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1. Introduction

In the middle of the past century artists, architects, mathematicians and engineers have been attracted by tensegrities,1

a special class of space trusses made up of struts and guys and rigidized by a state of self-stress, sharing peculiar character-
istics in terms of beauty, lightness and stiffness.

At their earliest appearance,2 tensegrity structures were addressed primarily by artists and architects. Later, from the 70s,
mathematicians and engineers approached the analysis of this special class of structures, and a large amount of technical
literature appeared both in mathematical [3–6] and engineering [7–12] contexts, as recently reviewed in [13–15].

Due to their unique and fascinating properties, tensegrity structures are becoming more and more common in civil (e.g.,
domes, bridges, towers, roofs, deployable structures) and mechanical (e.g., robots, special mechanisms) engineering [2,16].
Moreover, in recent years tensegrity-based models have been successfully applied for modeling the mechanical behavior
of biological structures such as molecules and cells, and the idea that nature itself employ a tensegrity rationale was pro-
posed [17].

Tensegrities structures exhibit a complex mechanical behavior due to the non-linear response of their structural members
(cables and bars), usually modeled as equivalent one-dimensional elements, connected each other by frictionless pin-joints.
If a small strain theory applies, disregarding non-linear and inelastic features, as damage, viscous and buckling effects,
a bilateral linearly elastic relationship between applied force and length variation is usually assumed to be representative
for bar elements. Instead, cables can be described as unilateral non-linear elements with no resistance to shortening from
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1 The term “tensegrity” is an acronym coined by Richard B. Fuller [1] by assembling the words “tensile” and “integrity”.
2 A brief history of origin and first developments of tensegrities can be found in [2].
1631-0721/$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2011.07.009

http://dx.doi.org/10.1016/j.crme.2011.07.009
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:m.marino@ing.uniroma2.it
http://dx.doi.org/10.1016/j.crme.2011.07.009


684 F. Maceri et al. / C. R. Mecanique 339 (2011) 683–691
Fig. 1. Relationships between applied force F and end-to-end length x for bars (a) and cables (b). Real behavior (- - -), piecewise-linear elastic model
(-------), and piecewise-linear ideal model (------). As notation, xu and xo denote the unstressed and the reference element lengths, respectively, and Fo is the
pre-stress value of F .

the unstressed configuration3 and are characterized by a non-linear lengthening response essentially due to sag effects
[18]. Therefore, cables equivalent force-extension response can be suitably described by a piecewise-linear relationship
corresponding to a zero stiffness in compression and to an equivalent linear behavior in tension. Fig. 1 summarizes previous
considerations.

Characterization of rigidity (absence of infinitesimal admissible nodal displacements, namely absence of admissible mech-
anisms) and pre-stressability (existence of a possible self-equilibrated pre-stress state, tensile in each cable) both in a
reference configuration are the two main research issues in this context. These problems correspond respectively to the
analysis of kinematic determinacy4 and to the existence of a special kind of static indetermination. Since kinematic and
static indeterminacy does not depend on the deformability of structural elements, an ideal inextensible behavior around
their reference configuration, bilateral for bars and unilateral for cables, can be successfully considered (see Fig. 1). Tenseg-
rities characterized by members with an ideal behavior are usually referred to as ideal, and a number of results focusing on
rigidity and pre-stressability of ideal tensegrity structures have been recently provided.

Tensegrity problems can be effectively approached by using graph theory (Roth and Witheley [3]). In fact, mathematical
tools of group and representation theories have been proved to allow tensegrities characterized by prescribed stability and
symmetry features to be conceived [6].

A first attempt to analyze tensegrities by an energetic formulation was proposed in [4], by introducing an energy function
accounting for members’ deformability, and then assuming structure to be not ideal.

Obviously, energetic analysis of ideal tensegrity structures is not possible in a classical sense. Nevertheless, the definition
of rigidity and pre-stressability through an energy approach would enhance the perspective on ideal tensegrity mechanics,
providing a novel mechanical interpretation of some basic results.

