Wave equation with $p(x, t)$-Laplacian and damping term: Blow-up of solutions

Equation des ondes avec $p(x, t)$-Laplacian et un tèrme dissipatif : Blow-up des solutions

Stanislav Antontsev

CMAF, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal

A R T I CLE IN F O

Article history:

Received 17 July 2011
Accepted 9 September 2011
Available online 1 October 2011

Keywords:

Waves
Nonlinear wave equation
Energy estimates
Variable nonlinearity
Nonstandard growth conditions
Blow-up

Mots-clés :

Ondes
Équation des ondes nonlinéaire
Estimations énergétiques
Nonlinéarités variables
Croissance non standard
Blow-up

A B S T R A C T

We study the Dirichlet problem for equation

$$
u_{t t}=\operatorname{div}\left(a(x, t)|\nabla u|^{p(x, t)-2} \nabla u\right)+\alpha \Delta u_{t}+b(x, t)|u|^{\sigma(x, t)-2} u
$$

in which α is a nonnegative constant, the coefficients $a(x, t), b(x, t)$ and the exponents of nonlinearity $p(x, t), \sigma(x, t)$ are given functions. Under suitable conditions on the data, we study the finite time blow-up of the solutions.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

On considère le problème de Dirichlet pour l'équation

$$
u_{t t}=\operatorname{div}\left(a(x, t)|\nabla u|^{p(x, t)-2} \nabla u\right)+\alpha \Delta u_{t}+b(x, t)|u|^{\sigma(x, t)-2} u
$$

où $\alpha \geqslant 0$ est une constante, $a(x, t), b(x, t)$ sont des coefficients variables et $p(x, t), \sigma(x, t)$ sont des exposants nonlinéaires. Sous conditions appropriées on étudie le temps fini de blow-up des solutions.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $\Omega \subset \mathbf{R}^{n}$ be a bounded domain with Lipschitz-continuous boundary $\Gamma, Q_{T}=\Omega \times(0, T], \Gamma_{T}=\partial \Omega \times(0, T)$. We consider the following initial and boundary value problem:

$$
\begin{align*}
& u_{t t}=\operatorname{div}\left(a(x, t)|\nabla u|^{p(x, t)-2} \nabla u+\alpha \nabla u_{t}\right)+b(x, t)|u|^{\sigma(x, t)-2} u \quad \text { in } Q_{T} \tag{1}\\
& u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega ;\left.u\right|_{\Gamma_{T}}=0 \tag{2}
\end{align*}
$$

Here $\alpha \geqslant 0$ is a constant. The coefficients $a(x, t), b(x, t)$ and the exponents $p(x, t), \sigma(x, t)$ are given measurable functions of their arguments. Equations with variable exponents of nonlinearities are usually referred to as equations with nonstandard growth conditions.

We discuss the blow-up of solutions to problem (1)-(2) paying special attention to the specific properties caused by the variable nonlinearity of the equation.

[^0]A study of the localization (vanishing) properties and the blow-up of solutions of elliptic and parabolic equations of the type (1) can be found in [1-4].

Equations with nonstandard growth conditions occur in the mathematical modeling of various physical phenomena such as flows of electro-rheological fluids or fluids with temperature-dependent viscosity, nonlinear viscoelasticity, processes of filtration through a porous media and the image processing - see [1,5-8] and further references therein.

For hyperbolic equations of the form (1) with constant coefficients a, b and exponents p, σ, local and global in time existence and the blow-up behavior have been studied by many authors - [9-18]. It is to be noted here that in all papers (dealing with the case $p \neq 2$) the damping term $\alpha \Delta u_{t}$ plays the key role in the proof of global existence, even in the case of constant exponents p and σ. On the other hand, the presence of the damping term makes the study of the blow-up behavior more complicated.

