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An implicit enriched finite element algorithm is proposed to simulate heat transfer
involving isothermal phase changes. This technique is based on a mixed variational
formulation discretized by means of an enriched finite element approximation of the
enthalpy in space. The interface is implicitly described without coupling with an interface-
capturing technique. The time integration is carried out with an implicit (backward) Euler
algorithm in time. Two examples in 1D and 2D clearly evidence the efficiency of the
method developed.
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r é s u m é

Un algorithme implicite de type éléments finis enrichis est proposé pour simuler des
transferts de chaleur avec des changements de phase isothermes. Cette technique repose
sur une formulation variationnelle mixte, discrétisée au moyen d’une approximation de
l’enthalpie par éléments finis enrichis. L’interface est décrite de manière implicite sans
couplage avec une technique spécifique de capture d’interface. L’intégration temporelle est
réalisée par un algorithme d’Euler purement implicite en temps. Deux exemples 1D et 2D
mettent clairement en évidence l’efficacité de la méthode développée.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Finite element analysis of heat transfer involving phase changes in solids is a numerical problem which has been exten-
sively studied in the past years. It is well-known that the finite element simulation of such phenomena is confronted with
computational pathologies when high latent heat effects appear such as, for example, during an isothermal transformation.
One of the most famous solution method is the fixed grid technique well described in [1] and [2]. In this way, the latent
heat effect can be easily overcome with an equivalent heat capacity [3–5]. The application of this technique raises prob-
lems since the phase change is spread over a small range of temperatures. One may easily numerically miss the very high
(virtually infinite) peak of heat capacity, thus failing to respect exact conservation of energy.
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To overcome these difficulties, a mixed formulation has been introduced by Feulvarch et al. for the modeling of phase
changes which can be isothermal, anisothermal, instantaneous or non-instantaneous [6]. The proposed formulation is based
on the classical heat equation coupled with a function providing the temperature in terms of enthalpy. This enthalpy–
temperature relation characterizes the kinetics of phase transformation and it includes the latent heat. Unfortunately, the
FEM technique developed considers a continuous approximation of the temperature and the enthalpy which is not able to
catch the jumps in the heat flux and in the enthalpy for isothermal phase changes.

The aim of this work is to improve this approach with a discontinuous finite element approximation of the enthalpy
in space. It requires two fields which are the temperature and the enthalpy, while the method proposed by Chessa et al.
[7] requires only one physical field which is the temperature. However, the technique of Chessa et al. requires a second
auxiliary field which is a level set field needed to define the geometry of the interface of transformation. Its time evolution
is carried out with an advection equation coupled with a forward-Euler algorithm. This severely limits the stability of the
time integration: the authors propose to reset the level set field every two time steps.

The advantages of the method developed in this paper are three-fold:

• its enrichment functions which introduce a discontinuity on the enthalpy throughout the interface of phase change;
• its implicit geometry description of the interface which does not need any interface updating procedure (as for usual

X-FEM applications);
• its implicit time integration based on the backward-Euler scheme ensuring good numerical stability without any restric-

tion on the time step.

The paper is organized as follows. Section 2 is devoted to the general formulation of the problems envisaged and the
enriched numerical scheme proposed. The solution procedure based on the iterative technique of Newton–Raphson is also
presented. The examples proposed in Section 3 clearly show the potential and the efficiency of the method proposed.

2. Theory

2.1. Strong formulation

The problem studied in this paper is based on the formulation proposed by Feulvarch and Bergheau [6]:
Find functions T , H defined on Ω × [0, T ] verifying the initial–boundary value problem defined by⎧⎪⎨

⎪⎩
Ḣ = div(λ

−−−→
grad T ) in Ω

T = g(H) in Ω

λ
−−−→
grad T · �n = q(p) + k

(
T (p) − T

)
on ∂Ω

(1)

with the initial condition

H(t = 0) = H0

In these equations, λ is the thermal conductivity which can be temperature-dependent; g is the function providing the
temperature in terms of the enthalpy1; �n is the unit outward normal vector to the boundary; q(p) is a prescribed “input
flux”; T (p) is a prescribed value of the temperature and k is a “transfer coefficient”. As is well-known, the general boundary
conditions (1)3 encompass both the cases of a prescribed flux (for k = 0) and a prescribed value of T (for k → +∞).