In present work, following [19], restrictions imposed a priori by ideal structural members are regarded as internal
constraints on the tensegrity reference configuration and they are enforced by a structural free-energy functional in the
mathematical framework of convex analysis [20,21]. The definition of ideal tensegrity free-energy by means of a convex
analysis approach (Section 3) allows to deduce new criteria for rigidity and pre-stressability, explicitly accounting for both
kinematics and statics unilateral aspects. In Section 4 the rigidity concept is associated to a minimization problem of a
non-classically differentiable convex free-energy [20,21], while in Section 5 pre-stressability is formulated in terms of en-
ergetic features. Moreover, by gathering convex analysis and Principle of Virtual Works, that is by coupling mathematical
tools with mechanical interpretation, the duality between static and kinematic unilateral problems is consistently proved
(Section 6). Finally, in the last part of the paper (Section 7), perspective indications to extend present approach to non-ideal
and inelastic tensegrities are briefly traced.

2. Notation and preliminary background

Let E be the three-dimensional Euclidean space, let V be the vector space associated with E, endowed with the inner
product a · b ∈ R between a, b ∈ V, and let (a · a)1/2 = ‖a‖ be the Euclidean norm of a. Let (O , i, j,k) be a Cartesian frame
in E, being {i, j,k} an orthonormal basis.

For a ∈ V, read a � 0 componentwise, that is “each component of a is non-positive“. Furthermore, between two sets
A = {a1, . . . ,an} and B = {b1, . . . ,bn} with the same cardinality n, the following symbols are defined: A � B = {a1 + b1,

. . . ,an + bn}, αA = {αa1, . . . ,αan} with α ∈ R, 〈A, B〉 = ∑n
j=1 a j · b j , and A �= B ⇔ ∃ j such that a j �= b j , with a j,b j ∈ V.

Symbol ∅ denotes the empty set and ∅n the set made up of n null vectors.

3 Some authors consider an unilateral response not only for elements bearing only traction states (that is guys, typically realized by cables), but also for
structural members able to bear only compressive forces (namely struts). Nevertheless, strut function is usually obtained by bilateral bars, and therefore
their unilateral behavior will be not considered here.

4 The kinematic determinacy is addressed as either infinitesimal rigidity [3] or rigidity [13]. In present work, the term rigid instead of “kinematically
determinate” or “infinitesimally rigid” will be employed.
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Table 1
Kinematic and static constitutive behavior of external, internal bilateral and internal unilateral ideal constraints.

( j,m) ∈ E (i, j,k) ∈ Ib (i, j,h) ∈ Iu

Kinematics ωm(p j) = (p j − po
j ) · eo

m = 0 φk(pi , p j) = (p j − pi) · βk − bo
k = 0 θh(pi , p j) = (p j − pi) · γ h − co

h � 0

Statics rm
j = −νm = −νmeo

m rk
i = λb

k = λb
kβk, rk

j = −λb
k rh

i = λu
h = λu

hγ h, rh
j = −λu

h , λu
h � 0

Let N identify an ordered set of np points in E, referred to as nodes, p j ∈ E be the position occupied by the node j and
p j = p j − O its position vector in V. Let p = {p1, . . . ,pnp } be the set which identifies a placement of N in the space of
configurations P = {p | p j ∈ E, j = 1, . . . ,np}.

Let po ∈ P be an a priori known reference configuration, and let p be the actual configuration of N in P . Indicate
with u j = (p j − po

j) ∈ V the displacement of node j with respect to its reference position. Accordingly, u = {u1, . . . ,unp } =
p � (−po) is the displacement of N from po to p, with u belonging to the displacements space

U = {
u = p �

(−po) ∣∣ p, po ∈ P; ‖p j − pi‖ �= ∥∥po
j − po

i

∥∥ for some i, j = 1 . . .np
}

(1)

wherein rigid body motions (that is distance preserving displacements) are excluded.
For the aim of the present work, it is useful to introduce Bε(po) as the ε-neighborhood of po ∈ P :

Bε

(
po) = {

p ∈ P
∣∣ √〈u, u〉/d � ε with ε ∈ R+}

, with d = max
i, j=1...np

{∥∥po
j − po

i

∥∥}
(2)

Let now consider ne constraints on the position of nodes in N as well as nb bars and nu cables constraining the relative
position of couples of nodes in N , and let define the sets:

E = {
( j,m)

∣∣ ∃ external constraint m on node j
}

(3)

Ib = {
(i, j,k)

∣∣ ∃ bar k between nodes i and j, i < j
}

(4)

Iu = {
(i, j,h)

∣∣ ∃ cable h between nodes i and j, i < j
}

(5)

Definition 2.1. A tensegrity Tr is the set of nodes collected in N and of constraints described in E , Ib and Iu .