The situation is different for hyperbolic equations with nonstandard growth conditions. The proof of existence of energy solutions to problem (1)-(2) can be found in [19,20]. A special case $a(x, t)=1, b(x, t)=0$ and $p(x, t)=p(x)$ was studied in [21]. In the case $a(x, t)=1, p(x, t)=2, b(x, t)|u|^{\sigma(x, t)-2} u=b(x) u^{p(x)}$, the questions of existence and blow-up of nonnegative solutions of problem (1)-(2) were discussed in [22]. In this Note we study the blow-up of energy weak solutions of problem (1)-(2) $(\alpha \geqslant 0)$ with nonpositive initial energy. The study is confined to the class of energy weak solutions because for the solutions of this class the energy function is well-defined (see [19-21]). The analysis relies on the methods developed in [2,3,5].

2. Energy estimates

Let us assume that

$$
\begin{align*}
& 1<p_{-} \leqslant p(x, t) \leqslant p_{+}<\infty, \quad 1<\sigma_{-} \leqslant \sigma(x, t) \leqslant \sigma_{+}<\infty \tag{3}\\
& 0<a_{-} \leqslant a(x, t) \leqslant a_{+}<\infty, \quad\left|a_{t}\right| \leqslant C_{a} \tag{4}\\
& 0<b_{-} \leqslant b(x, t)=b(x, t)<b_{+} \leqslant \infty, \quad\left|b_{t}\right| \leqslant C_{b} \tag{5}\\
& p_{t} \leqslant 0, \quad 0 \leqslant \sigma_{t}, \quad\left|p_{t}\right| \leqslant C_{p}, \quad\left|\sigma_{t}\right| \leqslant C_{\sigma} \tag{6}
\end{align*}
$$

We introduce the energy function

$$
\begin{equation*}
E(t)=\int_{\Omega}\left[\frac{\left|u_{t}\right|^{2}}{2}+a(\cdot, t) \frac{|\nabla u|^{p(\cdot, t)}}{p(\cdot, t)}-b(\cdot, t) \frac{|u|^{\sigma(\cdot, t)}}{\sigma(\cdot, t)}\right] \mathrm{d} x \tag{7}
\end{equation*}
$$

Using (1), we derive the energy relation

$$
\begin{equation*}
E^{\prime}(t)+\alpha \int_{\Omega}\left|\nabla u_{t}(\cdot, t)\right|^{2} \mathrm{~d} x=\Lambda_{1}+\Lambda_{2} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& \Lambda_{1}=\int_{\Omega}\left[a_{t} \frac{|\nabla u|^{p}}{p}+\frac{a|\nabla u|^{p}}{p^{2}}(1-p \ln |\nabla u|)\left|p_{t}\right|\right] \mathrm{d} x \tag{9}\\
& \Lambda_{2}=-\int_{\Omega}\left[\frac{b_{t}|u|^{\sigma}}{\sigma}+\frac{b|u|^{\sigma}}{\sigma^{2}}(1-\sigma \ln |u|) \sigma_{t}\right] \mathrm{d} x \tag{10}
\end{align*}
$$

Lemma 2.1. Let (3)-(5) be fulfilled and, in addition,

$$
\begin{equation*}
a_{t} \leqslant 0, \quad 0 \leqslant b_{t}, \quad p_{t}=\sigma_{t}=0 \tag{11}
\end{equation*}
$$

Then

$$
\begin{equation*}
E(t)+\alpha \int_{0}^{t} \int_{\Omega}\left|\nabla u_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} s \leqslant E(0), \quad \forall t \geqslant 0 \tag{12}
\end{equation*}
$$

The inequality (12) passes to the equality if $a_{t}=b_{t}=0$.
Proof. If suffices to apply formulas (8)-(10).

Lemma 2.2. Let conditions (3)-(6) be fulfilled. Then

$$
\begin{equation*}
E(t)+\int_{0}^{t} \int_{\Omega} \alpha\left|\nabla u_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} s \leqslant E(0)+C t \tag{13}
\end{equation*}
$$

with the constant $C=e\left(a_{+} C_{p}+b_{+} C_{\sigma}\right)|\Omega|$.
Proof. We evaluate Λ_{1}, Λ_{2} in the following way:

$$
\begin{align*}
\Lambda_{1} & =\int_{\Omega}\left[a_{t} \frac{|\nabla u|^{p}}{p}+\frac{a|\nabla u|^{p}}{p^{2}}(1-p \ln |\nabla u|)\left|p_{t}\right|\right] \mathrm{d} x \\
& \leqslant \int_{\Omega \cap(p \ln |\nabla u| \leqslant 1)} \frac{a|\nabla u|^{p}}{p^{2}}(1-p \ln |\nabla u|)\left|p_{t}\right| \mathrm{d} x \leqslant e a_{+} C_{p}|\Omega|=C_{1} \tag{14}\\
\Lambda_{2} & =-\int_{\Omega}\left[\frac{b_{t}|u|^{\sigma}}{\sigma}+\frac{b|u|^{\sigma}}{\sigma^{2}}(1-\sigma \ln |u|) \sigma_{t}\right] \mathrm{d} x \\
& \leqslant \int_{\Omega \cap(\sigma \ln |u| \leqslant 1)} \frac{b|u|^{\sigma}}{\sigma^{2}}(1-\sigma \ln |u|) \sigma_{t} \mathrm{~d} x \leqslant e b_{+} C_{\sigma}|\Omega|=C_{2} \tag{15}
\end{align*}
$$

Integrating the energy relation (8) with respect to t, we obtain that

$$
\begin{equation*}
E(t)+\int_{0}^{t} \int_{\Omega} \alpha\left|\nabla u_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} s \leqslant E(0)+t C, \quad C=C_{1}+C_{2} \tag{16}
\end{equation*}
$$

3. Blow-up

Assume that

$$
\begin{equation*}
E(0) \leqslant 0, \quad 0<\left(u_{0}, u_{1}\right)_{\Omega}, \quad \exists \lambda>2: 2 \leqslant p_{-} \leqslant p_{+}<\lambda<\sigma_{-} \tag{17}
\end{equation*}
$$

Theorem 3.1. Let u be an energy weak solution of problem (1)-(2). Let conditions of Lemma 2.1 be fulfilled and let (17) hold. Then there exists a finite time $t_{\max }<\infty$ such that

$$
\begin{equation*}
\Phi(t)=\|u(t)\|_{2, \Omega}^{2}+\alpha \int_{0}^{t} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x \mathrm{~d} s \rightarrow \infty \quad \text { if } t \rightarrow t_{\max } \tag{18}
\end{equation*}
$$

Proof. It's easy to check that

$$
\Phi^{\prime}=2\left(u, u_{t}\right)_{\Omega}+\alpha \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x, \quad \Phi^{\prime \prime}=2\left\|u_{t}\right\|_{2, \Omega}^{2}+2 \int_{\Omega}\left(-a|\nabla u|^{p}+b|u|^{\sigma}\right) \mathrm{d} x
$$

Using the inequality (12), we calculate

$$
\begin{equation*}
\Phi^{\prime \prime} \geqslant(2+\lambda)\left\|u_{t}\right\|^{2}+2 \int_{\Omega}\left((\lambda / p-1) a|\nabla u|^{p}+b(1-\lambda / \sigma)|u|^{\sigma}\right) \mathrm{d} x+2 \lambda \alpha \int_{0}^{t} \int_{\Omega}\left|\nabla u_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} s>0 \tag{19}
\end{equation*}
$$

It follows that

$$
\Phi^{\prime}(t)>0, \quad \text { if } \Phi^{\prime}(0)=2\left(u_{0}, u_{1}\right)_{\Omega}+\alpha \int_{\Omega}\left|\nabla u_{0}\right|^{2} \mathrm{~d} x>0
$$

Using the last estimates and the properties the Orlicz-Sobolev spaces (see, for example, [3]), we derive the following inequality: for every fixed t

$$
0 \leqslant \Phi^{\prime}=2\left(u u_{t}\right)_{\Omega}+\alpha \int_{\Omega}|\nabla u|^{2} \leqslant 2\|u(t)\|\left\|u_{t}\right\|+\alpha \int_{\Omega}|\nabla u|^{2} \leqslant C\left(\Phi^{\prime \prime}\right)^{\frac{1}{\mu}}
$$

where

$$
1 / \mu=\max \left(1 / \sigma_{-}+1 / 2,2 / p_{-}\right)<1 \quad \text { if } \sigma_{-}>2 \text { and } p_{-}>2
$$

