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We investigate the elastic wave propagation within a non-homogeneous continuum
according to W. Noll. After some preliminaries in geometry approach suggested by
E. Cartan, the linear momentum equation of so-called weakly continuous medium
is written. A first example illustrates the modal analysis of an axisymmetric non-
homogeneous thick tube. The overall solution is the product of an attenuating exponential
response with Kummer’s functions. The second example deals with a Timoshenko beam
involving transversal displacement and angular rotation of section. We observe the
presence of various waves with spatial attenuation, either for the displacement or the
section rotation, together with the occurring waves at different scale levels.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous nous intéressons à la propagation d’onde élastique à travers un milieu continu non
homogène au sens de W. Noll. Après quelques préliminaires sur l’approche géométrique
suggérée par E. Cartan, la loi de la quantité de mouvement pour un milieu dit faiblement
continu est écrite. Un premier exemple illustre l’analyse modale d’un cylindre, à paroi
épaisse, non homogène et axisymétrique. Les solutions analytiques sont sous la forme
d’un produit d’une atténuation exponentielle avec des fonctions de Kummer. Un deuxième
exemple étudie une poutre de Timoshenko avec un mouvement transversal et rotatif d’une
section. Nous observons la présence d’ondes différentes avec atténuation spatiale, que ce
soit pour le déplacement ou la rotation de la section, ainsi que celles se produisant à
différents niveaux d’échelle.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Wave propagation experiments within particular material samples generally emphasize attenuation of the amplitude of
the wave: ultrasonic in polycrystalline e.g. [1], micro-porous ceramics e.g. [2], scattering mechanism e.g. [3] and pass band
effects in fractured steels plates e.g. [4]. Experimental analysis of wave characteristics within fractured solids, geophysical
material, defected material also constitutes an active research field in the domain of non-destructive testing and needs
supporting of rigorous underlying concept. Namely the existence of stop-pass band behavior waves which propagate within
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such material is an important help in monitoring the in situ degradation of material e.g. [4]. The dispersive character of
waves experimentally observed can be analyzed with a higher accuracy but often empirically. Indeed it is usual to a fortiori
multiply the wave results of homogeneous medium by an attenuation of the exponential type exp(−αx) to fit theory with
experiments. Additionally, the experimental eigenfrequencies ωn for some non-homogeneous medium are in general slightly
higher than for homogeneous medium e.g. [1]. The classical form of wave propagation equation does not account for the
attenuation of the wave, emphasized with the experiments. These materials are named “non-homogeneous”.

Natural definition of “non-homogeneous” means generally that the mass density is variable conversely in homogeneous
medium where it may be constant at any point. By this way, for examples, Raj and Sujith [5] reformulated the wave equa-
tion for propagation within medium with variable area, Theotokoglou and Stampouloglou [6] considered variable Young’s
modulus for investigating on the stress. Such approaches of non-homogeneous medium essentially focus on the distribution
of the matter in the medium. In the present study, we focus on the existence of inhomogeneity fields in a material body
named “continuum”.

In 1909, Cosserat continuum model was introduced by Cosserat brothers and consists in a continuum model involving
independent field of rotation, as primal variable, in addition to the displacement. For many years, Cosserat continuum was
used to model non-homogeneous medium e.g. [7]. By using homogenization method and asymptotic analysis, Cosserat con-
tinuum models succeed to obtain effective properties of non-homogeneous material. Inspired by this approach, Cartan [8]
developed an extended continuum including not only the metric g for measuring the shape change but also an affine con-
nection ∇ which underlines the gradient operator for tensor field on the continuum; to any affine connection are associated
tensors of torsion ℵ and curvature R which are not necessarily null. In this case, there is a loss of affine equivalence of the
material manifold (continuum) with the ambient Euclidean space, corresponding to so-called nonholonomic deformation of
the continuum. This provides new motivations for investigating the presence of inhomogeneity field in the continuum from
a theoretical point of view e.g. [9–11]. The concept of Cartan circuit was proved by earlier studies of Bilby and Smith [12],
Kondo [13], Kröner [14] to bring new insights for modeling continuous distribution of dislocations and disclinations in the
continuum. Within the framework of simple material, in [9] Noll gives a new definition of “homogeneous”, and consequently
“non-homogeneous”: a material manifold is homogeneous if it exists a configuration (state of deformation of material man-
ifold) in which the mass density, for example, is constant at any point. By this way, an extended class of non-homogeneous
continuum called “weakly continuous medium” (WCM) was developed in 1997 by Rakotomanana [15], allowing disconti-
nuities of scalar fields and vectorial fields described by torsion and curvature. The introduction of the torsion as additional
kinematical variable can be considered as an extended Cosserat continuum model e.g. [16].

