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The present work is concerned with the study of the geometrically non-linear steady
state periodic forced response of a clamped–clamped beam containing an open crack. The
model based on Hamilton’s principle and spectral analysis, previously used to investigate
various non-linear vibration problems, is used here to determine the effect of the excitation
frequency and level of the applied harmonic force, concentrated at the cracked beam
middle span, on its dynamic response at large vibration amplitudes. The formulation
uses the “cracked beam functions”, denoted as ‘CBF’, previously defined in recent works,
obtained by combining the linear theory of vibration and the linear fracture mechanics
theory. The crack has been modelled as a linear spring which, for a given depth, the spring
constant remains the same for both directions. The results obtained may be used to detect
cracks in vibrating structures, via examination of the qualitative and quantitative changes
noticed in the non-linear dynamic behaviour, which is commented in the conclusion.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Many engineering components used in the aeronautical, aerospace and naval construction industries are considered by
designers as vibrating structures, operating under a large number of random cyclic stresses. Consequently, it is natural
to expect fatigue crack initiation and propagation to occur in critically stressed zones of such structures, in particular in
the neighbourhood of local or general resonances, as can be seen by the reader interested in more details in Refs. [1–8].
Non-linear analysis is therefore necessary in such situations to predict accurately the geometrically non-linear structural
behaviour at large vibration amplitudes, and establish appropriate design criteria [9,10].

The topic of non-linear vibration of beams is of continuing interest, due to their frequent use as experimental test pieces
[11] and because they constitute one of the simplest cases of a continuous system, since their motion is represented by
one-dimensional partial differential equation in space. Hence, they may be very useful for exploring and validating new
theoretical and numerical approaches in the field of non-linear structural dynamics.

As stated in Ref. [12], non-linear vibration analysis is an important current theme. This topic is not recent, the early
studies dating from the 19th century, but it is currently of renewed interest because of the need to optimise the commonly
used structures subjected to high excitation levels or to treat the many unsolved problems involving contact, rubbing vi-
bration, fracture, fatigue, noise and vibration control. For linear vibration, the range of techniques and software dedicated
to experimental or digital analysis is very broad and corresponds to a large number of problems of acoustic radiation and
structural vibration. Linear theoretical concepts are clear and many tools, now classical and very well known, are available.
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Nomenclature

L length of the beam
b width of the beam
h thickness of the beam
S the dimensional surface [0,b] × [0,h]
Iz area moment of inertia of the beam cross-

section
a crack depth
β non-dimensional flexibility induced by the

presence of the crack
M f bending moment
W (x, t) transverse displacement at abscises on the

beam W (x, t) = w(x)Φ(t)
W ∗(x, t) non-dimensional transverse displacement at

abscises x on the beam
ν Poisson’s ratio
ρ mass per unit volume of the beam
E Young’s modulus
K I stress intensity factor for mode I

x0 position of the crack
kij rigidity tensor
mij mass tensor
bijkl non-linearity tensor
k∗

i j, m∗
i j, b∗

i jkl general terms for the non-dimensional
rigidity tensor, mass tensor and non-linearity
tensor, respectively

ω frequency parameter
ω∗ non-dimensional frequency parameter
ωe excitation frequency
ω∗

e non-dimensional excitation frequency
T kinetic energy
Vb, Va bending and axial strain energy of the beam

respectively
V c crack strain energy due to the crack
F (x, t) harmonic excitation force
V f potential energy associated to the force F (x, t)
δ Dirac function

However, if one of the non-linear effects enters into play, due for example to the geometrical or material non-linearity, or
to the boundary conditions, many types of difficulties appear, especially for problem identification or calculation, and a con-
siderable research effort is still needed, in order to develop appropriate and efficient models, including the most significant
effects in the situation under examination. These include the non-linear increase in resonant frequency and stresses with
the amplitude of vibration. The significant contributions of the higher modes in the non-linear steady state periodic forced
response is also necessary to take into account in engineering applications, especially those related to structural safety,
because of their effects on the non-linear strains and stresses estimation. Such an effort will have impact on the design of
high-performance structures, since it will provide engineers and designers with appropriate tools ensuring more accuracy
and efficiency in current situations.

On the other hand, cracks growing over the time in a structural member, as the load reversals continue, may reach a
point at which it becomes a threat to the structural integrity. In this context, numerous catastrophic failures have been
reported in the last few decades. For this reason, designers have to make fatigue resistance one of their most important
concerns, in order to ensure that all of the components of the structure have a well estimated fatigue life, especially when
crack initiation and propagation are distinct possibilities. Also, high-performance structures, which must have a low weight,
and consequently, are designed with the smallest possible thickness, may be subjected to high level working loads, es-
pecially in severe environment, which induce large vibration amplitudes. Also, non-destructive testing and control methods
have become a focus of substantially growing research efforts. Indeed, new and advanced inspection techniques are required
to accurately monitor the state of this type of structural failure at earlier stages, so that in the event of development of any
crack, it can be detected, located and if possible repaired before it propagates and impair the safety of these structures.
Among these newly emerging techniques, modal analysis and vibration monitoring techniques are being explored by many
researchers in order to define efficient procedures for non-destructive examination. It is well known that the dynamic be-
haviour of a structure is dependent on its structural properties, i.e. the mass, stiffness and damping distributions. Therefore,
any subsequent change in one or many of these properties due to the presence of a crack should induce a change in the
dynamic characteristics, such as the natural frequencies, displacements, strains/stresses, mode shapes and damping [13].