Let the structure Tr be loaded by external forces at nodes, and denote by r j, f j ∈ V the reactive (resp. active) forces
resultant on node j, and by r = {r1, . . . , rnp }, f = {f1, . . . , fnp } the corresponding sets for nodes in N .

2.1. Ideal constraints and ideal tensegrities

External constraints, bars and cables in Tr are modeled as workless with an unilateral behavior just for cable elements.

Definition 2.2. A bilateral (unilateral) constraint is ideal if the work of its reaction forces for any admissible virtual mecha-
nism is zero (non-negative).

In the aim of present work (namely, the analysis of kinematic and static indeterminacy), each involved constraint is
assumed to be ideal.

Denoting as rs
q the reaction force of constraint s on node q, the kinematic and static constitutive behavior of constraints

which model physical restrictions in Tr are collected in Table 1 where, for ( j,m) ∈ E , eo
m is a given unit vector, and βk ,

γ h denote constraints’ axes. For (i, j,k) ∈ Ib , βk = (p j − pi)/‖p j − pi‖, bo
k = (po

j − po
i ) · βo

k and λb
k ∈ R. For (i, j,h) ∈ Iu ,

γ h = (p j − pi)/‖p j − pi‖, co
h = (po

j − po
i ) · γ o

h , and λu
h ∈ R+ ∪ {0}.

From the definition of ε given in Eq. (2), it follows that constraints kinematic behaviors in Table 1 are linear relationships
in nodal displacements within O (ε2) terms. Moreover, βo

k and γ o
h are the zeroth-order approximation in ε of βk and γ h .

In the following, whenever p ∈ Bε(po), ε is taken small enough to assume as exact the linearized form of the kinematic
problem.

By definition, reaction forces νm and λb
k belong to the spaces orthogonal to any admissible virtual mechanism, being

workless. On the other hand, reaction forces of unilateral constraints belong to a dual cone of any admissible virtual mech-
anism. In agreement with Definition 2.2, constraints in Table 1 are ideal. Moreover, the workless hypothesis is satisfied by
enforcing

λu
hθh(pi, p j) = 0, ∀p ∈ P | θh(pi, p j) � 0 (6)

Definition 2.3. The ideal tensegrity T associated to the real tensegrity Tr is defined as:

T = {
N ,

{
ωm(p j) = 0, ∀( j,m) ∈ E

}
,
{
φk(pi, p j) = 0,∀(i, j,k) ∈ Ib

}
,
{
θh(pi, p j) � 0, ∀(i, j,h) ∈ Iu

}}
A tensegrity structure with nu = 0 is usually referred to as a bar-truss.
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3. Free-energy of ideal tensegrities

Let the positions of nodes in N be the state variables. The free-energy of T is defined as5:

Ψ : P → R̄, Ψ (p) =
∑

( j,m)∈E
Ωm(p j) +

∑
(i, j,k)∈Ib

Φk(pi, p j) +
∑

(i, j,h)∈Iu

Θh(pi, p j) (7)

where Ωm(p j) = I Ke (p j − po
j ), Φk(pi, p j) = I Kb ( fb(p)), Θh(pi, p j) = I Ku ( fu(p)) are the free-energy of external, internal

bilateral and internal unilateral constraints, respectively, with Ke = span(eo
m)⊥ , fb(p) = ‖p j − pi‖ − bo

k , Kb = {0}, fu(p) =
‖p j − pi‖ − co

h and Ku = R− ∪ {0}.
Nodal reaction r j ∈ V acting on node j is the static quantity dual to the kinematic variable p j , and it results in:

r j = − ∂Ψ

∂p j
= −

∑
( j,m)∈E

∂Ωm

∂p j
−

∑
(i, j,k)∈Ib

∂Φk

∂p j
−

∑
(i, j,h)∈Iu

∂Θh

∂p j
(8)

It is herein remarked that Ψ (p) is not differentiable in classical sense. To assess the well-posedness of Eq. (8) let the
three right-hand terms be analyzed.