In the present study, we consider then a continuum with inhomogeneity field, in the sense that the distribution of the
matter is assumed continuous but that discontinuity of scalar fields (density, temperature, . . .) and discontinuity of vecto-
rial fields (velocity, micro-cracks, intergranular decohesion, . . .) may appear in the continuum. The “inhomogeneity field”
represents both types of discontinuity assumed sufficiently high to accept a continuous volume distribution of inhomo-
geneity in the continuum. According to the previous definition of Noll, a continuum with inhomogeneity field is named
a “non-homogeneous” continuum. We aim to develop an example of WCM for analyzing the wave propagation within a
non-homogeneous continuum with only discontinuity of scalar fields. The linear momentum equation was first derived
from the equations of Cauchy in a continuum with inhomogeneities e.g. [17], then we analytically solved it for two non-
homogeneous samples: a thick-walled cylinder and a Timoshenko beam. The modal analysis aims at describing the presence
of a stop-pass frequency and wave attenuation in space, both directly related with the parameter introduced to describe the
inhomogeneity field.

2. Preliminary in geometry

A continuum is a set of material points M , modeled by a Riemannian manifold (endowed with a metric g and an
affine connection ∇) which is embedded into Euclidean ambient space E (Cartesian). The transformation of continuum
is a map ϕ from an initial configuration B0, assumed without inhomogeneity field, to its deformed configuration B: the
location of M ∈ B is defined by OM = ϕ(OM0) with M0 ∈ B0. The deformation of continuum is then observed with respect
to a basis embedded in the continuum. A tangent local base (f01, f02, f03) ∈ T M0 B0 is transformed into a deformed base
(f1, f2, f3) ∈ T M B according to fa = dϕ(f0a) for a = 1,2,3, where dϕ is called the deformation gradient but in general it is
not a gradient. Indeed, if the transformation ϕ is not a diffeomorphism, the notion of gradient is not rigorously defined.

Let X ∈ B a point of the manifold, and let consider a mapping which associates X to a point of the Euclidean space
x ∈ E . We denote this mapping x(X) for simplifying. For the sake of the simplicity, we assume that the coordinates X =
(X1, . . . , Xn) are Cartesian. In the following, we note (∂[..]/∂ Xk) = [..],k and (∂[..]/∂ Xk∂ Xl) = [..],kl .

2.1. Holonomic mapping

Let us consider a smooth and single valued mapping: it is a diffeomorphism and we call it holonomic mapping e.g.
[17,18]. It is usual to define the deformation gradient also called basis triads (let recall in general case that is not a gradient)
in components form, together with its reciprocal basis triads: F i

α(X) := xi
,α(X) and F β

j (x) := Xβ

, j(x) The triads satisfy the

orthogonality and the completeness relationships: F i
α(X)F β [x(X)] = δ

β
α and F i

α(X)F α[x(X)] = δi . We may write the vector
i j j



N. Antonio Tamarasselvame et al. / C. R. Mecanique 339 (2011) 779–788 781
transformation and the components of the metric tensor, where êi is a vector rigidly attached to the Euclidean space E:
eα = F i

α êi and gαβ = g(eα,eβ). On the one hand, since the transformation x(X) is smooth and single valued, it is integrable,
i.e. its derivative commute, by using the classic Schwarz’s integrability conditions: F i

α,β − F i
β,α = xi

,βα − xi
,αβ = 0. On the

other hand, we can differentiate the vector base:

eα,β := Γ
γ
αβeγ = F i

α,β êi = F i
α,β F γ

i eγ �⇒ Γ
γ
αβ = F i

α,β F γ
i

Then it is straightforward to check that the torsion tensor projected in (eα), e.g. [17], is equal to zero during an holonomic
transformation: ℵγ

αβ := Γ
γ
αβ − Γ

γ
βα = (F i

α,β − F i
β,α)F γ

i = 0.

2.2. Nonholonomic mapping and torsion

Now, let consider mapping that are not smooth and/or not single valued. In such a case, the basis triads are not inte-
grable. However, it is possible to map the points surrounding X defined by the tangent vector dX to the vector dx via an
infinitesimal transformation defined by the triads: eα = F i

α êi and dxi = F i
α dXα , in which the coefficients functions F i

α(X)

are not integrable in the sense of

F i
α,β − F i

β,α = xi
,βα − xi

,αβ �= 0

In such a case, the mapping is called nonholonomic. It is necessary to modify slightly the previous development to give (the
base {ê1, . . . , ên} is assumed rigidly attached to the Euclidean space): ℵγ

αβ := Γ
γ
αβ − Γ

γ
βα = (F i

α,β − F i
β,α)F γ

i �= 0, showing
that the torsion tensor is not equal to zero for such a nonholonomic mapping. It does not lead to a single valued mapping
x(X). Such a transformation may capture the translational dislocations of Volterra e.g. [11]. This short section permits us to
highlight the role of torsion tensor on the classification of continuum transformations. More general proof may be found in
a previous work [15], devoted to the class of WCM. More general study on nonholonomic transformation is done in [19],
according to [17,18], where notably the role of the curvature tensor R is also highlighted. Indeed, torsion tensor is associated
to translational dislocations or also to the local discontinuity of any scalar field on the continuum, while curvature tensor is
associated to the rotational dislocations or also to the local discontinuity of any vector field on the continuum [15]. In this
paper only local discontinuity of scalar field on the continuum will be taken into account.