The development of techniques based on modal analysis of cracked members may be of a substantial value, since this
may avoid the dismantling of the structure, allowing in-service testing. Hence, to overcome the engineering problems men-
tioned above, a considerable amount of work has been carried out by researchers for modelling a transverse crack normal
to the surface of a structure. This has ranged from simple slots cut into beams and reduction in the local elastic modulus
[14,15], to spring hinge model combined with the fracture mechanics results [16–23].

The various attempts made in the last few decades by Benamar and co-workers [24–32], to describe in a unified man-
ner the geometrically non-linear free and forced vibrations of thin straight structures, such as beams, plates and circular
cylindrical shells, using Hamilton’s principle and spectral analysis, show that the concept of normal modes of vibration in
the non-linear case may be very useful and yields a deep insight into the structural dynamic behaviour. This has been
shown theoretically by the considerable computing time saving and the relative mathematical simplicity of the non-linear
semi-analytical models developed, in which the linear mode shape bases are used to expand the unknown displacement
series.

The objective of this work is to present a semi-analytical method for determination of the forced non-linear flexural
response of clamped–clamped beams with an edge open crack at large vibration amplitudes. The formulation is established



E.b. Merrimi et al. / C. R. Mecanique 339 (2011) 727–742 729
Fig. 1. Physical model of the cracked beam with a harmonic excitation force.

using Hamilton’s principle and spectral analysis and admissible functions, called “cracked beam functions”, denoted in [32]
as ‘CBF’, which satisfy the natural and geometrical end conditions, as well as the inner boundary conditions at the crack
location.

2. General formulation

2.1. Semi-analytical model for the non-linear forced flexural vibration of clamped–clamped beams with an edge crack at high
excitation levels, inducing large vibration amplitudes

Consider the beam shown in Fig. 1, loaded by the concentrated harmonic force applied at the point x f and having a
uniform transverse surface crack of depth a located at the position x0 accounted from the left end of the beam. The stored
strain energy of the cracked beam at large vibration amplitudes can be obtained through summation of the stored bending
strain energy Vb , the stored strain energy at the crack location V c [32], the stored axial strain energy Va induced by large
displacement amplitudes, and the potential energy associated to the applied force F (x, t). Their respective expressions are
given as follows:

Vb = E I

2

L∫
0

(
∂2W

∂x2

)2

dx (1)

V c = (E I)2

2K f

(
∂W 2

∂x2

)2

x=x0

(2)

Va = E S

8L

{ L∫
0

(
∂W

∂x

)2

dx

}2

(3)

Upon assuming harmonic motion and expanding the displacement W in the form of a finite series, one obtains:

W (x, t) = w(x) sinωt = ai wi(x) sinωt (4)

The physical force F (x, t) excites the modes of the structures via a set of generalised forces f i(t) depending on the expres-
sion for F , the excitation point for the concentrated force considered here, and the mode considered [29]. The potential
energy associated to the force F (x, t) is given by:

V f = −
l∫

0

F (x, t)W (x, t)dx (5)

The total beam strain energy can be written as:

V = Vb + Va + V c + V f (6)

The dynamic behaviour for a conservative system may be obtained by application of Hamilton’s principle, which can be
written as:

δ

2π/ω∫
0

(V − T )dt = 0 (7)

The kinetic energy is given by:

T = 1

2
ρS

l∫ (
∂W

∂t

)2

dx (8)
0
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Fig. 2. CBF for n = 1,2 and a/h = 0.3.

The expressions used for Vb , Va , V f , V c and T depend on the problem considered and the hypotheses adopted. W (x, t)
in (4) depends on {wCBF

i , i = 1, . . . ,n}, which represents a set of n spatial trial functions called cracked beam functions and
denoted as ‘CBF’. These functions, plotted below in the case of a crack of relative depth a/h = 0.3, for n = 1,2 (Fig. 2), have
been defined in [32–36] using fracture mechanics and linear vibration theories.

The discretized expressions for the potential and kinetic energies are then obtained as:

Vb = 1

2
aia jk

bCBF

i j sin2(ωt) (9)

V c = 1

2
aia jk

cCBF

i j sin2(ωt) (10)

Va = 1

2
aia jakalb

CBF
i jkl sin4(ωt) (11)

T = 1

2
ω2aia jm

CBF
i j cos2(ωt) (12)

Thus, using the notation of (1)–(4), one obtains:

kCBF
i j = E I

{ l∫
0

(
∂2 wCBF

i

∂x2

)(
∂2 wCBF

j

∂x2

)
dx + E I

K f

∂2 wCBF
i

∂x2

∣∣∣∣
x=x0

∂2 wCBF
j

∂x2

∣∣∣∣
x=x0

}
(13)

bCBF
i jkl = E S

4L

l∫
0

∂ wCBF
i

∂x

∂ wCBF
j

∂x
dx

l∫
0

∂ wCBF
k

∂x

∂ wCBF
l

∂x
dx (14)

mCBF
i j = ρs

l∫
0

wCBF
i wCBF

j dx (15)

