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This Note presents criteria on the artificial compliance due to intrinsic cohesive zone
models. A homogenized model is proposed for a collection of cohesive zones embedded
between each mesh of a finite element-type discretization (cohesive-volumetric approach).
The overall elastic behavior of this cohesive-volumetric medium is obtained as a function
of the local properties and the mesh size. For an isotropic discretization, a criterion on
the cohesive stiffnesses is derived: the additional compliance inherent to intrinsic cohesive
zone models is bounded by lower value.
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r é s u m é

Cette Note propose des critères pour la souplesse additionnelle inhérente aux modèles
de zones cohésives intrinsèques. Un modèle micromécanique est développé pour une
collection de zones cohésives insérées entre toutes les mailles d’une discrétisation spatiale
de type éléments finis (approche cohésive-volumique). Le comportement linéaire effectif
du milieu cohésif-volumique est relié aux propriétés locales et à la taille de maille. Pour
une discrétisation isotrope, un critère est obtenu pour les raideurs cohésives: la souplesse
additionnelle macroscopique liée à la présence de modèles cohésifs est minorée.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Les modèles de zone cohésive intrinsèques possèdent une raideur initiale finie : leur insertion entre chaque maille d’une
discrétisation de type éléments finis (l’approche cohésive-volumique) conduit à l’introduction d’une souplesse additionnelle.
Différents auteurs ont proposé de limiter cette souplesse additionnelle en définissant des critères reliant la raideur cohésive
à la taille des maillages considérés, e.g. [1,2] ; ces critères sont jusqu’à présent semi-empiriques et limités à certains types
de chargement. Cette Note présente des critères valables pour tout maillage et tout taux de triaxialité.
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Fig. 1. Illustration of the relationship between apparent Young modulus and mesh size in 1-D-case: (left) a representative part of 1D finite element mesh
with embedded cohesive zone model, (right) overall Young modulus normalized by bulk modulus vs mesh size.

Modèle micromécanique

Le principe de l’approche, proposé en premier lieu par [3], consiste à considérer l’approche cohésive-volumique comme
une collection d’inclusions cohésives distribuée dans un milieu continu selon une statistique de distribution spatiale liée à
la morphologie du maillage sous-jacent. Le comportement élastique homogène équivalent de ce milieu est borné par valeur
inférieure à l’aide de l’estimation de Hashin–Shtrikman [4]. Ce changement d’échelles nécessite de définir une déformation
de la phase cohésive au travers d’une épaisseur fictive e destinée à tendre vers zéro et un tenseur de raideur du quatrième
ordre pour la phase cohésive (5). Une prise de moyenne adaptée de l’estimation de Hashin–Shtrikman sur les orientations
des arêtes du maillage et un passage à la limite e → 0 permet d’obtenir les critères attendus (12).

Critères

Dans le cas d’une microstructure globalement isotrope – phase continue isotrope et orientations équiprobables des arêtes
des mailles – un critère (16) est obtenu pour la raideur cohésive :

CNLmesh

E M
� γ

R

1 − R

(
1 + 4

3

CN

CT

)
où CN et CT sont les raideurs cohésives normale et tangente, E M le module de Young de la phase continue, R une perte
de la taille de maille et γ un paramètre lié à la morphologie du maillage. Les critères semi-empiriques de la littérature
« CNLmesh/E M plus grand qu’une quantité fixée » [1,2] sont ainsi étendus et trouvent une justification théorique.

1. Introduction

Cohesive zone models (CZM) are one of the most widely used approaches to simulate numerical fracture processes from
crack initiation to overall failure. In particular, the cohesive-volumetric finite element method allows multi-crack initia-
tion without any ad hoc criteria: a traction–separation law is incorporated between each mesh of a finite element-type
discretization. However, the numerical results show that this cohesive-volumetric implementation exhibits a strong mesh
sensitivity which is still an issue of concern. The paper [5] was the first one to emphasize this mesh-dependency by illus-
trating the link between the crack path and the mesh size or the mesh type. Despite this crack path sensitivity, the authors
show therein that global characteristics are not very sensitive to the mesh and can be predicted with reasonable accuracy.