3. Wave propagation equation

The present section uses the notations introduced in the previous section.

3.1. Kinematics

In continuum mechanics, the Lie–Jacobi bracket [u,v] defined for two vector fields, measures the failure of closure of a
parallelogram (initially closed). This happens when the continuum deformation includes the nucleation of micro-cracks or
the occurrence of dislocations within crystalline solids (see [17] and also [16]). For the Lie–Jacobi bracket no Riemannian
metric is required. Let (f01, f02, f03) such that [f0a, f0b] = 0 for a,b = 1,2,3. If the transformation ϕ is a C∞ diffeomorphism
then [fa, fb] = 0, e.g. [17]. Otherwise we define the Cartan constants of structure ℵc

0ab as [fa, fb] = ℵc
0abfc . The constants of

structure ℵc
0ab characterize the “irreversible” part of the deformation compared to a strongly continuous transformation for

which these coefficients remain null if they were initially chosen null. Nevertheless, two bases which can be used for the
equation of motion: (a) Coordinate base (f1, f2, f3) which is a local base associated with a curvilinear coordinate system
and ℵc

0ab = 0 for a,b = 1,2,3 (see theorem of Frobenius e.g. [20]); (b) Noncoordinate base (f1, f2, f3) which is not a local
base associated with a curvilinear coordinate system and ℵc

0ab �= 0. The previous subsection on nonholonomic mapping has
been presented in noncoordinate base for the sake of simplicity, thus the components of torsion are reduced to the skew-
symmetric part of the connection. In general case, the constants of structure are related with the components of the torsion
by ℵc

ab := Γ c
ab − Γ c

ba − ℵc
0ab , where Γ c

ab := fc(∇fa fb) represent the coefficients of the (general) affine connection, e.g. [17].
The definition of the deformation faces difficulties in a physically reasonable manner notably when inhomogeneity field

grows up within the continuum e.g. [9,10]. For continuum undergoing only holonomic deformation, the deformation of con-
tinuum is defined with an Euclidean connection labeled ∇ deriving from the Euclidean metric g and the displacement u
is admitted as primal variable. The metric tensor imposed by the ambient space is g = I + ∇u + ∇T u + ∇T u∇u; for small
displacement the Cauchy strain ε := (1/2)(∇u + ∇T u) is related to its linear part, e.g. [21]. In presence of nonholonomic
deformation, it is no more possible to describe this deformation by only the metric, the material loosing its affine equiv-
alence with the Cartesian ambient space. Thus, determination of ε faces conceptual problem since the affine connection
takes the form of ∇ = ∇ + ∇ inh (“inh” for inhomogeneity) where ∇ inh is not skew-symmetric with respect to the lower
indices e.g. [16,20] (associated torsion is not equal to zero). When undergoing nonholonomic deformation, the kinemat-
ics of non-homogeneous continuum includes then the torsion in addition to metric e.g. [19]. Conversely to second grade
models e.g. [22], we work here with a tensor metric and separately an affine connection (with torsion) which captures the
inhomogeneity field e.g. [9]. In summary, the motion of B is completely described by the time evolution of the displace-
ment u(M, t) and the torsion ℵ(M, t). In the following, the connection ∇ is employed and consequently we use the Cartan
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coefficients of structure: there are 27 non-independent skew-symmetric coefficients ℵc
0ab = −ℵc

0ba . Originally proposed by

Cartan [8], a 1-form is then defined as ℵ̃0 := ℵa
0ab fb that is a covariant vector which can be considered as a surface-like

vector. The non-homogeneous continuum thus consists in a collection of small piece of Euclidean granules, originally called
“microcosms” by Gonseth [23]: all of them can deform, translate and rotate with respect to each other (that is the link with
the Cosserat model).

3.2. Linear momentum equation

Among the set of equations governing continuum in mechanics, the conservation laws mainly account the conservation
of mass, the conservation of linear momentum, the conservation of angular momentum and the conservation of energy.
Some authors such as Noll [9] and Kröner [24] have reformulated the classical equilibrium equations of Cauchy for de-
fected continuum. Conforming to these works, Rakotomanana [17] have attempted to rederive the conservation equations
in thermomechanics for non-homogeneous continuum, particularly, the divergence operator must be reshaped accordingly
(see [17]). In this paper, we only focus on the linear momentum equation, like conservation law of WCM which is given by
e.g. [17,24]:

div(σ ) + σ(ℵ̃0) = ρ
∂2u

∂t2
(1)