The beam is excited by a concentrated harmonic force F c applied at the point x f . Then, one can write:

F c(x, t) = F cδ(x − x f ) sin(ωet) (16)

where δ is the Dirac function.
The discretized expression for the potential energy associated to the force F c(x, t) is given by:

V c
f = −ai f c

i sin2(ωet) (17)

where:

f c
i = F c wCBF

i (x f ) (18)

Using Hamilton’s principle and the matrix notation, the process leads to n non-linear algebraic equations for the unknown
coefficients ai which can be written in a matrix form as follows:
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([K] − ω2[M]){A} + 3

2

[
B(A)

]{A} = {F} (19)

Eq. (19) is formally identical to that obtained in Refs. [27] and [30] for the non-linear forced response of uniform beams.
ω corresponds to the given excitation frequency.

2.2. Evaluation of the non-dimensional coefficients

To obtain non-dimensional parameter, one puts:

wi(x) = hw∗
i

(
x

L

)
= hw∗

i

(
x∗) (20)

kCBF
i j

k∗CBF
i j

= E Ih2

L3
(21)

mCBF
i j

m∗CBF
i j

= ρSh2L (22)

bCBF
i jkl

b∗CBF
i jkl

= E Ih2

L3
(23)

f c
i

f c∗
i

= E Ih2

L3
(24)

which leads to:

ω2
e

ω∗2
e

= E I

ρS L4
(25)

where k∗CBF
i j , b∗CBF

i jkl , and m∗CBF
i j are non-dimensional generalised parameters given by:

k∗CBF
i j =

1∫
0

∂2 w∗CBF
i

∂x∗2

∂2 w∗CBF
j

∂x∗2
dx∗ + β

∂2 w∗CBF
i

∂x∗2

∣∣∣∣
x∗

0

∂2 w∗CBF
j

∂x∗2

∣∣∣∣
x∗

0

(26)

b∗CBF
i jkl = α

1∫
0

∂ w∗CBF
i

∂x∗
∂ w∗CBF

j

∂x∗ dx∗
1∫

0

∂ w∗CBF
k

∂x∗
∂ w∗CBF

l

∂x∗ dx∗ (27)

m∗CBF
i j =

1∫
0

w∗CBF
i w∗CBF

j dx∗ (28)

in which β is a non-dimensional parameter expressed as:

β = E I

K f L
(29)

For a uniform beam with a rectangular cross-section, α = 3, since in this case, (h2 S/I = 12).
Eq. (19) can be rewritten in non-dimensional form as:

([
K∗] − ω∗2[M∗]){A} + 3

2

[
B∗(A)

]{A} = {
F∗} (30)

Or using tensorial notation:

aik
∗CBF
ir + 3

2
aia jak

(
b∗CBF

i jkr

) − ω∗2
e aim

∗CBF
ir = f c∗

i , r = 1, . . . ,n (31)

The dimensional force f c∗ corresponds to the concentrated force applied at x f on the beam, given in Eqs. (18) and (24).
i
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3. The non-linear frequency response function in the neighbourhood of the first non-linear mode shape of
clamped–clamped cracked beams under a harmonic excitation force, based on the single mode approach

In this section, a solution of the non-linear amplitude equation obtained in the model presented above, based on the
single mode assumption, is proposed. The objective is to validate the model, and to obtain a simple formula for the non-
linear forced response of clamped–clamped beams with an edge crack in the neighbourhood of its fundamental resonance.

Eq. (19) represents a set of differential equations in which {F} is a column vector of generalised forces. This equation
appears as a generalisation to the non-linear case of the classical linear forced response equation, very well known in linear
modal analysis theory, to which the term 3/2[B(A)]{A} corresponding to the non-linear geometrical rigidity is added. On
the other hand, if only one mode is assumed, as will be considered below, Eq. (19) reduces to:

a1k∗CBF
11 + 3

2
a3

1

(
b∗CBF

1111

) − ω∗2
e a1m∗CBF

11 = f c∗CBF (32)

in which m11, k11 and b1111 are the mass, rigidity and non-linearity terms corresponding to the first mode respectively.
Putting:

(
ω∗

l

)2 = K ∗CBF
11

m∗CBF
11

(33)

where ω∗
l is the linear natural frequency parameter, Eq. (32) can be written as:(
ω∗

e

ω∗
l

)2

= 3

2

b∗CBF
1111

k∗CBF
11

a2
1 − f c∗CBF

a1k∗CBF
11

+ 1 (34)

The last equation enables one to plot the non-linear frequency response function, i.e. W ∗
max , which is directly related to the

coefficient a1, as a function of the excitation frequency ωe , of the cracked beam, characterised by the parameters k11 and
b1111, in the neighbourhood of the first non-linear mode shape for various levels of the harmonic excitation force, defined
by f c∗CBF . If the amplitude of the excitation is taken equal to 0, the backbone curve, corresponding to the free vibration
case, is obtained, as illustrated in the next subsection.