This mesh-dependency is particularly noteworthy for intrinsic CZM, i.e. traction–separation laws with initial slope: em-
bedding such types of CZM within a finite element mesh leads to an additional compliance that drastically increases when
the mesh size decreases. Following [6], this artificial compliance can be illustrated on a simple 1-D-example (see Fig. 1).
In this case, the equilibrium condition reads: F/S = E Mε = CN[u], where F is the applied force, ε the strain in the bulk
elements (mesh size Lmesh , cross area S), E M the Young modulus of the bulk elements, CN the initial cohesive stiffness of
the intrinsic model and [u] is the displacement jump across the cohesive zone. From the definition of the overall strain

ε̃ = F/S

E M
+ F/S

CNLmesh

one can deduce the normalized apparent Young modulus:

Ẽ

E M
= F/S

E Mε
= ξ

1 + ξ
with ξ = CNLmesh

E M
(1)

According to (1), the ratio ξ seems to be the key adimensional parameter controlling the mesh sensitivity in intrinsic CZMs:
more precisely, the added compliance vanishes ( Ẽ → E M ) when ξ → +∞, see Fig. 1 right. In other words, the overall elastic
behavior is not affected by the introduction of intrinsic CZMs between bulk elements and therefore the mesh sensitivity
effect vanishes.

Following the same set of ideas, various authors have proposed semi-empirical bounds for the ratio ξ in order to obtain
‘invisible’ CZMs on a structural scale. Performing numerical tension and shear tests, [1] have noticed that the elastic wave
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Fig. 2. Principle of the approach: a cohesive-volumetric finite element mesh is replaced by a continuous matrix corresponding to bulk elements and a
collection of penny-shaped cohesive inclusions corresponding to the edges of the underlying mesh; (left) 2-D illustration, (right) 3-D illustration.

speeds are unchanged across a cohesive line between two elastic and isotropic media when ξ � 10. Estimating the added
compliance for cross-triangle elements arranged in quadrilateral pattern submitted to uniaxial tension, biaxial uniform ten-
sion and pure shear, [2] obtain (νM is the Poisson ratio of the bulk material):

ξ � α

√
2 + 1

1 − νM
with α = 1 for plane stress and α = 1

1 − (νM)2
for plane strain

The aim of the present Note is to generalize these criteria to three-dimensional situations and to any type of loadings. For
that purpose, a new micromechanical model is developed.

2. Micromechanical model

2.1. Cohesive-volumetric discretization as a matrix-inclusion composite

Consider a cohesive-volumetric finite element discretization: each volumetric element is connected to each other using
CZMs as boundary conditions. The central proposal is to replace this discretization with a continuous matrix containing
cohesive inclusions (Fig. 2). The matrix has the same behavior as the bulk finite element whereas the inclusions have a
cohesive behavior defined by a traction–separation law. The spatial distribution of the cohesive inclusions corresponds to
those of the edges of the underlying mesh and has the same density, denoted by Z . In particular, in the case of a statistically
isotropic mesh, e.g. a Delaunay-type mesh, the inclusions are randomly distributed in space and in orientation. The density
Z corresponds to the specific ‘surface’ of the interface between the meshes: in two dimensions, Z is equal to the ratio of
the total length of the edges to the area of the meshed surface; in three dimensions, Z is equal to the ratio of the total area
of the edges to the volume of the meshed body. Moreover, the following geometric assumption is made:

H1: The inclusions are assumed to be of penny-shaped type (Fig. 2). In two dimensions, the straight edges of the mesh are
thus replaced by zero thickness whiskers and this assumption has no consequence. In three dimensions, the polygonal
edges are replaced by disks (with the same spatial density): the two situations are admittedly close to each other but
are different when considered rigorously.

2.2. Phases properties

Subsequently, we restrict our attention to linear elastic behaviors for the matrix and for cohesive inclusions. The contin-
uous matrix phase is considered as isotropic and its constitutive relation reads:

σ = C
M :ε with C

M = 3kM
J + 2μM

K (2)

where σ (resp. ε) is the stress (resp. strain) field, C
M is a fourth order elasticity stiffness tensor, kM and μM are the bulk

modulus and the shear modulus respectively, J and K are the isotropic fourth order symmetric tensors (i being the second
order identity tensor):

J = 1

3
i ⊗ i, K = I − J, with Ii jkl = 1

2
(iik i jl + iil i jk)

The cohesive behavior for the penny-shaped inclusions is defined by a traction–separation law which corresponds to a
linear relation between the cohesive stress vector Rcoh and the opening displacement vector [u], in a local normal-tangent
basis oriented by the normal vector n to the cohesive inclusion:

Rcoh = K · [u] with K =
(

CNn ⊗ n + CT
uT ⊗ uT

uT · uT

)
(3)

where CN (resp. CT) is the normal (resp. tangential) initial ‘stiffness’ of the cohesive law, uN (resp. uT) is the normal (resp.
tangential) component of [u] = uNn + uT . Hence, the cohesive stress tensor reads [3]:

σ coh = (CNEl + CTKl) :
([u] ⊗s n

)
(4)
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where ⊗s is the symmetric dyadic product (2a ⊗s b = aib j + a jbi for any vector a and b) and El , Kl are two components
of the fourth order transversely isotropic and symmetric tensors frame: El = n ⊗ n ⊗ n ⊗ n and Kl = 2( js ⊗ js + jt ⊗ jt)

with js = n ⊗s s and jt = n ⊗s t , where s and t are two orthogonal vectors defining the transversal plane (n, t , s define the
local orthogonal basis of the cohesive inclusion). A fourth order cohesive stiffness tensor C

coh is constructed, defining the
cohesive ‘strain’ with the help of a small length e [7], and the constitutive relation thus reads for the inclusions:

σ coh = C
coh :εcoh with C

coh = e(CNEl + CTKl) and εcoh = [u] ⊗s n

e
(5)

The small length e, that should tend to zero, is a fictitious thickness associated to the cohesive zone. Since oblate
ellipsoids tend to penny-shaped inclusions when their thickness tends to zero, the cohesive inclusions are now considered as
oblate ellipsoids and their volume fraction f is the product of the density Z (inversely proportional to a length, namely the
mesh size Lmesh) and of the fictitious thickness e: f = e Z (a cylindrical hypothesis instead of oblate one has no consequence
when e → 0).

2.3. Hashin–Shtrikman estimate

A Hashin–Shtrikman estimate [4] is used in order to establish an analytical expression of the overall elastic stiffness,
denoted by C

hom . The considered matrix-inclusion composite (Fig. 2) is composed of an isotropic elastic matrix (volume
fraction 1 − f ) following the constitutive relation (2) and of a collection of transversely isotropic oblate ellipsoids (volume
fraction f ) with the largest semi-axis a varying from A− to A+ , with the same aspect ratio w � 1 and following the
constitutive relation (3). The orientation of these ellipsoids is characterized by the direction of their symmetry axis, i.e.
a vector n of the unit sphere S of R3 (measure 4π ). Splitting this collection of inclusions into N − 1 families r (r =
2, . . . , N) and defining the inclusion density φ(a,n) such that φ(a,n)da dS is the number of inclusions of the r-th family
with radius included in (a,a + da) and elementary surface dS centered on n. The volume fraction of the r-th family reads:
cr = φ(a,n) 4π

3 a3 w da ds, with
∑N

r=2 cr = f . In this situation, the following generalization of the Hashin–Shtrikman’s result
holds [8]:

C
HS(

C
0) =

[
(1 − f )CM : V1 +

N∑
r=2

crC
coh
r : Vr

]
:

[
(1 − f )V1 +

N∑
r=2

crVr

]−1

(6)

where C
0 (resp. C

coh
r ) is the fourth order stiffness tensor of a reference medium (resp. of the r-th family of inclusions),

V1 = (C∗ + C
M)−1 and Vr = (C∗ + C

coh
r )−1. The Hill influence tensor C

∗ characterizes the stress that the infinite surround-
ing reference medium applies on a single ellipsoid having a homogeneous eigenstrain: C

∗ depends on the shape of the
inclusion w , on its orientation n and on the reference medium C

0. Introducing Tr = Vr : V
−1
1 and remarking that cohesive

stiffness depends only on the orientation n, i.e. C
coh
r = C

coh(n), and that tensor Tr depends only on the aspect ratio w and
the direction n, i.e.

Tr = T(w,n) = (
C

∗(w,n) + C
coh(n)

)−1
:
(
C

∗(w,n) + C
M)

(7)

the estimate (6) is rewritten with the help of the density φ(a,n) and an integration over the radius and the orientation:

C
HS(

C
0) =

[
(1 − f )CM +

∫
S

A+∫
A−

φ(a,n)
4π

3
a3 wC

coh(n) : T(w,n)da dS

]

:

[
(1 − f )I +

∫
S

A+∫
A−

φ(a,n)
4π

3
a3 wT(w,n)da dS

]−1

(8)

Since w is constant and C
coh(n) and T(w,n) do not depend on radius a, integrating over a leads to:

C
HS(

C
0) =

[
(1 − f )CM + w

∫
S

ψ(n)Ccoh(n) : T(w,n)dS

]
:

[
(1 − f )I + w

∫
S

ψ(n)T(w,n)dS

]−1

(9)

where ψ(n) = ∫ A+
A− (4/3)πa3φ(a,n)da. If the underlying mesh contains specific orientations (e.g. anisotropic meshes), they

have to be taken into account through the density ψ(n). For simplicity, isotropic meshes (e.g. Delaunay-type meshes) alone
are considered in the next section.
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2.4. Lower bound for isotropic meshes

Assuming that the orientations of inclusions have an equi-probability property, the density ψ(n) reduces to f /(4π w)

and the estimate (9) becomes with f = e Z :

C
HS(

C
0) =

[
(1 − f )CM + f

1

4π

∫
S

C
coh(n) : T(w,n)dS

]
:

[
(1 − f )I + f

1

4π

∫
S

T(w,n)dS

]−1

= [
(1 − e Z)CM + e Z

〈
C

coh : T
〉
�

]
:
[
(1 − e Z)I + e Z〈T〉�

]−1
(10)

where, for any fourth order tensor D, 〈D〉� = (J :: D)J + (1/5)(K :: D)K indicates the average on all orientations [9]. The
overall stiffness tensor is obtained as C

hom = lime→0 C
HS(C0).

At this stage, according to the choice of the reference medium C
0, different bounds and estimates can be derived. Since,

in a quadratic sense, C
coh is smaller than the matrix elastic tensor C

M when e tends to zero (see Eq. (5)), the Hashin–
Shtrikman upper bound or the Mori–Tanaka estimate correspond to the choice C

0 = C
M which gives the trivial result

C
hom = C

M at the limit e → 0. The same trivial result is obtained for the self-consistent scheme (C0 = C
hom). Thus, by

focusing on the case C
0 = C

coh , the Hashin–Shtrikman lower bound is defined:

C
hom = lim

e→0
C

HS(
C

coh) = lim
e→0

[
(1 − e Z)CM + e Z

〈
C

coh : T
〉
�

] : [(1 − e Z)I + e Z〈T〉�
]−1

(11)

Using the method proposed in [10] to estimate the transversely isotropic influence tensor C
∗(Ccoh) and therefore the

tensor T in (11), see (7), the expression of the bulk and shear effective moduli is derived after a convenient passage to the
limit for e → 0:

khom

kM
= ξk

ξk + 1
with ξk = CN

ZkM
and

μhom

μM
= ξμ

ξμ + 1
with ξμ = 15

4(1 + 3CN/CT)

CN

ZμM
(12)

It is worth noting that Eqs. (12) show that a cohesive-volumetric formulation with vanishing tangential cohesive stiffness
(CT → 0) leads to a macroscopic no shear material (μhom → 0). Moreover, the lower bounds (12) allow the definition of
criteria on the overall loss of stiffnesses, e.g. assuming that a reduction of 5% on the apparent bulk modulus and shear
modulus is admissible:

khom

kM
� 0.95 is ensured for ξk � 20 and

μhom

μM
� 0.95 is ensured for ξμ � 20 (13)

In the next section, the lower bounds (12) and the (13)-type criteria are numerically tested in the 2-D case for isotropic and
regular meshes. As mentioned in assumption H1, no approximation is introduced by the penny-shaped morphology in that
case and (12) is a rigorous lower bound for the cohesive-volumetric approach with isotropic meshes.

3. Numerical comparisons

The numerical experiments concern both 2-D Delaunay and regular ‘cross-triangle quadrilateral’ meshes (each square
element is subdivided into four isosceles triangles). The linear elastic response of cohesive-volumetric finite element method
is calculated under plane-strain conditions (software XPER [11,12]). The comparison between numerical results and relations
(12) involves the computation of the density Z = A/S where A is the total edge length (resp. area) in 2-D (resp. in 3-D)
and S is the total area (resp. volume) of the 2-D (resp. 3-D) meshed body. For regular meshes characterized by a mesh size
Lmesh , A is proportional to Lq−1

mesh and S is proportional to Lq
mesh where q is the considered dimension; density Z is thus

inversely proportional to the mesh size Z = γ /Lmesh where γ depends on the spatial distribution of the underlying mesh.
For cross-triangle quadrilateral 2-D meshes, γ = 2(1 +√

2) [3,2]. For 2-D or 3-D Delaunay tessellations, Lmesh is a stochastic
parameter and γ has to be understood as a mean value and a variance [13].

Typical results for the particular case CN = CT are shown in Fig. 3. As expected, relations (12) are rigorous lower bounds
for isotropic meshes (Delaunay) and the numerical results clearly show that criteria (13), ξk � 20 and ξμ � 20, ensure that
the overall added compliance do not exceed 5% (dashed lines in Fig. 3). Moreover, these results illustrate that (12) are
convenient estimates for regular meshes. Noting that these regular meshes exhibit a higher added compliance than isotropic
meshes, we derive in the next section criteria on cohesive stiffnesses.