Proposition 3.2. Functions Ωm are convex in P . Functions Φk are convex in Bε(po). Functions Θh are convex in P .

Proof. The convexity of functions Ωm in P follows from the convexity of Ke . For what concerns Φk , it is easy to check that

I Kb
(

fb
(

pq)) � qI Kb
(

fb
(

p1)) + (1 − q)I Kb
(

fb
(

p2)) (9)

is verified for every pq = qp1 � (1 − q)p2, with p1, p2 ∈ Bε(po) and q ∈ (0,1). In fact, if either fb(p1) or fb(p2) is not equal
to zero, Eq. (9) is trivially verified. When fb(p1) = fb(p2) = 0, fb(pq) is equal to zero everywhere in Bε(po), because from
p ∈ Bε(po) it follows fb(p) = (u j − ui) · βo

k . Accordingly, Eq. (9) is always satisfied.
Proceeding as for I Kb , an inequality of the form (9) involving I Ku ( fu) is satisfied for every p1, p2 ∈ P and q ∈ (0,1) and

the convexity of Θh in P follows. �
It is worth pointing out that functions Φk are not convex in P . In fact, when fb(p1) = fb(p2) = 0, from triangular

inequality follows that fb(pq) � 0, where the equality applies if and only if β1
k = β2

k . Thereby, when p1, p2 ∈ P are such
that fb(p1) = fb(p2) = 0 and fb(pq) < 0 for some values of q, inequality (9) is violated.

From Proposition 3.2, subdifferentiability of Ψ in Bε(po) straightly follows.
According to Eq. (8), reaction force on node j due to external constraint m is given by

rm
j : De

m → V, rm
j = −∂Ωm/∂p j = −∇Ωm(p j) (10a)

5 As it is customary in convex analysis [21], define R̄ = R ∪ {+∞}, where the regular addition is completed by the rules: a + (+∞) = +∞ (∀a ∈ R) and
+∞+ (+∞) = +∞, while multiplication by positive numbers is completed by a × (+∞) = +∞ (∀a ∈ R

+). As an example of convex function, let I K(x) be
the indicator function of the convex set K (that is I K(x) = 0 if x ∈ K and I K(x) = +∞ elsewhere). As a notation rule, if g is a convex function defined on
a convex part X of a real vector space, indicate with ∇g(x) and ∂ g(x) respectively a subgradient and the subdifferential of g at point x ∈ X. The following
result will be used in the sequel:

Theorem 3.1. Let g be a convex function taking only two values (0 or +∞). Function g is subdifferentiable at x if and only if g(x) < +∞.

Proof. The property

∂ g(x) �= ∅ ⇒ g(x) < +∞
is true for any convex function g , g �= +∞ [21]. Conversely, to prove that

g(x) < +∞ ⇒ ∂ g(x) �= ∅
let us observe that g(x) < +∞ implies g(x) = 0 and

∀y ∈ X, g(x) � g(y)

or, equivalently,

∀y ∈ X, 〈0, y − x〉 + g(x) � g(y)

Therefore 0 ∈ ∂ g(x) and then ∂ g(x) �= ∅. �
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with ∇Ωm(p j) ∈ ∂Ωm(p j) = span(eo
m) in De

m and

De
m = {

p ∈ P
∣∣ u j ∈ span

(
eo

m

)⊥}
(10b)

Moreover, reaction forces on nodes i and j due to internal bilateral constraint k are

rk
i , rk

j : Db
k → V, rk

i = −∂Φk/∂pi = ∇Φk(pi, p j)β
o
k

rk
j = −∂Φk/∂p j = −∇Φk(pi, p j)β

o
k (11a)

with ∇Φk(pi, p j) ∈ ∂Φk(pi, p j) = R in Db
k and

Db
k = {

p ∈ Bε

(
po) ∣∣ (u j − ui) ∈ span

(
βo

k

)⊥}
(11b)

Finally, reaction forces on nodes i and j due to the internal unilateral constraint h are given by

rh
i , rh

j : Du
h → V, rh

i = −∂Θh/∂pi = ∇Θh(pi, p j)γ h

rh
j = −∂Θh/∂p j = −∇Θh(pi, p j)γ h (12a)

where ∇Θh(pi, p j) ∈ ∂Θh(pi, p j) and ∂Θh(pi, p j) is the multi-valued function defined as:

∂Θh(pi, p j) =
{

g for ‖p j − pi‖ = co
h

0 for ‖p j − pi‖ < co
h

(12b)

with g ∈ R+ ∪ {0}, and

Du
h = {

p ∈ P
∣∣ ‖p j − pi‖ � co

h

}
(12c)

From Eq. (12b), the workless constraint (6) follows to be automatically satisfied.
It is worth pointing out that the previously-introduced definition domains and values for the subdifferential of each

free-energy contribution recover kinematic and static features, respectively, of the corresponding constraint (see Table 1).

4. Kinematic analysis: rigidity

Let S be the definition domain of the generalized derivative of Ψ (p):

S =
{

ne⋂
m=1

De
m

}
∩

{ nb⋂
k=1

Db
k

}
∩

{
nu⋂

h=1

Du
h

}
⊆ Bε

(
po) (13)

S is a closed convex cone in P and it identifies the set of configurations in Bε(po) admissible with all the kinematic
restrictions defining T . The rigidity concept is introduced by means of:

Definition 4.1.

T is rigid ⇔ {
u ∈ U

∣∣ po � u ∈ S
} = ∅

From Definition 4.1, the following result on rigidity reads:

T is rigid ⇔ po is not an accumulation point for S (14)

Under the assumption of conservative active forces, let E(p) be the total potential energy of T :

E : P → R̄, E(p) = Ψ (p) + V (p) (15)

wherein V (p) = −∑np

j=1 f j · p j is the potential energy of active forces. It is immediate to prove that a configuration p̂ is an
equilibrium configuration if and only if it is a stationary point for E(p):

∂ E

∂p j

∣∣∣∣
p̂ j

= ∂Ψ

∂pi

∣∣∣∣
p̂ j

− f j = 0 ⇔ r j = −∂Ψ

∂pi

∣∣∣∣
p̂ j

= −f j ∀p̂ j ∈ p̂ (16)

In case of null external loads ( f = ∅np ), T is in equilibrium in p̂ if and only if the derivative of Ψ (p) in p̂ exists
and is equal to zero (i.e., p̂ is a stationary point for Ψ (p)). Since Ψ (p) is a two-values function (0 and +∞) and its
derivative does not exist for configurations p such that Ψ (p) = +∞ (Theorem 3.1), Ψ (p) has an absolute minimum in
the equilibrium configuration p̂. As a consequence of previous considerations, the rigidity concept can be embedded in a
variational framework.
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Theorem 4.2. Let T be an ideal tensegrity and assume null rigid-body motions. Then

T is rigid ⇔ Ψ (p) has an absolute isolated minimum in po

Proof. If T is rigid and since Definition 4.1, then po � u /∈ S,∀u ∈ U . Accordingly, the subdifferential of Ψ (p) does not exist
in p = po � u and, since Theorem 3.1, Ψ (po � u) = +∞, ∀u ∈ U . Accordingly, Ψ (p) has an absolute isolated minimum in po .

Conversely, if Ψ (p) has an absolute isolated minimum in po , then Ψ (po � u) = +∞, ∀u ∈ U , and therefore, employing
Theorem 3.1, (po � u) /∈ S , that is T is rigid. �

Theorem 4.2 allows one to recover duality between kinematic and static concepts. From this theorem, it follows:

Ψ
(

po � u
) = +∞, ∀u ∈ U ⇔ � r j = − ∂Ψ

∂p j

∣∣∣∣
po�u

j = 1 . . .np, ∀u ∈ U

⇔ T is rigid (17)

Therefore, the kinematic notion of rigidity is equivalent to a dual static formulation, that is to the non-existence of an
equilibrated configuration in a neighborhood of po . It is worth remarking that, although assuming p ∈ Bε(po) (and thereby
βk = βo

k and γ h = γ o
h), the equilibrium relationships written in p = po � u differ from the ones in po , because non-regular

functions (that is subdifferentials of indicator functions) are employed.
Moreover, Theorem 4.2 allows to face the issue of rigidity for T in terms of a minimization problem of a convex objective

function under convex constraints and the following operative new rigidity criterion can be stated:

Criterion 1 (Rigidity). Let α = infu∈U {Ψ (po � u)}. Then: α = 0 ⇒ T is not rigid, α = +∞ ⇒ T is rigid.