The left hand side of (1) includes a classical divergence of the stress div(σ ) and a contribution of the inhomogeneity field
e.g. [17,24] which is source of internal stresses. The theories of elastic or elastic–plastic continuum were developed by
accounting for dislocations and disclinations either in the framework of strain gradient e.g. [25–27], or in the context of
affinely connected manifold with torsion e.g. [9,10,15,28,29]. The extra term σ(ℵ̃0) captures the stress contribution of inho-
mogeneity field and attributed to so-called configurational forces e.g. [11,30,31]. This term changes not only quantitatively
but also qualitatively the wave propagation e.g. [32]. In the present study, we emphasize the role of the Cartan 1-form ℵ̃0
with the help of simple examples with some reasonable assumptions. For each Euclidean granules (microcosm) constituting
the non-homogeneous set, the constitutive law is linear elastic isotropic with a constant mass density ρ = ρ0. And we con-
sider a uniform Cartan 1-form (a vector in an orthonormal base): ℵ̃0 does not depend on the time nor the space. We aim to
highlight the effects of simple defects distributed throughout the material on the wave propagation within. A more general
form of ℵ̃0 may be considered for further extension of this model. The space gradient of the displacement being ∇u, the
Cauchy strain remaining ε := (1/2) (∇u + ∇ Tu), we consider the following constitutive law σ = λ0 TrεI + 2μ0ε, where λ0
and μ0 are constants of Lamé. Consequently, from (1) we obtain:

(λ0 + μ0)∇(div u) + μ0�u + λ0 Trεℵ̃0 + 2μ0ε(ℵ̃0) = ρ0
∂2u

∂t2
(2)

For ℵ̃0 = 0, Eq. (2) reduces to the classical Navier’s equation. The role played by the parameter ℵ̃0 in the resolution of (2)
aims to be defined in the next subsection.

For comparison, similar presence of the torsion tensor ℵ in the Euler–Lagrange equations is also observed for classical
and quantum particle mechanics [18]. Namely the torsion tensor is introduced by means of the space connection whenever
nonholonomic path is followed by particles in the space. Also, in a series of papers, Capuani and Willis [33] introduce the
wave propagation within discrete models of cracks within otherwise virgin matrix. By considering a random distribution of
discrete micro-cracks, and by averaging the crack effects, the equation of wave propagation may be written as follows:

(λ0 + μ0)∇(div u) + μ0�u + κ = ρ0
∂2u

∂t2
(3)

Where an extra-body force κ in the virgin matrix, due to the presence of micro-cracks distribution appears. Details of the
formulation of this extra-body force may be found elsewhere [33].

More generally, constitutive laws of linear elastic solids with distribution of dislocations and disclinations, an example
of WCM (see [15]), are obtained by choosing free energy functions depending on higher order of the strain gradients, most
of them were derived from original potential proposed by Mindlin e.g. [34]. Such models of first strain gradient, e.g. [22],
have been used to describe the inhomogeneity field in continuum and the wave dispersion. Particularly, gradient-enriched
elasticity models have been used to investigate the attenuation of high-frequency waves. Such a first strain gradient model
does not respect the invariance principle of fields in physics, consequently some forms of potential energy, according to non-
Riemannian geometry, are proposed in [19]. But hereafter, we choose an energy without gradient term and we thus note
the distinction between the used constitutive law and the conservation law: the constitutive law is linear elastic isotropic
homogeneous with constant mass density ρ0, while the linear momentum equation is derived from a non-homogeneous
continuum, with discontinuity of scalar fields represented by Cartan 1-form ℵ̃0, then considered as a gradient model.

3.3. Stop-pass frequency

Stop-pass frequency originates from 1-D wave propagation through a continuum with micro-fracture distribution, per-
pendicular to the wave direction, that presents a sound basis for determining the micro-fracture characteristics as geophysics
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and mining engineering e.g. [4]. For further simplification, let us consider a fixed-fixed beam of length � for which the kine-
matics is assumed to be described by a displacement vector u := u(x, t) e1 and a uniform Cartan 1-form ℵ̃0 := ℵ0 e1 which
is similar to the discontinuity of scalar field (inhomogeneity of material) developed in e.g. [17]. The longitudinal velocity
is c2

L := (λ0 + 2μ0)/ρ0, the transversal velocity c2
T := μ0/ρ0 and the ratio c2 := c2

T /c2
L < 1. Let us introduce the relations

t = T t̄ , x = Lx and ℵ0 = 2ℵ0L−1 where T (time) and L (space) are scales; we choose T = L/cL and L = �. For convenience,
we will write the non-dimensional variables without over-line. The non-dimensional 1-D wave propagation equation from
(2) takes the form of

∂2u

∂x2
+ 2ℵ0

∂u

∂x
− ∂2u

∂t2
= 0 (4)

The dynamic equation includes then an additional term 2ℵ0(∂u/∂x) which represents the influence of inhomogeneity due to
the presence of discontinuity of scalar field. This equation looks like a linear damped Klein–Gordon waves equation e.g. [35],
dimensionless and with uniform ℵ0. Eq. (4) can be solved by applying the integral Fourier transform over the dimensionless
time t . Assuming u(x, ·) ∈ H1(R) ∀x ∈ [0,1] and multiplying Eq. (4) by e−iωt (ω being an arbitrary parameter, i2 = −1) and
integrating it by

∫
R

dt , we obtain a second-order differential equation

U ′′(x) + 2ℵ0U ′(x) + ω2U (x) = 0 (5)

where U (x) := ∫
R

u(x, t)e−iωt dt is the Fourier transform of u(x, ·). Searching for solutions of the type U = ekx , k ∈ C