3.1. Free vibration

Identical clamped–clamped steel beams, containing a crack of different depths, located at their mid-span, have been
considered here, with the following material and geometrical properties: Young’s modulus E = 200 GPa, material density
ρ = 7850 kg/m3, thickness h = 10 mm, width b = 20 mm, and length L = 300 mm.

If free vibrations are considered, the dependence of the non-linear frequency on the non-dimensional vibration am-
plitude is obtained from Eq. (34), by putting f c∗CBF = 0. The corresponding backbone curves are plotted in Fig. 3, in the
neighbourhood of the first non-linear mode shape of the clamped–clamped beam, for various values of the crack depth. As
may be expected, a hardening type of non-linearity, similar to that mentioned in Ref. [32] for the first non-linear mode
shape of a clamped–clamped beam, is observed. This is explained by the fact that the deflection shape associated to the
mode shape produces induced in-plane membrane stresses, tensile in nature that effectively stiffens the beam at large vi-
bration amplitudes. It should be noticed that the presence of the crack magnifies this effect, especially when the crack depth
increases.

3.2. Forced vibrations

In Fig. 4, the non-linear frequency response functions of the cracked beam examined, with a depth crack of 0.3, are
plotted in the neighbourhood of the first non-linear mode shape, for various levels of the harmonic excitation force. The
qualitative behaviour shown in Fig. 4, obtained from Eq. (34), which is of the hardening type, is characteristic for the
non-linear frequency response functions of systems with a cubic non-linearity. It includes multivalued regions in which the
jump phenomena, very well known in non-linear frequency response testing, may occur [24–32]. As no damping is involved,
the curves remain open, and the dashed curve, in the middle, correspond to the backbone curve. In Fig. 5, the non-linear
frequency response curves, of a C–C beam with an edge crack at the middle of its span, are plotted for various crack depths.
It can be seen that the increase in the crack depth induces an increase in the hardening effect, which may be attributed to
the reason mentioned in the above subsection.

4. The non-linear frequency response functions of clamped–clamped cracked beams under a harmonic excitation force,
based on a multimode approach, in the neighbourhood of the first non-linear mode shape

In spite of the simplicity of the single mode approach and its ability to predict quite accurately the non-linear frequency
response curve in the neighbourhood of the resonance considered, as shown in the previous subsection, it remains insuf-
ficient in a sense that it does not give any information about the amplitude dependence of the response deflection shape,
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Fig. 3. Backbone curves of clamped–clamped cracked beams, in the vicinity of the first mode, for various crack depths (0.3,0.6,0.8).

Fig. 4. Non-linear frequency response functions, based on the single mode approach, of a C–C beam, with an edge crack located at x0 = L/2, crack depth =
0.3h, for various levels of the harmonic excitation forces.

which has been shown both experimentally and theoretically to occur at large vibration amplitudes [11,24–26]. This non-
linear aspect, often ignored by the analysts, is practically important for estimating accurately the non-linear strain and stress
distributions, which are quantities of crucial effect with respect to structural safety and fatigue life prediction. In order to
remedy this insufficiency, a multimode approach to the non-linear steady state periodic forced response of cracked beams
is developed here, based on an analysis similar to that presented in Ref. [30], with the objective of predicting the non-linear
frequency response function of the beam, not only at its maximum deflection point, i.e., the beam middle span when con-
sidering the first resonance, but also for the whole span of the beam. Numerical results obtained for various values of the
crack depth and levels of the excitation force will be presented via solution in each case of the set of non-linear algebraic
equations, i.e. Eq. (30). The method of solution adopted in the present section is based on the explicit formulation developed
and applied to solve various non-linear vibration problems [30–32,37], which allows an easy and simplified calculation of
the non-linear steady state periodic forced response of cracked beams.

4.1. Numerical details

Consider the non-linear forced response of a clamped–clamped cracked beam in the neighbourhood of its first resonant
frequency; following the basic function choice adopted in the previous section, to obtain the values of the linear rigidity
matrix k∗CBF and the non-linear geometrical rigidity tensor b∗CBF of the first non-linear mode shape of the cracked C–C beam
i j i jkl
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Fig. 5. Non-linear frequency response functions, based on the single mode approach, of a C–C beam, with an edge crack located at x0 = L/2, for F c∗ = 200,
for various crack depths (0.3,0.6,0.8).

Table 1
First non-linear mode shape of cracked beam, a/h = 0.1.

W ∗
max 0.79575821E−01 0.47617067E+00 0.94572196E+00

ω∗
nl/ω

∗
l 1.00053987 1.03942916 1.14844776

a1 0.05 0.3 0.6
a3 0.10800000E−05 0.10112615E−02 0.73288085E−02
a5 0.73254800E−06 0.12639556E−03 0.98559574E−03
a7 −0.55800000E−06 0.20158496E−04 0.16127465E−03
a9 0.59800000E−06 0.47003343E−05 0.38290176E−04
a11 −0.10800000E−07 0.19925048E−05 0.16291913E−04

examined, the first six normalised symmetric ‘CBF’ w∗CBF
1 , w∗CBF

3 , . . . , w∗CBF
11 are used first. The functions w∗CBF

i have been
normalised in such a manner that the obtained mass matrix equals the identity matrix. Calculations of the corresponding
integrals, defined in Eqs. (26)–(28), have been performed numerically, using the Simpson’s rule.