4. Criteria on cohesive stiffnesses

Following [3], criteria on cohesive stiffnesses can be obtained from the previous micromechanical model. Considering
a homogeneous medium with a Young modulus Ehom = 9khomμhom/(3khom + μhom) and a Poisson ratio νhom = (3khom −
2μhom)/(6khom + 2μhom) – the same relations hold for the matrix phase – two relative apparent reductions R (resp. r) due
to the presence of intrinsic CZMs are defined for Young modulus (resp. Poisson ratio) with the help of relations (12):
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Fig. 3. Normalized overall elastic modulus of a cohesive-volumetric formulation with intrinsic CZMs (case CN = CT): lower bounds (12) (thick gray line), cri-
teria (13) (dashed line), numerical results for Delaunay meshes (closed symbols with variance) and for cross-triangle quadrilateral meshes (open symbols);
bulk modulus (left) and shear modulus (right).

R = Ehom

E M
= ξE

1 + ξE
where ξE = 5

1 + (4/3)(CN/CT)
× CN

E M Z
(14)

r = νhom

νM
= E M Z(−1 + 2CN/CT) + 15CNνM

E M Z(3 + 4CN/CT)νM + 15CNνM
(15)

The relation (14) extends the 1-D-equation (1) with a prefactor on ξ and the use of the density Z instead of Lmesh . Reduction
R = 1 cannot be reached (the overall Young modulus is always disturbed by the presence of CZMs), but for a given value of
R ∈ [0,1[, Eq. (14) leads to an estimate by lower value of CN/(E M Z) involving the ratio CN/CT:

CN

E M Z
� 1

5

R

1 − R

(
1 + 4

3

CN

CT

)
(16)

Fortunately, apparent reduction r = 1, i.e. νhom = νM , can be reached in (15) fixing the ratio CN/CT and thus defining
‘invisible’ intrinsic CZMs for the Poisson ratio of the considered homogeneous medium:

νhom = νM ⇒ CN

CT
= 1

2

1 + 3νM

1 − 2νM
(17)

The condition (17) ensures same elastic reduction for bulk, shear and Young moduli: khom/kM = μhom/μM = Ehom/E M ;
same relations were proposed by [14] as a closure condition in their self-consistent estimate for pure hydrostatic loadings.
The present approach can thus be seen as an improvement of the results of [14] to arbitrary type of loadings. Recalling
that Z = γ /Lmesh , one obtains with (16) and (17) a criterion on the ratio CNLmesh/E M extending semi-empirical criteria
previously proposed in the literature [1,2]:

CNLmesh

E M
� γ

R

1 − R

1

3(1 − 2νM)
(18)

As shown in Section 3, the case of regular meshes with γ = 2(1 + √
2) allows the derivation of 2-D practical criteria on the

cohesive stiffnesses. This value of γ combined with the relation (17) and the inequality (18) provides ‘practical 5% criteria’
(R = 0.95):

CT

CN
= 2

1 − 2νM

1 + 3νM
with

CNLmesh

E M
� 30

1 − 2νM
(19)

For a bulk material with νM = 0.2, these criteria give CT = 0.75CN and CN � 50E M/Lmesh . Conversely, for a bulk mate-
rial with νM = 0.2, the criterion proposed by [1], i.e. CNLmesh/E M � 10, corresponds to a reduction R about 0.78, which
guaranties only that the loss in apparent Young modulus is less than 22%.

5. Conclusion

In this Note, we have studied the overall linear constitutive behavior of an isotropic medium containing intrinsic cohesive
inclusions considered as a representation of a cohesive-volumetric finite element modeling. An asymptotic formulation of
the Hashin–Shtrikman lower bound with convenient orientational average allows the definition – for any type of loading –
rigorous criteria (12) on the normal (CN) and tangential (CT) cohesive stiffnesses for isotropic meshes and practical criteria
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for regular meshes. The accuracy of the proposed criteria were tested by numerical comparisons. Intermediate results of
this study show that: 1) a cohesive-volumetric approach with a vanishing tangential cohesive stiffness (CT → 0) leads to an
overall no shear material, 2) an a priori estimate (19) allows the calibration of CN and CT as a function both of the mesh
size and of the elastic properties of the bulk material. The extension of this results to damageable cohesive laws will be
presented in a forthcoming work.
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