(eigenvalues problem), Eq. (5) leads to the dispersion equation k2 + 2ℵ0k + ω2 = 0. Three types of solution k are possi-
ble according to the sign of the discriminant � := ℵ2

0 − ω2. In each case the solution depends on parameters ω and ℵ0.
Given ω = ωn ∈ R+ , n = 0, . . . ,∞ (discrete spectrum), we have a discrete family of solutions kn . Consequently the solution
of (5) takes the form of Un(x) = eknx , which finally depends on the parameter ℵ0. The general solution u(x, t) of wave prop-
agation equation (4) is the decomposition in Fourier series u(x, t) = ∑

n∈N
Un(x) eiωnt . We henceforth seek solutions of the

type u(x, t) = U (x) eiωt in the next examples. We call stop-pass frequency (or cut-off frequency) the frequency ω which is
defined by � = 0 e.g. [4], ωn ∈ R+ represents the nth eigenfrequency of the wave, kn represents the wave number and Un is
the wave function. Let us consider a preliminary example treated in [17] with exactly the same equation as Eq. (4): a fixed–
fixed beam of length l = L with discontinuity of scalar field, the boundary conditions are then U (0) = U (1) = 0. We should
assume ω > ℵ0 since no nontrivial solutions are possible when � � 0. Indeed when the frequency reaches ω � ℵ0, the
boundary conditions induce U1 = U2 = 0, meaning that no waves are allowed to propagate through the non-homogeneous
beam. In this paper, the parameter ℵ0 being uniform (no dependence on time nor space), it plays the role of a simple single
stop-pass frequency.

4. Applications

4.1. Thick-walled tube

Let us consider a thick-walled tube (cylinder) of infinite length, with inner radius p and outer radius q (0 < p < q) in
an axisymmetric problem (∂θ ≡ 0) with the displacement u = u(r, t)er and ℵ̃0 = ℵ0er . For convenience, let us introduce the
variables t = T t̄ , r = Rr̄ and ℵ0 = 2ℵ0 R−1, where T and R are scales. Then we chose the following time scale T = R/cL .
Again, we will note the non-dimensional variables without over-line. The non-dimensional equation (2) reduces to

∂2u

∂r2
+

(
2ℵ0 + 1

r

)
∂u

∂r
+

(
2(1 − 2c2)ℵ0

r
− 1

r2

)
u = ∂2u

∂t2
(6)

Introducing solution type u(r, t) = U (r)eiωt , ω ∈ R+ for r ∈ [p/R;q/R] and t ∈ [0;+∞], we have

U ′′(r) +
(

A0 + B0

r

)
U ′(r) +

(
A1 + B1

r
+ C1

r2

)
U (r) = 0 (7)

where A0 = 2ℵ0, B0 = 1, A1 = ω2, B1 = 2(1 − 2c2)ℵ0, C1 = −1. The general solution of (7) takes then the form of

U (r) = r−A e− f (r) [
K1 M

(
a,b;h(r)

) + K2 U
(
a,b;h(r)

)]
(8)

where M(.., ..; ..) and U (.., ..; ..) are respectively the Kummer’s functions of first and second kind, where f (r) = a1r and
h(r) = a2r and the parameters A,b,a1,a2,a ∈ C e.g. [36]. Depending of the sign of the discriminant � := ℵ2

0 − ω2, each set
{A,b,a1,a2,a} corresponds to one base of the solutions of (7). It can be proven that if � = 0, the Kummer’s functions are
defined with help of the Bessel’s functions e.g. [37]. If � < 0, one of the solutions is

A = −1; b = 3; a1 = ℵ0 + i
√−�; a2 = 2i

√−�; a = −[2(1 − 2c2)ℵ0 − a1 − a2]
a2

(9)

And if � > 0, one of the solutions is
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Fig. 1. Norm of the determinant |det(ω, c, r1)| vs. real frequency ω of the non-homogeneous aluminum cylinder.

A = −1; b = 3; a1 = ℵ0 + √
�; a2 = 2

√
�; a = −[2(1 − 2c2)ℵ0 − a1 − a2]

a2
(10)

If R(b) > R(a) > 0 then the Kummer’s functions are defined e.g. [37]. We have then chosen parameter b = 3. If � < 0
we have R(a) = 3/2 but if � > 0, we have a ∈ R and the condition a > 0 depends on the values of ω, c and ℵ0. We
cannot correctly define the Kummer’s functions at first sight. Consequently for � < 0, the general solution is given with
respect to the parameters ℵ0, c and ω: U (r) = r e−a1r[K1 M(a,3;a2r) + K2 U (a,3;a2r)]. As illustration, let us consider the
breathing wave of fixed–fixed cylinder: for an imposed displacement at the two radii r = p/R and r = q/R , we have two
boundary conditions U (p/R) = U (q/R) = 0. We choose R = p = 50 [μm] and q = 100 [μm], consequently p/R = 1, q/R = 2.
For the convenience of physical interpretation of the inhomogeneity field in the cylinder, we define the characteristic defect
length dℵ = 2/ℵ0 e.g. [17]. The quantity ℵ0/2 (inverse of defect length dℵ) is the acoustic absorption coefficient e.g. [38].
We choose dℵ = 1 [μm], consequently the dimensional value ℵ0 = 2 [(μm)−1] and the non-dimensional value ℵ0 = 50. For
aluminum the velocities cL = 3040 [ms−1] and cT = 6420 [ms−1] e.g. [17]. The boundary conditions hold U (1) = U (2) = 0
and then the unknown factors are K1 and K2. Nontrivial solutions exist if and only if the determinant is equal to zero. Since
the terms e−a1 and e−2a1 are obviously definite positive, the necessary and sufficient condition reduces to the dispersion
equation:

M(a,3;a2)U (a,3;2a2) − M(a,3;2a2)U (a,3;a2) = 0 (11)

which relates the non-dimensional frequency ω, the material properties c, the geometrical shapes (ratio q/R) of the problem
and the non-dimensional ℵ0. Again, a stop-pass frequency (cut-off frequency) is reached whenever the discriminant � :=
ℵ2

0 − ω2 is equal to zero, i.e. ω = 50. The non-dimensional eigenfrequencies are noted ωn and represent the values of ω
for which both the imaginary and real parts of the determinant (11) are equal to zero. In such a case, the eigenfrequencies
ωn are such that ωn > ℵ0 = 50. Fig. 1 permits to capture the eigenfrequencies (n = 1, . . . ,5) where the module of the
determinant is equal to zero.

We aim to determine a characteristic radius where the wave displacement can be neglected (within non-homogeneous
cylinder with dℵ = 1). According to the eigenfrequencies ωn, n = 1, . . . ,5, the wave displacement is u(r, t) = ∑5

n=1 Un(r)eiωnt .
Let us consider arbitrary ε = 10−24. For r > 1.1 we have |u(r, t)| �

∑5
n=1 |Un(r)| < ε . Finally the amplitude of the wave is

approximately equal to zero within the cylinder for r > 55 [μm] (corresponding dimensional radius). This short analysis
shows that beyond this radius the wave is strongly attenuated, then the analysis of wave for unbounded continuum is not
necessary for such a model.

Now we aim to discuss on the direction of wave. We assume that the displacement u and the parameter ℵ̃0 are one-
dimensional (with respect to er or eθ ). We notice the components of the r-depending displacement either ur = u(r) or uθ =
u(r). We have investigated the case 1: {u = u(r)er, ℵ̃0 = ℵ0er}. Now there are three other following cases: {u = u(r)eθ , ℵ̃0 =
ℵ0eθ } (case 2), {u = u(r)er, ℵ̃0 = ℵ0eθ } (case 3) and {u = u(r)eθ , ℵ̃0 = ℵ0er} (case 4). Without accounting for the boundary
conditions, Table 1 summarizes the general spatial solution of the wave propagation equation (2), according to the wave u
is parallel (case 1 and case 2) or orthogonal (case 3 and case 4) to inhomogeneity field represented by the scalar ℵ̃0. All
types of the solutions are resumed in Table 1.

4.2. Bending of beam

We investigate a Timoshenko beam, which may be considered as a Cosserat model e.g. [21], with inhomogeneity field.
The deformation includes a transversal displacement u and an angular (vector) rotation θ of a section. Let us introduce the
vector ℵ for capturing the inhomogeneity of the material, ℵ = ℵ1e1 + ℵ2e2. The kinematics of the beam involves three local
fields (u, θ,ℵ) at each point x. We assume rigid transversal section with u := −x2θ(x1, t)e1 + u2(x1, t)e2. From now and
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Table 1
Classification of solutions.

u/ℵ̃0 er eθ

er Case 1: Confluent hypergeometric functions Case 3: Bessel first-order + compatibility condition
eθ Case 4: base of solutions: {exp[i(ω/c)2r],exp[−i(ω/c)2 r]} Case 2: Confluent hypergeometric functions

here-after we notice u2 := u and x1 := x. For convenience, let us introduce the variables t = T t̄ , x = Lx and ℵ1 = 2ℵ1L−1,
where T and L are scales. Then we chose the following time scale T = L/cL . Again, we will note the non-dimensional
variables without over-line. Let us note (..)tt := ∂2(..)/∂t2, (..)x := ∂(..)/∂x and (..)xx := ∂2(..)/∂x2. In the following we
consider a non-homogeneous beam ℵ1 �= 0 and ℵ2 = 0. The system of non-dimensional equations is deduced:{