4.2. Brief review of the explicit procedure of solution

To illustrate the main idea behind the simplified approach of solution of the amplitude equation (31) used in what
follows, we present here in Table 1, the results obtained via iterative solution of the non-linear algebraic system (30) for the
first non-linear mode shape of a C–C cracked beam, with a/h = 0.1, previously published in [32]. It can be seen in this table,
that the contribution a1 of the first basic function, which is the first C–C ‘CBF’, remains predominant for the whole range
of vibration amplitudes considered, compared to the contributions of the other functions. So, the contribution coefficient
vector {A} defined in Section 2.1 by {A}T = [a1 a3 . . . a11] can be written as {A}T = [a1 ε3 . . . ε11] in which εi , representing
the ith basic function contribution, may be considered as small, compared to a1, for i = 3,5, . . . ,11. Since the non-linearity
parameters b∗CBF

i jkl defined in (27) are of the same order of magnitude, due to the above observation, some terms may be

neglected in the non-linear expression aia jakb∗CBF
i jkr in Eq. (31), which leads to a simple formulation, defined as below.

Reconsidering Eq. (31):

aik
∗CBF
ir + 3

2
aia jak

(
b∗CBF

i jkr

) − ω∗2
e aim

∗CBF
ir = f c∗

i
, i = 1, . . . ,n (35)

the simplified formulation is based on an approximation which consists of neglecting in the expression aia jakb∗CBF
i jkr of

Eq. (35), first, second and third order terms with respect to εi , i.e. terms of the type a2
1εkb∗CBF

11kr , of the type a1ε jεkb∗CBF
1 jkr , or

of the type εiε jεkb∗CBF
i jkr , so that the only remaining term is a3

1b∗CBF
111r . In the neighbourhood of the first resonance, the above

equation becomes:

(
k∗CBF

ir − ω∗2
e m∗CBF

ir

)
εi + 3

2
a3

1b∗CBF
111r = f c∗

i for r = 3,5, . . . ,11 (36)

In which the repeated index i is summed over the range {1,3, . . . ,11}. Since the use of linear ‘CBF’ as basic functions leads
to diagonal mass and rigidity matrices, Eq. (36) can be written as:
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Table 2
Clamped–clamped cracked beam subjected to a harmonic excitation force – explicit solution a/h = 0.3.

ω∗
e /ω∗

l W ∗
max/h d2 W /dx2(0) a1 ε3 ε5 ε7 ε9 ε11 Residual

9.288E−01 3.620E−01 1.76E+01 2.24E−01 4.50E−06 7.06E−04 −5.48E−07 7.43E−05 1.55E−07 1.482E−05
1.009E+00 4.421E−01 1.84E+01 2.74E−01 8.87E−06 1.34E−03 −1.01E−06 1.32E−04 3.27E−07 1.357E−04
1.083E+00 5.219E−01 1.92E+01 3.24E−01 1.59E−05 2.27E−03 −1.68E−06 2.16E−04 5.41E−07 6.815E−04
1.230E+00 6.797E−01 3.438E−01 4.240E−01 4.385E−05 5.303E−03 −3.79E−06 4.813E−04 1.214E−06 6.924E−03
1.245E+00 7.109E−01 3.519E−01 4.340E−01 4.822E−05 5.712E−03 −4.07E−06 5.161E−04 1.303E−06 8.367E−03

Table 3
Clamped–clamped cracked beam subjected to a harmonic excitation force – explicit solution a/h = 0.6.

ω∗
e /ω∗

l W ∗
max/h d2 W /dx2(0) a1 ε3 ε5 ε7 ε9 ε11 Residual

1.025E+00 4.010E−01 2.20E+01 1.54E−01 1.11E−05 5.07E−04 −1.36E−06 1.05E−05 4.44E−07 1.340E−04
1.065E+00 4.346E−01 2.29E+01 1.64E−01 1.37E−05 6.22E−04 −1.65E−06 1.16E−05 5.36E−07 4.964E−04
1.104E+00 4.680E−01 2.38E+01 1.74E−01 1.68E−05 7.53E−04 −1.97E−06 1.29E−05 6.40E−07 1.453E−03
1.142E+00 5.012E−01 2.48E+01 1.84E−01 2.03E−05 9.01E−04 −2.34E−06 1.44E−05 7.58E−07 3.613E−03
1.181E+00 5.341E−01 2.58E+01 1.94E−01 2.44E−05 1.07E−03 −2.74E−06 1.60E−05 8.88E−07 7.967E−03

(
k∗CBF

rr − ω∗2
e m∗CBF

rr

)
εr + 3

2
a3

1b∗CBF
111r = f c∗

r for r = 3,5, . . . ,11 (37)

In which no summation is involved. The last system permits one to obtain explicitly the modal contributions ε3, ε5, . . . , ε11
of the symmetric basic functions corresponding to a given value of the assigned first basic function contribution a1 as
follows:

a1 = f c∗
1 − 3

2 a3
1b∗CBF

1111

k∗CBF
11 − ω∗2

e m∗CBF
11

for 1st linear mode (38)

εr = f c∗
r − 3

2 a3
1b∗CBF

111r

k∗CBF
rr − ω∗2

e m∗CBF
rr

(r = 3,5, . . . ,11) (39)

In the above equation, the εr ’s, for r > 1, depend on the classical modal parameters m∗CBF
rr , k∗CBF

rr , the non-linear modal
parameters b∗CBF

111r , the assigned first function contribution a1, calculated via Eq. (38), the non-linear frequency parameter ω∗
e ,

and the amplitude of the excitation force f c∗
1 .