4.1. Energy and kinematics

For the sake of notation, let the function

δh : U → R, δh(u) = (u j − ui) · γ o
h, ui,u j ∈ u ∈ U (18)

to be defined with (i, j,h) ∈ Iu and let δ(u) = (δ1(u), . . . , δnu (u))t ∈ Rnu . Accordingly, the kinematic restrictions imposed
from internal unilateral constraints can be equivalently formulated as δ � 0. Moreover, let define the sets:

U f = {
u ∈ U

∣∣ p ∈ Bε

(
po),Ψ (

po � u
) = 0

}
(19a)

Uv = {
u ∈ U

∣∣ p ∈ Bε

(
po),Ψ (

po � u
) = 0,Ψ

(
po � (−u)

) = +∞}
(19b)

Ū = {
u ∈ U

∣∣ p ∈ Bε

(
po),Ψ (

po � u
) = 0,Ψ

(
po � (−u)

) = 0
}

(19c)

and note that, since Ψ (p) is a two values function, U f = Ū ∪ Uv .
Let define T̃ as the bar-truss derived from T by removing all cables. Let Ψ̃ (p) be the free-energy of T̃ . Denote with

S̃ the definition domain of the generalized derivative of Ψ̃ (p), let Ũ be the collection of corresponding admissible dis-
placements (i.e., Ũ = {u ∈ U | p ∈ Bε(po), Ψ̃ (po � u) = 0}) and note that if u ∈ Ũ then po � u ∈ S̃ . Moreover, let the set
W = {u | p ∈ Bε(po), Ψ̃ (po � u) = 0} and the vector space V = {v = αw | α ∈ R, w ∈ W } be defined such that Ũ ⊂ W ⊂ V .
Therefore, denoting as {u1, . . . , uM} a basis for V , it results:

∀u ∈ Ũ , u = α1u1 � · · · � αM uM , α j ∈ R (20)

Furthermore, consider the bar-truss T̄ , derived from T by assuming as bilateral all unilateral constraints. Denote with
Ψ̄ (p) the free-energy of T̄ and with S̄ the definition domain of the generalized derivative of Ψ̄ (p).

Lemma 4.3. Let T be an ideal tensegrity and Us = {u ∈ Ũ | δ(u) � 0,‖δ(u)‖ > 0}. Then Us ≡ Uv .

Proof. By definition, if û ∈ Us , it should respect all the kinematic restrictions imposed by both bilateral and unilateral
constraints and thereby Ψ (po � û) = 0. Moreover, since the definition of Ũ and the linearity of δh(u), (−û) ∈ Ũ but it does
not belong to Us , violating the restriction imposed by at least one unilateral constraint. Accordingly, Ψ (po � (−û)) = +∞
and û belongs to Uv . With similar arguments, it is easy to prove that there does not exist any displacement u ∈ Uv which
does not belong to Us . �
Lemma 4.4. Let T be an ideal tensegrity and Uo = {u ∈ Ũ | δ(u) = 0}. Then Uo ≡ Ū .
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Proof. By definition, if û ∈ Uo , it should respect all the kinematic restrictions imposed by both bilateral and unilateral
constraints and, thereby, Ψ (po � û) = 0. Moreover, since the definition of Ũ and the linearity of δh(u), (−û) ∈ Ũ and it
belongs to Uo , respecting the restriction imposed by all unilateral constraints. Accordingly, Ψ (po � (−û)) = 0 and û belongs
to Ū . With similar arguments, it is immediate to prove that there does not exist any displacement u ∈ Ū which does not
belong to Uo . �

By using definition of T̃ and T̄ , Lemmas 4.3 and 4.4 can be read in a mechanical sense, providing the kinematic meaning
of the energy-based sets Uv and Ū . In fact, if u ∈ Us or u ∈ Uo , then u is an admissible displacement for T̃ , automatically
satisfying all bilateral constraints in T . Moreover, u ∈ Us identifies an admissible displacement for T where the actual end-
to-end length of at least one cable in the structure is smaller than its reference one. In addition, u ∈ Uo corresponds to an
admissible displacement for T where the actual end-to-end length of each cable does not vary. In other words, u ∈ Ū is an
admissible displacement for the bar-truss associated to T (namely, T̄ ).