It is worth noting that the partial differential equation (1) implies continuity of the function T , but not of the function H .
Indeed, in the case of an isothermal transformation, the enthalpy H can be expressed as the sum of continuous function h
and a discontinuous one providing the enthalpy of transformation �H due to the phase change:

H = h + Id�H

where Id is a function which indicates the state of the transformation:

Id =
{

1 if the transformation occurred
0 otherwise

2.2. Weak formulation

The weak formulation of the problem is classically obtained by multiplying equation (1)1 by a weighting function T ∗ ,
Eq. (1)2 by a weighting function H∗ , and integrating over the domain Ω . Integrating the first equation by parts and ac-
counting for the boundary condition (1)3, one thus obtains the following variational formulation of the problem:

1 Eq. (1)2 cannot be inverted to yield the temperature T as a function of the enthalpy H in the case of an isothermal transformation.
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Find functions T , H such as for all functions T ∗ , H∗ ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

Ḣ T ∗ dV +
∫
Ω

λ
−−−→
grad T · −−−→

grad T ∗ dV +
∫

∂Ω

kT T ∗ dS −
∫

∂Ω

(
q(p) + kT (p)

)
T ∗ dS = 0

∫
Ω

[
T − g(H)

]
H∗ dV = 0

(2)

2.3. Time discretization

An implicit (backward) Euler algorithm tolerating relatively large time steps is adopted for the time integration:

Ḣ(t + �t) � H(t + �t) − H(t)

�t

The variational formulation (2), written at time t + �t , then becomes:
Find functions Tt+�t , Ht+�t such as for all functions T ∗ , H∗ ,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫
Ω

Ht+�t − Ht

�t
T ∗ dV +

∫
Ω

λ
−−−→
grad Tt+�t · −−−→

grad T ∗ dV +
∫

∂Ω

kTt+�t T ∗ dS −
∫

∂Ω

(
q(p) + kT (p)

)
T ∗ dS = 0

∫
Ω

[
Tt+�t − g(Ht+�t)

]
H∗ dV = 0

(3)

2.4. Spatial discretization

Following the usual procedure, the discretization of the temperature T is of the form

T (�x) =
N∑

i=1

Ti Ni(�x) (4)

In this expression, N denotes the number of nodes, Ti is the value of the function T at node i and Ni(�x) is the shape
function associated to this node.2 One can note that this classical finite element approximation smooths naturally the
discontinuity of the heat flux throughout the interface of transformation. As far as the enthalpy approximation is concerned,
a discontinuous finite element approximation is proposed as follows:

H(�x) ≈ Hdisc(�x) =
N∑

i=1

hi Ni(�x) + Id�H (5)

Following Galerkin’s standard approach, the test functions T ∗ and H∗ are taken in the same form than T and h. Let
{T} ≡ (Ti)1�i�N , {h} ≡ (hi)1�i�N denote the vectors of nodal values of the functions T and h. Substituting the nodal ap-
proximations (4)–(5) into the variational formulation (3), one obtains the following non-linear system of equations:⎧⎨

⎩ {RT} ≡ [K].{T(t + �t)
} + [M] · {h(t + �t)} − {h(t)}

�t
+ {Q(t + �t)} − {Q(t)}

�t
− {F} = {0}

{Rh} ≡ [M] · {T(t + �t)
} − {

G(t + �t)
} = {0}

(6)

In this system [K] ≡ (Ki, j)1�i, j�N and [M] ≡ (Mi, j)1�i, j�N are “stiffness” and “mass” matrices defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ki, j ≡
∫
Ω

λ
−−−→
grad Ni · −−−→

grad N j dV +
∫

∂Ω

kNi N j dS

Mi, j ≡
∫
Ω

Ni N j dV
(7)

and {Q} ≡ (Q i)1�i�N , {F} ≡ (Fi)1�i�N and {G} ≡ (Gi)1�i�N are vectors defined by

2 Ne
i denoting the shape function associated to node i in element e, Ni(�x) is defined as the common value of the quantities Ne

i (�x) where e varies among
the elements containing �x.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q i ≡
∫
Ω

Id�H Ni dV

Fi ≡
∫

∂Ω

(
q(p) + kT (p)

)
Ni dS

Gi ≡
∫
Ω

g
(

Hdisc)Ni dV

(8)

2.5. Solution procedure

The resolution of system (6) at each instant seems very difficult by means of a classical Newton–Raphson or any equiva-
lent iterative method. Indeed, the derivative of the function Id is equal to zero. Therefore, the influence of the temperature
or the enthalpy on the interface position is not taken into account in the tangent stiffness matrix needed for the application
of the Newton–Raphson technique. Experiences show that this leads to high difficulties to achieve convergence. Moreover,
the convergence depends very clearly on the numerical integration scheme implemented for the computation of Q i . To
avoid this difficulty, a continuous finite element approximation is introduced for the enthalpy:

H(�x) ≈ Hcont(�x) =
N∑

i=1

Hi Ni(�x) (9)