Expression (39) is an explicit simple formula allowing calculation of the higher mode contributions to the non-linear
frequency response function, in the vicinity of the first non-linear mode shape. The non-linear beam deflection W ∗

nl1(x,a1),
for a given assigned value a1, is then obtained as a series involving the beam modal parameters depending on the first six
symmetric C–C ‘CBF’ w∗CBF

1 , w∗CBF
3 , . . . , w∗CBF

11 given by:

W ∗
nl(x,a1) = f c∗

1 − 3
2 a3

1b∗CBF
1111

(k∗CBF
11 − ω∗2

e m∗CBF
11 )

w∗CBF
1 (x) + f c∗

3 − 3
2 a3

1b∗CBF
1113

(k∗CBF
33 − ω∗2

e m∗CBF
33 )

w∗CBF
3 (x) + · · · + f c∗

11 − 3
2 a3

1b∗CBF
11111

(k∗CBF
1111 − ω∗2

e m∗CBF
1111)

w∗CBF
11 (x)

(40)

The range of validity, in terms of amplitudes of vibration or levels of excitation, of this expression is limited, due to the
assumptions made to simplify the non-linear system. However, it remains quite interesting, as shown below, by substituting
the numerical solutions obtained from Eq. (40) in the amplitude equation and calculating the residual. The range of validity
has been determined by fixing the residual at 10−3, as shown below.

4.3. Numerical results obtained by the explicit formulation

Replacing in Eq. (40) the clamped–clamped modal parameters by their values, computed numerically, leads to the fol-
lowing expression for the non-linear amplitude dependent beam response deflection shape W ∗

nl1(x,a1), for a given value a1
of the first mode contribution, in the case of crack depths a/h = 0.3:

W ∗
nl103(x,a1) = f c∗

1 − 3
2 a3

12245.70

(1268.93 − ω∗2
e )

w∗CBF
1 (x) + f c∗

3 − 3
2 a3

1590.98

(3803.53 − ω∗2
e )

w∗CBF
3 (x) + f c∗

5 + 3
2 a3

12233.40

(13878.50 − ω∗2
e )

w∗CBF
5 (x)

+ f c∗
7 − 3

2 a3
1479.35

(39943.79 − ω∗2
e )

w∗CBF
7 (x) + f c∗

9 + 3
2 a3

1970.19

(84859.44 − ω∗2
e )

w∗CBF
7 (x) + f c∗

11 + 3
2 a3

1709.17

(173881.31 − ω∗2
e )

w∗CBF
11 (x) (41)

In Tables 2 to 4, numerical results obtained from Eq. (40) for the modal contributions to the non-linear amplitude
dependent beam deflection shape W ∗

nl1(x,a1), for various values of the first mode contribution a1, determined using the
amplitude and frequency of the excitation force via Eq. (38), of the cracked C–C beam, are summarised, for different values
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Table 4
Clamped–clamped cracked beam subjected to a harmonic excitation force – explicit solution a/h = 0.8.

ω∗
e /ω∗

l W ∗
max/h d2 W /dx2(0) a1 ε3 ε5 ε7 ε9 ε11 Residual

1.036E+00 3.174E−01 1.77E+01 1.64E−01 1.09E−04 2.65E−03 −8.55E−06 −1.31E−04 2.72E−06 2.222E−04
1.071E+00 3.360E−01 1.93E+01 1.74E−01 1.43E−04 3.21E−03 −1.02E−05 −1.58E−04 3.25E−06 6.384E−04
1.105E+00 3.544E−01 2.04E+01 1.84E−01 1.86E−04 3.85E−03 −1.22E−05 −1.88E−04 3.85E−06 1.566E−03
1.139E+00 3.726E−01 2.19E+01 1.94E−01 2.45E−04 4.57E−03 −1.43E−05 −2.21E−04 4.52E−06 3.417E−03
1.173E+00 3.906E−01 2.28E+01 2.04E−01 3.24E−04 5.40E−03 −1.67E−05 −2.59E−04 5.26E−06 6.815E−03

Fig. 6. Non-linear frequency response functions, based on the single mode approach, of a C–C beam, with an edge crack located at x0 = L/2, for F c∗ = 400,
for various crack depths (0.3,0.6,0.8).

of the crack depth. The values of ε3, ε5, . . . , ε11 obtained from Eq. (39), are given, with the corresponding maximum non-
dimensional vibration amplitude at the beam middle span, and the corresponding values of ω∗

e /ω∗
l and the curvature

calculated at x∗ = 0. Also, care has been taken before exploiting the proposed formulation to determine accurately the range
of validity of the numerical results obtained. To do so, Eq. (30) has been written as follows:

([
K∗] − ω∗2

e

[
M∗]){A} + 3

2

[
B∗(A)

]{A} − {
F∗} = {0} (42)

Then, the numerical solutions obtained via Eq. (40) have been substituted in Eq. (42) and calculation has been made of
the resulting right hand side, i.e. a vector {Residual}. The norm of the vector {Residual} has been calculated in each case,
and summarised in Tables 2–4. The limit of this norm, called the residual, fixed at 10−3 has permitted to determine the
range of validity of the solutions obtained for each value of the frequency and level of the excitation force.