θxx + 2ℵ1θx − θtt = 0

−(
1 − c2

)
θx + 2c2ℵ1(ux − θ) + c2uxx − utt = 0

(12)

in which the first equation is an uncoupled with respect to u. The chosen example is a particular case in which the vector
parameter ℵ = ℵ0 e1 [8]. In fact, this is a particular case of Cosserat continuum model, as for micro-polar continuum,
rotation θ may occur alone without displacement (as an illustration, a set of aligned domino’s falling – with the same
motion – on a horizontal table, they relatively slip each other, but the line of mass center remains horizontal) e.g. [34].
In this particular case, the coupling in the first equation disappears. This is not the case when ℵ has a component along
e2 in which coupling terms appear for the two equations constituting the system. It is interesting that this second case,
with ℵ = ℵ0 e2, resembles more to the classical Timoshenko beam e.g. [21]. In such a situation, the transverse shear is
strongly coupled with the bending as for classical Timoshenko beam. Given ω ∈ R+ , searching for solutions of the type
θ(x, t) = Θ0 ekx+iωt and u(x, t) = U0 ekx+iωt , in which k ∈ C, leads to the system:{

k2Θ0 + 2ℵ1kΘ0 + ω2Θ0 = 0

−(
1 − c2

)
kΘ0 + 2c2ℵ1(kU0 − Θ0) + c2k2U0 + ω2U0 = 0

(13)

Nontrivial solutions exist if and only if (k2 + 2ℵ1k + ω2)(c2k2 + 2ℵ1c2k + ω2) = 0. Two stop-pass frequencies exist for
the non-homogeneous bending beam according to the discriminants �Θ := ℵ2

1 − ω2 and �U := ℵ2
1 − (ω2/c2). For each

eigenfrequency ωn ∈ R+ , the general form of angular eigenfunctions are easily obtained depending on the value of �Θ .
Notice that the general solution of (13)1 is given in respect with the non-dimensional parameter ℵ1 (inhomogeneity of
material) and ω (frequency). The second equation gives: 2c2ℵ1kU + c2k2U + ω2 U = (1 − c2)Θ ′ + 2c2ℵ1Θ (with Θ =
Θ(x) and U = U (x)), where the angular eigenfunctions are obtained from (13)1 and the symbol ′ represents the derivative
with respect to x. The general transversal solution is the sum of general homogeneous solution and a particular solution:
U (x) = U hom(x) + U part(x). For the homogeneous solution we have the three possibilities depending on the value of �U :=
ℵ2

1 − (ω2
n/c2). For the particular solution, we have to solve for each Θn(x): 2c2ℵ1kU +c2k2U +ω2 U = (1−c2)Θ ′

n +2c2ℵ1Θn ,
in which it is important to consider the previous wave number solution satisfying k2 + 2ℵ1k + ω2 = 0. This leads to

U part
n (x) = (1 − c2)Θ ′

n + 2c2ℵ1Θn

−(1 − c2)ω2
n

(14)

Let go back to the general case and introduce the both discriminants �Θ := ℵ2
1 − ω2 and �U := ℵ2

1 − (ω2/c2). Since 0 <

c2 < 1 we have �U < �Θ . The possible cases are: {�Θ > 0,�U > 0} and {�Θ > 0,�U = 0} and {�Θ > 0,�U < 0} and
{�Θ = 0,�U < 0} and {�Θ < 0,�U < 0}. In the general case, solutions of (13)2 are determined according to the �U

values and the �Θ values too. The general solution of (13)2 is given with respect to the non-dimensional parameters ℵ1,
c and ω. Either for the angle Θ or the displacement U the discriminant cannot be equal to greater or equal to zero since is
not compatible with clamped–clamped beam. Indeed, the boundary conditions for a beam of length L (L = 100 [μm]) are
Θ(0) = Θ(1) = 0 and U (0) = U (1) = 0. They induce Θ(x) ≡ 0 and U (x) ≡ 0. This may not be the case for other boundary
conditions. For illustration, we consider the bending and transversal wave within a clamped–clamped beam. We thus assume
that ω > ℵ1. We have four boundary conditions Θn(0) = Θn(1) = 0 and Un(0) = Un(1) = 0. They lead to the following results
represented on Fig. 2 (the material is again aluminum). The wave consists in two distinct contributions: a low frequency
wave which supports a higher frequency wave, superimposed on the lower frequency one. For convenience, curves represent
only the oscillating aspects of the wave and the attenuation was skipped by dividing the eigenfunctions by exp(−ℵ1).

We aim to determine a characteristic length where the wave is assumed to be null (within non-homogeneous beam with
dℵ = 1). According to the eigenfrequencies ωn, n = 1, . . . ,5, the wave angle is θ(x, t) = ∑5

n=1 Θn(x)eiωnt and the transversal
wave is u(x, t) = ∑5

n=1 Un(x)eiωnt . Let us consider arbitrary ε = 10−2. For x > 0.06 we have |θ(x, t)| � ∑5
n=1 |Θn(x)| < ε and

|u(x, t)| �
∑5

n=1 |Un(x)| < ε . Finally the amplitude of the total wave (angle and transversal) is approximately equal to zero
within the beam for x > 6 [μm] (corresponding dimensional length). Here again, we find that it is not necessary to consider
unbounded (infinite length) continuum since beyond some characteristic lenght, the wave is strongly space attenuated.
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Fig. 2. Three first modal displacement Un/exp(−ℵ1x) (non-attenuated) for non-homogeneous beam with dℵ = 1 (plain thick U1, plan thin U2, dotted U3).