5. Static analysis: pre-stressability

The pre-stressability concept is introduced by means of:

Definition 5.1.

T is pre-stressable ⇔ {∇Θh(pi, p j)
∣∣ r = ∅np ,∇Θh(pi, p j) ∈ R+,∀(i, j,h) ∈ Iu

} �= ∅

Pre-stressability corresponds to a special kind of static indeterminacy. In fact, considering a set of reactive forces r̂ where
each internal unilateral constraint has a strictly admissible reaction, T is pre-stressable if it is statically admissible (that is
in equilibrium) in po under f = ∅np and r = r̂.

Theorem 5.2. Let T be an ideal tensegrity system. The following statements are equivalent:

(i) Uv = ∅,
(ii) T is pre-stressable.

In order to prove this theorem, some considerations and preliminary results have to be firstly traced. Let T ′ be the ideal
tensegrity system obtained from T by removing cable H connecting nodes I and J . The number n′

u of cables in T ′ is equal
to (nu − 1) and, without lack of generality, in the following it is assumed that H = nu . Accordingly, denote with Ψ ′(p) the
free-energy of T ′ and with S ′ the definition domain of the generalized derivative of Ψ ′(p). It is immediate to prove that
each u such that po � u ∈ S ′ is contained in Ũ , and then the representation (20) can be employed.

Corollary 5.3. Define C as the cone originated by the vectors

ah = (
δh

(
u1), . . . , δh

(
uM))t ∈ RM

with h = 1 . . .n′
u , and

b = (−δH
(
u1) . . .−δH

(
uM)) ∈ RM

If Uv = ∅, then there does not exist an hyperplane separating b from C.

Proof. Let define the following problem{
�α � 0

btα > 0
(21)

with � ∈ Rn′
u×M , [�]ik = δi(uk), α = (α1, . . . ,αM)t ∈ RM and b = (−δH (u1) . . . −δH (uM)) ∈ RM . Since δh(u) is a linear

function in u, a solution α of problem (21) identifies a particular u ∈ Us . Then, from Lemma 4.3 and since Uv = ∅ by
hypothesis, problem (21) admits no solution. This is equivalent to state that there does not exist an hyperplane separating
the vector b from the cone C originated by the vectors ah = (δh(u1), . . . , δh(uM))t with h = 1 . . .n′

u , that is the thesis. �
Proof of Theorem 5.2. Let the statement Uv = ∅ be verified and assign on T ′ the set of self-equilibrated active forces f
defined as:

f J = −λu
H = −λu

Hγ o
H , fI = λu

H , with λu
H = 1

fn = 0 ∀n ∈ {1, . . . ,np} with n �= I, J
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λu
H being the unit reaction force of the Hth internal unilateral constraint in T acting on nodes I and J . Due to the Principle

of Virtual Works, there exists in T ′ a set of reactive forces in equilibrium with f if and only if

f J · u J + fI · uI = −λu
H · (u J − uI ) =

n′
u∑

h=1

λu
hδh(u) ∀u | po � u ∈ S ′ (22)

or, equivalently, if and only if

n′
u∑

h=1

λu
hδh(u) = −δH (u) ∀u | po � u ∈ S ′ (23)

As a consequence of representation (20) and of the linearity of δh(u), relationship (23) is verified if there exists a set of
non-negative real numbers λu

h such that:

n′
u∑

h=1

λu
h ah = b, 0 � λu

1, . . . , λu
n′

u
∈ R, with

n′
u∑

h=1

λu
h > 0 (24)

Nevertheless, Corollary 5.3 proves that vector b is not separated by an hyperplane from the convex cone C . From Farkas’
lemma [22], it follows that vector b belongs to C and, thereby, a set of non-negative reactions λu

h satisfying problem (24)
exists.

These arguments can be applied for each internal unilateral constraint in T and therefore, by definition (12b) and by the
superposition principle, when Uv = ∅ a set of non-null ∇Θh(pi, p j) (for each h = 1, . . . ,nu) exists such that the equilibrium
condition r = ∅np is verified, that is statement (ii) holds.