In Figs. 5 and 6, the non-linear frequency response functions, based on the single mode approach, of a C–C beam, with an
edge crack located at x0 = L/2, excited by a harmonic concentrated force, are plotted for various crack depths (0.3,0.6,0.8)

and two levels of the excitation force F c∗ = 200 and F c∗ = 400. It may be noticed that increasing the crack depth increases
the hardening effect and the narrowness of the response function curves. In Fig. 7, comparison is made between the non-
linear frequency response functions, obtained by the single mode approach and the multimode approach, of a C–C beam,
with an edge crack located at x0 = L/2, F c∗ = 200, a/h = 0.3. The two curves are very close to each other for maximum
vibration amplitude W ∗

max/h up to 0.3 and slight differences start to appear for higher vibration amplitudes.
Fig. 8 shows the non-linear frequency response functions, based on the multimode approach, of a C–C beam, with an

edge crack located at x0 = L/2, F c∗ = 200, for various crack depths (0.3,0.6,0.8). It can be seen that for an identical level
of excitation, the hardening effect is much more accentuated for a crack depth of 0.8, compared to that obtained for a crack
depth of 0.3. This remark may be useful as an indication of the crack propagation when analysing experimental data. In
Fig. 9, comparison is made of the non-linear frequency response functions, obtained for two excitation levels, i.e. F c∗ = 100
and F c∗ = 200, based on the multimode approach, of a C–C beam, with an edge crack located at x0 = L/2, a/h = 0.3.

In Fig. 10, the curvature distributions are given, associated to the non-linear deflection response function, of a C–C beam
with an edge crack, subjected to a concentrated force (F c∗ = 200), for various crack depths (0.3,0.6,0.8) and a maximum
non-dimensional deflection W ∗

max/h = 0.4.
In Figs. 11 to 13, the curvature distributions, associated to the non-linear deflection response function, of a C–C beam

with an edge crack, subjected to a concentrated force (F c∗ = 200), for various crack depths (0.3,0.6,0.8) and maximum
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Fig. 7. Comparison of the non-linear frequency response functions of a C–C beam, with an edge crack located at x0 = L/2, F c∗ = 200, a/h = 0.3, obtained
by the single mode approach and the multimode approach.

Fig. 8. Non-linear frequency response functions, based on the multimode approach, of a C–C beam, with an edge crack located at x0 = L/2, F c∗ = 200, for
various crack depths (0.3,0.6,0.8).

Fig. 9. Comparison of non-linear frequency response functions, based on the multimode approach, of a C–C beam, with an edge crack located at x0 = L/2,
a/h = 0.3, for two excitation levels.
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Fig. 10. Curvature distributions, associated to the non-linear deflection response function, of a C–C beam with an edge crack, subjected to a concentrated
force (F c∗ = 200), for various crack depths (0.3,0.6,0.8) and a maximum deflection W ∗

max/h = 0.4.

Fig. 11. Curvature distributions, associated to the non-linear deflection response function, of a C–C beam with an edge crack located at x0 = L/2,a/h = 0.3,
subjected to a concentrated force (F c∗ = 200), for various values of the maximum deflections W ∗

max/h = 3.24E−03, 1.93E−02, 3.56E−02, 5.18E−02.

deflections W ∗
max/h = 3.24E−03, 1.93E−02, 3.56E−02, 5.18E−02. Fig. 14 shows a comparison of the values of the curvature

at the clamps, x = 0, of a C–C beam with an edge crack, subjected to a concentrated harmonic force (F c∗ = 200), for various
values of the crack depth. The corresponding values are summarised in Table 5, in which the percentage of additional
increase of curvatures (PAIC) at the clamps, due to the non-linearity, with increasing the vibration amplitude, are given for
various values of the crack depths, showing a significant non-linear effect, which has to be taken into account for estimating
accurately the non-linear stresses in cracked beams.

In Figs. 15 and 16, the corresponding distributions of curvatures, directly related to strains and stresses, are given, show-
ing that the difference between the single mode and the multimode stress estimates may be significant at high vibration
amplitudes, as has been mentioned above. The curves given have been limited to the domain of validity of the formulation
adopted for solving the non-linear amplitude equation but higher differences in the curvature estimates are expected to oc-
cur for higher vibration amplitudes. However, it may be seen that this effect, which does not exceed 6% for W ∗

max/h = 0.67
and crack depth a/h = 0.3, reaches 14% in Fig. 16 corresponding to W ∗

max/h = 0.4 and a/h = 0.8.
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Fig. 12. Curvature distributions, associated to the non-linear deflection response function, of a C–C beam with an edge crack located at x0 = L/2, a/h = 0.6,
subjected to a concentrated force (F c∗ = 200), for various values of the maximum deflections W ∗

max/h = 3.24E−03, 1.93E−02, 3.56E−02, 5.18E−02.