5. Discussion

The macroscopic wave equation is obtained according to an extended linear momentum equation derived in [15]. The
presence of cracks, holes or more generally defects at the mesoscopic level are accounted for by an additional tensorial
variable (torsion) to e.g. [9], describing the discontinuity of scalar fields on the continuum due the presence of these defects
[17] in classical and quantum physics [18]. The study of wave propagation within non-homogeneous body is conducted in
this paper with geometric approach for capturing the inhomogeneities within the material. There are some previous results
concerning such a study, that may be compared with this present work. Indeed, for most materials ultrasonic techniques
have been developed to characterize the internal degradation by measuring the attenuation of ultrasonic waves. Various
theoretical models have been developed for explaining and predicting correlation between attenuation and the presence of
micro-cracks e.g. [39]. In the present study, simple micro-cracks are described by a geometric uniform variable ℵ̃0 (see [8]).

Basically, attenuation is a collective effect of four contributions e.g. [40]. First, diffraction is a beam spreading that is the
dominant source near a crack (wavelength is same order as crack length). Second, far from the crack, absorption (conversion
of sound energy to heat) has an exponential relationship of attenuation with distance. It is observed in all case that the
wave attenuates exponentially with distance, which typically conforms to the usual absorption contribution e.g. [38,40].
For examples treated in this work, the wave amplitude exponentially decays with respect to the space location beyond
small length. These examples were analytically solved, involving confluent hypergeometric functions instead of the classical
Bessel’s and Hankel’s functions (thick-walled tube), and highlighting the occurring of at least two scales for the waves, a
higher frequency wave superimposed on a lower frequency wave one (Timoshenko beam). Third, scattering is the dissipation
due to geometric dispersion of wave into adjacent media or into non-homogeneity within the material itself. Fourth, velocity
dispersion induces a signal loss provoked by the different velocities for different frequencies involved in the wave. Here, the
1-form ℵ̃0 field may be considered as variables mimicking small holes deflecting the wave propagation within the sample.

Despite its importance for ultrasonic measurement, most models do not account for attenuation in the initial wave equa-
tion. It is often assumed and added ad hoc for fitting with the experimental results e.g. [38,41]. In the present model, the
attenuation is accounted for in the initial equation by the extra term σ(ℵ̃0). For example, experimental analysis of wave
propagation in micro-porous ceramics (pores 1 μm) showed strong attenuation and cut-off of frequency e.g. [2]. A sudden
decrease in the velocity at high porosity values was shown but could not be explained with macroscopic models of wave
propagation. The ability of classical wave propagation to model very micro-porous media was then questioned and the au-
thors assumed that the strong attenuation was due to the wave scattering from the sample geometry disorder than due to
the sound adsorption mechanisms in the porous ceramics. Cut-off frequency phenomenon was also observed in macroscopic
fractured material, which exhibited distinct frequency bands with energy transmission (pass bands) and with near-zero en-
ergy transmission (stop-band with cut-off frequency) e.g. [4]. But here the ℵ̃0 being uniform, a single stop-pass frequency
is reached for ‖ℵ̃0‖ = ω and we focused on the eigenfrequencies ωn . According to [17], when ‖ℵ̃0‖ � ω that corresponds
to high density of inhomogeneity, it is equivalent to the situation where the excitation frequency is greater than the defect
circular frequency (no wave can propagate). And when ‖ℵ̃0‖ < ω that corresponds to low density of inhomogeneity and
this is the more interesting case. Although experimental measurement techniques are becoming ever more accurate and
sophisticated, the list of theoretical models describing micro-cracking detection is still far from complete. Due to the short-
ness of these micro-cracks characteristic length (1 μm to 10 μm) than the usual wavelength used in ultrasonic techniques,
homogeneous linear wave theory has often not sufficiently sensitivity to apprehend material degradation at the mesoscopic
level. The present analytic results would serve benchmarks for experimental or numerical simulations.
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Furthermore, alternative method for internal variable theory proposes strong discontinuity across the crack lips. Physi-
cally, micro-cracks are displacement and/or velocity discontinuities in an otherwise intact material. Indeed, to be close to
the physical phenomenon, some micro-mechanics models are based on the physical discontinuity of matter and then as-
sume the description of micro-cracks with contacting lips with dry (or viscous if any) friction at these lips. Each micro-crack
is then included into a cell, which is its direct neighborhood and is the smallest unit that allows bulk material properties
to be quantified after homogenization. This is the case where the potential energy for each microcosm takes the form of
W (ε, ℵ̃0). Similar dependence of the energy on an additional torsion (and also curvature) field is proved in [19] and may
give the stress-strain law for non-homogeneous continuum e.g. [21]. The most important properties of the basic cell is the
ability to describe the relative translation of contacting lips (cohesion–decohesion) e.g. [42]. The crack opening modes (rela-
tive displacements of the crack lips) are the internal variables for these models e.g. [43,44]. Numerous models are based on
the discrete distribution of micro-crack within otherwise intact material e.g. [33,43–45].

By this way, the present work is a starting point of new investigations on generalized continuous media.
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