This approximation Hcont is taken equal to the discontinuous approximation Hdisc in a weak sense at each time step:

∀δHcont,

∫
Ω

δHcont(Hcont − Hdisc)dv = 0 
⇒ [M] · {H} = [M] · {h} + {Q} (10)

where {H} ≡ (Hi)1�i�N denote the vector of nodal values of the function H approximated by (9).
From this change of variable, system (6) becomes⎧⎨

⎩ {RT} ≡ [K] · {T(t + �t)
} + [M] · {H(t + �t)} − {H(t)}

�t
− {F} = {0}

{Rh} ≡ [M] · {T(t + �t)
} − {G(t + �t)} = {0}

(11)

Eqs. (11) are solved by a Newton–Raphson iterative method. The tangent matrix to be used in this method is[ ∂{RT}
∂{T(t+�t)}

∂{RT}
∂{H(t+�t)}

∂{Rh}
∂{T(t+�t)}

∂{Rh}
∂{H(t+�t)}

]
=

[ [K] [M]
�t

[M] −[L]
]

(12)

In this equation [L] ≡ (Li, j)1�i, j�N is the matrix defined (at each iteration) by

Li, j ≈
∫
Ω

∂ g

∂ H

({
H(t + �t)

})
Ni N j dV (13)

One can note that this approximation is introduced only in the matrix [L], not in the vector {Rh}, so it has no effect upon
the “exactness” of the numerical solution. Each iteration thus consists of solving a linear system to compute the increments
{δT} and {δH} of {T(t + �t)} and {H(t + �t)}:

[ [K] [M]
�t

[M] −[L]
]

·
{

{δT}
{δH}

}
= −

{
{RT}
{Rh}

}
(14)

and computing the vector {h(t + �t)} from (10). The function Id needed for the computation of {Q} in (10) can be defined
by an Heaviside function which can depend on the temperature or the enthalpy. Experiences show that the enthalpy leads
to a better stability of the solution. Therefore, Id is defined by the Heaviside function as follows:

Id = H
(

Hcont − Hm
) =

{
1 if Hcont − Hm > 0
0 otherwise

(15)

where Hm denotes the intermediate value of the enthalpy during the transformation. Contrary to the classical X-FEM appli-
cations [7–9], this formulation integrates implicitly the interface position by means of the field Hcont which is an unknown
of the physical problem.
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Fig. 1. Temperature distributions at time t = 0.5 s.

Fig. 2. Enthalpy distributions at time t = 0.5 s.

3. Application to the Stefan problem

A test is performed on Stefan’s famous problem of isothermal solidification of an initially liquid semi-infinite slab. The
values of the thermal conductivity and the enthalpy of transformation are respectively taken equal to 1 W m−1 K−1 and
10 J m−3. In this example the derivative dg/dH of the temperature with respect to the enthalpy per unit volume is strictly
zero during the transformation and equal to 1 elsewhere. The initial temperature of 5 ◦C is bigger than the temperature of
transformation equal to 0 ◦C.

The finite element mesh is composed of linear elements. The element size �x is uniform and the time step �t is
invariable (�x = 0.142 m, �t = 0.01 s). The results are obtained with less than 5 iterations per time step with the Newton–
Raphson method. Figs. 1 and 2 show the computed temperature and enthalpy distributions at time t = 0.5 s, together
with those corresponding to the analytical solution given in [10]. Fig. 3 also presents the evolution of the position x f
of the interface in time defined by Hcont = Hm as proposed in (15). The numerical results closely agree with the analytical
evolution even if oscillations are shown in Fig. 3. They certainly come from the fact that the discontinuity of the temperature
gradient is not taken into account.

To show the capability of the method developed for multi-dimensional problems, the same problem is considered, but
now near a square corner of 1 m side (�x = 0.142 m, �t = 0.01 s) with an initial temperature of 25 ◦C. Fig. 4 shows the
mesh composed of 49 bilinear elements and the distributions of temperature and enthalpy at time t = 0.3 s. These results
have been obtained with less than 5 iterations per time step.

4. Conclusion

An implicit technique has been proposed to simulate heat transfer involving isothermal phase changes. This technique is
based on a mixed variational formulation discretized by means of an enriched finite element approximation of the enthalpy
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Fig. 3. Evolution of the phase change interface in time.

Fig. 4. Temperature (◦C) and enthalpy (J/m3) distributions at time t = 0.3 s.

in space. The interface is implicitly described by a continuous approximation of the enthalpy which plays the role of a level
set to represent the geometry of the transformation interface. The time integration is carried out with an implicit (backward)
Euler algorithm in time tolerating large time step for the computation. Two examples in 1D and 2D clearly evidence the
efficiency of the method developed.
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