Fig. 13. Curvature distributions, associated to the non-linear deflection response function, of a C–C beam with an edge crack located at x0 = L/2, a/h = 0.8,
subjected to a concentrated force (F c∗ = 200), for various values of the maximum deflections W ∗

max/h = 3.24E−03, 1.93E−02, 3.56E−02, 5.18E−02.

5. Conclusion

The purpose of the present work was the investigation to the case of the steady state periodic forced vibrations of
clamped–clamped beams with an edge open crack, which has been modelled, for a given crack depth, by a spring con-
stant having the same value for both directions of vibration. The cracked beam is excited by a harmonic concentrated force,
applied at the beam mid-span. The excitation point was chosen in such a manner to ensure that the first mode is predomi-
nant in the beam response, in order to make it possible to justify the assumptions adopted in the solution of the non-linear
amplitude equation.

The formulation has led to a set of non-linear algebraic equation involving the mass matrix, the linear rigidity matrix,
the non-linear rigidity tensor, and a right hand side made of the vector of generalised forces due to the applied excitation
force. To solve this system, two procedures of solution have been adopted:

1) The single mode approach, assuming that only the first mode is involved in the response, has been first adopted. The
frequency response curves have been obtained, using this assumption, giving the displacement Wmax at the beam mid-
span as a function of the excitation frequency, for different values of the crack depth and various levels of the excitation
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Fig. 14. Comparison of the values of the curvature at the clamps, x = 0, of a C–C beam with an edge crack, subjected to a concentrated harmonic force
(F c∗ = 200), for various values of the crack depth (0.3,0.6,0.8).

Table 5
Percentage of additional increase of curvatures (PAIC) at the clamps, due to the non-linearity, with
increasing the vibration amplitude, for various values of the crack depths.

Curvature at x = 0

Wmax/h = 0.1 Wmax/h = 0.4 PAIC

a/h = 0.3 1.28 18.42 57%
a/h = 0.6 1.35 20.34 63%
a/h = 0.8 2.26 25.60 77%

Fig. 15. Comparison of the curvature distributions of a C–C beam, with an edge crack located at x0 = L/2, F c∗ = 200, a/h = 0.3, W ∗
max/h = 0.67 obtained

by the single mode approach and the multimode approach.

forces. All curves exhibit the classical behaviour, of the hardening type, of non-linear systems with a cubic non-linearity,
with multi-valued regions, corresponding physically to the possible occurrence of the jump phenomenon.

2) The second procedure of solution of the non-linear amplitude equation, based on a multimode approach, combined with
the so-called first formulation, developed for the first time in [28], and then applied to different vibration problems
in [29–32] has been then applied. This second procedure permitted explicit calculation of the non-linear frequency
response function, for the excited cracked beam, involving not only the fundamental mode, but also the contributions of
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Fig. 16. Comparison of the curvature distributions of a C–C beam, with an edge crack located at x0 = L/2, F c∗ = 200, a/h = 0.8, W ∗
max/h = 0.4 obtained by

the single mode approach and the multimode approach.

the higher modes, which leads to a change in the response deflection shape, with the amplitude of vibration, inducing,
among other affects, a non-linear increase of curvatures, with increasing the level of the excitation.

The analysis of the numerical results obtained for various crack depths and excitation levels, illustrated by the figures
given, leads to the following qualitative remarks:

• The hardening type of non-linearity of the clamped–clamped cracked beam, excited by a harmonic concentrated force,
is increased in a remarkable way with increasing the crack depth. This is due to the decrease in the thickness of the
beam at crack location, which increases its flexibility.

• An increase of curvature with the crack depth, especially at the clamped end of the beam.

Appendix A

The tensor b∗CBF
i jkl is defined by:

b∗CBF
i jkl = α

l∫
0

∂ w∗CBF
i

∂x∗
∂ w∗CBF

j

∂x∗ dx∗
l∫

0

∂ w∗CBF
k

∂x∗
∂ w∗CBF

l

∂x∗ dx∗ = αRAG(i, j).RAG(k, l) (A.1)

For a clamped–clamped cracked beam, the matrices RAG0.3 corresponding to a crack depth a/h = 0.3, is given numerically
(for i, j = 1,3,5,7,9,11) by:

RAG0.3(i, j) =

⎡
⎢⎢⎢⎢⎢⎣

27.36 7.20 −27.22 5.84 −11.82 −8.64
7.20 41.14 11.29 −29.63 3.06 −11.76

−27.22 11.30 103.86 16.19 −47.50 3.22
5.84 −29.63 16.19 197.76 27.75 −65.70

−11.82 3.06 −47.50 27.75 301.02 52.70
−8.64 −11.76 3.22 −65.70 52.70 385.03

⎤
⎥⎥⎥⎥⎥⎦ (A.2)
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