On the contrary, when statement (ii) holds, Eq. (12b) prescribes that ‖p j − pi‖ = co
h or, in its linearized form, all admissi-

ble displacements u respect (u j − ui) ·γ o
h = δh(u) = 0 (for each h = 1, . . . ,nu), or equivalently, from Lemma 4.4, u ∈ Ū . Then

U f = Ū and Uv = ∅ (that is statement (i) holds). �
Finally, the following new energy-based criterion for pre-stressability holds.

Criterion 2 (Pre-stressability).

{
u ∈ U

∣∣ Ψ
(

po � u
) = 0,Ψ

(
po � (−u)

) = +∞} = ∅ ⇔ T is pre-stressable

6. Kinematic–static duality

Duality between kinematic and static concepts is established on the basis of:

Theorem 6.1. Let T be an ideal tensegrity, then

T is rigid ⇔ T̄ is rigid ∧ T is pre-stressable

Proof. Theorem 4.2 proves that U f = ∅ (or equivalently Ū = ∅ and Uv = ∅) if and only if T is rigid. Accordingly, Lemma 4.4
proves that Ū = ∅ if and only if there does not exist any admissible displacement for T̄ , that is T̄ is rigid. Moreover,
Theorem 5.2 states that Uv = ∅ if and only if T is pre-stressable. �

Theorem 6.1 employs energy-based arguments to recover a classical result for tensegrities. To the best of authors’ knowl-
edge, the proposed proof is alternative with respect to the specialized literature and this novel contribution clearly provides
the mechanical interpretation of results obtained by using convex analysis. It is worth pointing out that the kinematic issue
of rigidity for T involves inequalities and it generally results in though algebraic solutions. On the other hand, to verify
that T̄ is rigid, the solution of linear equalities in nodal displacements is needed, because only bilateral relationships on
Bε(po) are involved. Moreover, pre-stressability condition requires to find admissible solutions of a system of 3np equilib-
rium equations. Thereby, Theorem 6.1 allows to move towards the creation of algorithms more effective to evaluate rigidity.
In a forthcoming paper, as a consequence of Theorem 6.1, the rigidity problem will be formulated in algebraic terms within
the mathematical framework of quadratic optimization.
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7. Conclusions and perspective

In present work, behavior of ideal tensegrity structures has been addressed by means of an energy approach formulated
in the framework of convex analysis. A novel expression for the free-energy of ideal tensegrities has been proposed, pro-
viding a special perspective on their mechanics. The well-known dual relationship between kinematics and statics has been
proved in an original way which allows a clear mechanical interpretation.

Tensegrity rigidity and pre-stressability problems have been focused accounting for non-smooth restrictions on both
kinematic and static behavior of ideal constraints. Novel energy-based criteria have been provided. Present work clearly
proves that the issue of rigidity reduces to a minimization problem (Criterion 1), and that it represents a sufficient condi-
tion for pre-stressability (see Theorem 6.1). Moreover, a necessary and sufficient condition for pre-stressability is provided
(Criterion 2) in terms of structural free-energy.

In the future, present approach could be generalized to non-ideal structures. In fact, elastic behavior can be simply
included and analyzed by means of a generalization of the overall structural free-energy:

Ψ : P → R̄, Ψ (p) = Ψ D(p) + Ψ I(p) (25)

where Ψ D(p) represents structure deformation energy and Ψ I(p) is the contribute to the free-energy deriving from the
ideal constraints within the structure. For instance, a linearly elastic cable (i, j,h) ∈ Iu with stiffness kh gives a contribution
to Ψ I equal to zero and to Ψ D equal to 0.5kh(c − ch)2 H(c − ch), being H(x − xo) the Heaviside function centered in xo ,
c = ‖p j − pi‖, and ch a measure of the cable unstressed length. Moreover, the definition of a structural dissipative pseudo-
potential ΦD would allow to relate reactive forces with time-dependent causes [19]:

r j = − ∂Ψ

∂p j
− ∂ΦD

∂ṗ j
(26)

ẋ being the time derivative of x. Therefore, inelastic features (such as viscous behavior) could be incorporated in the same
theoretical framework [20,21].
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