This ordinary differential inequality leads us to the estimate

$$
\Phi^{\prime}(t) \geqslant \Phi^{\prime}(0)\left(1-t(\mu-1) / C\left(\Phi^{\prime}(0)\right)^{\mu-1}\right)^{-\frac{1}{\mu-1}} \rightarrow \infty
$$

as

$$
\begin{equation*}
t \rightarrow t_{\max }=C /(\mu-1)\left(\Phi^{\prime}(0)\right)^{-\mu+1}<\infty \tag{20}
\end{equation*}
$$

which completes the proof of the theorem.

Remark 1. It is noteworthy that the constants μ and C (and, respectively, $t_{\max }$) in (20) depend only on $|\Omega|, n, a_{ \pm}, b_{ \pm}, p_{ \pm}, \sigma_{ \pm}$.
Let us assume now that the exponents p, σ are weakly dependent on t, that is, the constants C_{p}, C_{σ} are small. The proof the blow-up is the same as in the previous theorem, provided that

$$
\begin{equation*}
E(t)+\alpha \int_{0}^{t} \int_{\Omega}\left|\nabla u_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} s \leqslant 0, \quad 0 \leqslant t \leqslant t_{\max } \tag{21}
\end{equation*}
$$

According to Lemma 2.2 (see inequality (13))

$$
\begin{equation*}
E(t)+\alpha \int_{0}^{t} \int_{\Omega}\left|\nabla u_{t}\right|^{2} \mathrm{~d} x \mathrm{~d} s \leqslant E(0)+t_{\mathrm{max}} e\left(a_{+} C_{p}+b_{+} C_{\sigma}\right)|\Omega| \tag{22}
\end{equation*}
$$

Assuming that

$$
\begin{equation*}
\delta=\max \left(C_{p}, C_{\sigma}\right) \leqslant|E(0)|\left(t_{\max } e\left(a_{+}+b_{+}\right)|\Omega|\right)^{-1}, \quad E(0)<0 \tag{23}
\end{equation*}
$$

we arrive at (21). This leads to
Theorem 3.2. Let u be an energy weak solution of problem (1)-(2). Let the conditions of Lemma 2.2 and inequality (23) with $t_{\max }$ defined in Theorem 3.1 be fulfilled. If

$$
2 \leqslant p_{-} \leqslant p_{+}<\lambda<\sigma_{-}, \quad\left(u_{0}, u_{1}\right)_{\Omega}>0, \quad E(0)<0
$$

then the solution u blows-up at a finite moment $t_{\max }$ (in the sense that $\Phi(t)$ becomes unbounded as $t \rightarrow t_{\max }$).
Now we consider Eq. (1) with $\alpha=0$, assuming that problem (1)-(2) has at least one local energy solution. Here we follow the paper [10] where was proved the blow-up for the abstract Cauchy in a Banach space which included, as an example, equation of the type (1) with the $a=b=1, p=$ const, $\sigma=$ const.

Let us assume that

$$
\begin{equation*}
0<\left(u_{0}, u_{1}\right)_{\Omega}, \quad E(0) \leqslant 0, \exists \lambda>2, \quad p_{+} \leqslant \lambda \leqslant \sigma_{-} \tag{24}
\end{equation*}
$$

Following the arguments of paper [10], we prove

Theorem 3.3. Let u be an energy weak solution to problem (1)-(2) with $\alpha=0$. Let the conditions of Lemma 2.1 and condition (24) be fulfilled. Then u blows-up (in the sense that $\|u(t)\|_{2, \Omega}^{2}$ becomes unbounded) on the finite interval ($0, t_{\max }$) with $t_{\max }=2\left\|u_{0}\right\|_{2, \Omega}^{2} /(\lambda-2)\left(u_{0}, u_{1}\right)_{\Omega}$.

Theorem 3.4. Let u be an energy weak solution of problem (1)-(2) with $\alpha=0$. Let the conditions of Lemma 2.2, conditions (24) and (23) be fulfilled (with $t_{\max }$ defined in Theorem 3.3). Then the solution u blows-up on the finite interval ($0, t_{\mathrm{max}}$).

