgarte’s constrained violation stabilization method, J. Mech. Design 117

(1995) 446–453.
[6] S.T. Lin, M.C. Hong, Stabilization method for numerical integration of multi-body mechanical systems, J. Mech. Design 120 (1998) 565–572.
[7] B. Simeon, MBSPACK. Numerical integration software for constrained mechanical motion, Surv. Math. Ind. 5 (1995) 169–202.
[8] C.W. Gear, B. Leimkuhler, G.K. Gupta, Automatic integration of Euler–Lagrange equations with constraints, J. Comput. Appl. Math. 12–13 (1985) 77–90.
[9] C. Führer, B. Leimkuhler, Numerical solution of differential-algebraic equations for constrained mechanical motion, Numer. Math. 59 (1991) 55–69.

[10] W.M. Seiler, Numerical integration of constrained Hamiltonian systems using Dirac brackets, Math. Comp. 68 (1999) 661–681.
[11] S. Yoon, R.M. Howe, D.T. Greenwood, Geometric elimination of constraint violations in numerical simulation of Lagrangian equations, J. Mech. De-

sign 116 (1994) 1058–1064.
[12] W. Blajer, A geometric unification of constrained system dynamics, Multibody Syst. Dyn. 1 (1997) 3–21.
[13] Z. Terze, D. Lefeber, O. Muftic, Null space integration method for constrained multi-body systems with no constraint violation, Multibody Syst. Dyn. 6

(2001) 229–243.
[14] W. Blajer, Elimination of constraint violation and accuracy aspects in numerical simulation of multi-body system, Multibody Syst. Dyn. 7 (2002) 265–

284.
[15] A. Laulusa, O.A. Bauchau, Review of classical approaches for constraint enforcement in multi-body systems, J. Comput. Nonlinear Dynam. 3 (2008)

11004.
[16] O.A. Bauchau, A. Laulusa, Review of contemporary approaches for constraint enforcement in multi-body systems, J. Comput. Nonlinear Dynam. 3 (2008)

011005.
[17] D.J. Braun, M. Goldfarb, Eliminating constraint drift in the numerical simulation of constrained dynamical systems, Comput. Methods Appl. Mech.

Engrg. 198 (2009) 3151–3160.
[18] D. Baraff, Linear-time simulation using Lagrange-multipliers, in: Proc. SIGGRAPH, 1996, pp. 137–146.
[19] U.M. Ascher, D.K. Pai, P.G. Kry, Forward dynamics algorithms for multi-body chains and contact, in: Proc. IEEE Int. Conf. Robotics and Automation, 2000,

pp. 857–862.
[20] Garcia de Jalon, E. Bayo, Kinematic and Dynamic, Simulation of Multi-Body Stems: The Real Time Challenge, Springer-Verlag, 1994.
[21] K.M. Lilly, Efficient Dynamic Simulation of Mechanisms, Kluwer, 1993.
[22] A. Eichberger, W. Rulka, Process save reduction by macro joint approach: The key to real time and efficient vehicle simulation, Vehicle System Dynam-

ics 41 (2004) 401–413.
[23] W. Rulka, E. Pankiewicz, MBS approach to generate equations of motions for HiL-simulations in vehicle dynamics, Multibody Syst. Dyn. 14 (2005)

367–386.
[24] E. Hairer, G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, 2nd edition, Springer-Verlag,

Berlin/Heidelberg/New York, 1996.
[25] A. Tasora, D. Negrut, M. Anitescu, Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit, Proc. Inst. Mech.

Eng. K J. Multi-body Dyn. 222 (4) (2008) 315–326.
[26] Homepage of the Open Dynamics Engine (ODE), http://www.ode.org/.

http://dx.doi.org/10.1016/j.crme.2011.06.001
http://www.ode.org/


Z. Wang / C. R. Mecanique 339 (2011) 605–615 615
[27] Homepage of the OpenTissue simulation framework, http://www.opentissue.org.
[28] F. Fleissner, P. Eberhard, Parallel load-balanced simulation for short-range interaction particle methods with hierarchical particle grouping based on

orthogonal recursive bisection, Internat. J. Numer. Methods Engrg. 74 (2007) 531–553.
[29] E. Hairer, G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, 2nd edition, Springer–Verlag, Berlin/

Heidelberg/New York, 1996.

http://www.opentissue.org

	Interactive virtual prototyping of a mechanical system considering the environment effect. Part 2: Simulation quality
	1 Introduction
	2 Related works
	2.1 Stability and accuracy
	2.2 Real-time performance and interactivity

	3 Stability and accuracy veriﬁcation
	4 Real-time performance veriﬁcation
	4.1 Index reduction strategy
	4.2 HPC strategy

	5 Reconﬁgurability veriﬁcation with an interactive numerical experiment
	5.1 Reconﬁgurability of the package
	5.2 Simulation with user-deﬁned online control

	6 Practical experiments
	7 Conclusion
	Acknowledgement
	References