Acknowledgement

This work was supported by the research project PTDC/MAT/110613/2009, FCT, Portugal.

References

[1] S.N. Antontsev, S.I. Shmarev, Elliptic Equations with Anisotropic Nonlinearity and Nonstandard Growth Conditions, Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, Elsevier, 2006, Chapter 1, pp. 1-100.
[2] S.N. Antontsev, S.I. Shmarev, Extinction of solutions of parabolic equations with variable anisotropic nonlinearities, in: Proceedings of the Steklov Institute of Mathematics, vol. 268, Moscow, Russia, 2008, pp. 2289-2301.
[3] S.N. Antontsev, S.I. Shmarev, Blow-up of solutions to parabolic equations with non-standard growth conditions, J. Comput. Appl. Math. 234 (2010) 2633-2645.
[4] S.N. Antontsev, S.I. Shmarev, Vanishing solutions of anisotropic parabolic equations with variable nonlinearity, J. Math. Anal. Appl. 361 (2010) $371-391$.
[5] S.N. Antontsev, J.I. Díaz, S. Shmarev, Energy Methods for Free Boundary Problems: Applications to Non-Linear PDEs and Fluid Mechanics, Progress in Nonlinear Differential Equations and Their Applications, vol. 48, Bikhäuser, Boston, 2002.
[6] S.N. Antontsev, J.F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara, Sez. VII Sci. Mat. 52 (2006) 19-36.
[7] K. Rajagopal, M. Ruž̌ička, Mathematical modeling of electro-rheological fluids, Cont. Mech. Therm. 13 (2001) 59-78.
[8] M. Rǔžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000.
[9] A. Benaissa, S. Mokeddem, Decay estimates for the wave equation of p-Laplacian type with dissipation of m-Laplacian type, Math. Methods Appl. Sci. 30 (2007) 237-247.
[10] V.A. Galaktionov, S.I. Pohozaev, Blow-up and critical exponents for nonlinear hyperbolic equations, Nonlinear Anal. 53 (2003) 453-466.
[11] H. Gao, T.F. Ma, Global solutions for a nonlinear wave equation with p-Laplacian operator, EJQTDE (1999) 1-13.
[12] T. Kato, Blow up of solutions of some nonlinear hyperbolic equations, Manuscripta Math. 28 (1980) 235-268.
[13] S.A. Messaoudi, B. Said Houari, Global non-existence of solutions of a class of wave equations with non-linear damping and source terms, Math. Methods Appl. Sci. 27 (2004) 1687-1696.
[14] È. Mitidieri, S.I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova 234 (2001) 1-384.
[15] J. Serrin, G. Todorova, E. Vitillaro, Existence for a nonlinear wave equation with damping and source terms, Differential Integral Equations 16 (2003) 13-50.
[16] Z. Yang, Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms, Math. Methods Appl. Sci. 25 (2002) 795-814.
[17] Z. Yang, G. Chen, Global existence of solutions for quasi-linear wave equations with viscous damping, J. Math. Anal. Appl. 285 (2003) $604-618$.
[18] Y. Zhijian, Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms, Math. Methods Appl. Sci. 25 (2002) 795-814.
[19] S. Antontsev, Wave equation with $p(x, t)$-Laplacian and damping term: Local and global existence, RACSAM, Rev. R. Acad. Cien. Serie A. Mat., pp. 1-15, submitted for publication.
[20] S. Antontsev, Wave equation with $p(x, t)$-Laplacian and damping term: Existence and blow-up, in: Abstracts of the International Congress "Nonlinear Models in Partial Differential Equations", Toledo, Spain, June 14-17, 2011.
[21] J. Haehnle, A. Prohl, Approximation of nonlinear wave equations with nonstandard anisotropic growth conditions, Math. Comp. 79 (2010) 189-208.
[22] J.P. Pinasco, Blow-up for parabolic and hyperbolic problems with variable exponents, Nonlinear Anal. 71 (2009) 1094-1099.

[^0]: E-mail address: antontsevsn@mail.ru.

