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This work is focused on the determination of the thumb and the index finger muscle
tensions in a tip pinch task. A biomechanical model of the musculoskeletal system of
the thumb and the index finger is developed. Due to the assumptions made in carrying
out the biomechanical model, the formulated force analysis problem is indeterminate
leading to an infinite number of solutions. Thus, constrained single and multi-objective
optimization methodologies are used in order to explore the muscular redundancy and
to predict optimal muscle tension distributions. Various models are investigated using the
optimization process. The basic criteria to minimize are the sum of the muscle stresses, the
sum of individual muscle tensions and the maximum muscle stress. The multi-objective
optimization is solved using a Pareto genetic algorithm to obtain non-dominated solutions,
defined as the set of optimal distributions of muscle tensions. The results show the
advantage of the multi-objective formulation over the single objective one. The obtained
solutions are compared to those available in the literature demonstrating the effectiveness
of our approach in the analysis of the fingers musculoskeletal systems when predicting
muscle tensions.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

It has always been desirable to explore the mechanics of the fingers and the tendons as an aid in clinical treatment
such as tendon transfers, prevention protocols, and rehabilitation efficacy [1]. Unfortunately, there is no device to directly
measure muscle tensions [2]. As a consequence, biomechanical models of the hand become a necessary tool to analyze
different aspects of the musculoskeletal systems [3–6]. However, the thumb and the index finger systems, considered in this
work, are highly redundant, i.e., the number of independent muscles acting on a particular joint exceeds the number of
degrees of freedom of that joint. Hence, there is no direct or unique pattern in terms of the required muscle forces when
performing a specific pinch task. Several models, which are based on optimization techniques, have been proposed over the
last few decades to solve this indeterminate problem [7–11]. However most of the anatomical and biomechanical analyses
of hand functions, that have been conducted to provide predictions of muscle tensions, are often based on mono-criterion
optimization process.

On the other hand, numerical optimization techniques based on heuristic methods and the Pareto optimality concept
have been often used in the fields of biomechanics, engineering and science [12–14]. Multi-objective optimization based on

* Corresponding author.
E-mail addresses: amani.bsghaier@gmail.com (A. Bensghaier), lotfi.romdhane@enim.rnu.tn (L. Romdhane), ouezdou@lisv.uvsq.fr (F. Benouezdou).
1631-0721/$ – see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2012.01.002

http://dx.doi.org/10.1016/j.crme.2012.01.002
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:amani.bsghaier@gmail.com
mailto:lotfi.romdhane@enim.rnu.tn
mailto:ouezdou@lisv.uvsq.fr
http://dx.doi.org/10.1016/j.crme.2012.01.002


140 A. Bensghaier et al. / C. R. Mecanique 340 (2012) 139–155
(a)

(b)

Fig. 1. (a) Kinematic model of the thumb. lTM = 5.29 cm, lMPt = 4.5 cm and lDPt = 3.2 cm are the lengths of the trapezio-metacarpal, the middle and the
distal thumb segments. (b) Kinematic model of the index finger. lPP f = 5 cm, lMP f = 3.1 cm and lDP f = 1.6 cm are the lengths of the proximal, the middle
and the distal index finger segments, respectively.

genetic algorithm is also used in several works [15–17]. Nevertheless, this technique has never been used to predict muscle
tensions in the human hand musculoskeletal system.

The goal of the current study is to develop and solve a biomechanical model of the thumb and the index finger using
multi-objective evolutionary optimization technique. A static analysis of the musculoskeletal thumb and index finger is
performed. To establish the studied apparatus model, equivalent mechanical multi-limbs and multi-joint systems are chosen.
The relative joints orientations in a tip pinch position are determined. Kinematic models with five DOF and four DOF
are assumed for the thumb and the index finger, respectively. Single and multi-objective optimization processes, based
on genetic algorithms, are implemented to obtain optimal muscle tensions in a static fingers posture. The predictions of
different computed models are compared. Simulation results are presented and discussed showing the effectiveness of using
single and multi-objective Pareto front based resolution.

2. Thumb and index finger: Biomechanical models

It is of a great importance to understand the functional mechanism related to the musculoskeletal system. In a gen-
eral pollici-digital pinch, only the thumb and the index finger are active. Since our study is focusing on tip pinch task, an
anatomical study is performed to describe the characteristics of each finger multi-DOF joints. Then a representative mechan-
ical model is built for each finger. We neglect in the developed model the carp-bones relative motion. Thanks to biomaterial
tissues, the chosen joints are also assumed to be frictionless.

2.1. Anatomy and kinematics of the thumb

The thumb is assumed to have five degrees of freedom (DOF) [2] linking three successive phalanxes to the metacarpal
bone. The carpo–metacarpo phalangeal (CMC) and the metacarpo-phalangeal (MCP) joints are approximated with univer-
sal joints (two DOF). Each universal joint reproduces the flexion–extension and the adduction–abduction movements. The
interphalangeal (IP) joint is modelled as a hinge joint, which is able to perform only the flexion–extension movement.

Different notations required to establish the thumb kinematic model and to express its structure are given in Fig. 1(a).
The axes X0, Y0 and Z0 are attached to the metacarpal bones and represent the global reference frame. The joint rotational



A. Bensghaier et al. / C. R. Mecanique 340 (2012) 139–155 141
Table 1
Components included in the biomechanical model.

Finger Muscle Abbreviation PCSA (cm2)

Thumb Flexor pollicis longus FPL 3.5
Extensor pollicis longus EPL 1.9
Flexor pollicis brevis FPB 1.2
Extensor pollicis brevis EPB 1.3
Abductor pollicis brevis APB 1.5
Adductor pollicis ADD 0.8
Opponens pollicis OP 2.8
Abductor pollicis longus APL 3.9

Index finger Flexor digitorium profundus FDP 4.1
Flexor digitorium superficialis FDS 4.2
Extensor digitorium communis EDC 1.39
Extensor indicis EI 1.12
Radial interosseous RI 4.16
Ulnar interosseous UI 1.6
Lumbrical LUM 0.36

Note: PCSAi is the physiological cross-sectional area of the ith muscle.

axes (Z1, Z2) coincide with the rotational axes of the CMC joint. Vectors Z3 and Z4 represent the rotational axes of the
MCP joint while Z5 designates the rotational axis of the IP joint. The axes X6, Y6 and Z6 define the frame fixed to the index
fingertip.

The thumb has eight muscles which are described in Table 1. All muscles are represented in Fig. 2(a). The FPB and the OP
muscles control the flexion movement of the CMC joint. The EPL and the EPB muscles actuate the extension movement. The
APL and the APB muscles generate the abduction movement whereas the ADD muscle produces the adduction movement.
Finally, the OP muscle controls the combined opposition movement. For the MCP joint, the flexion movement is actuated
by the FPL and the FPB muscles while the extension is generated by the EPL and the EPB muscles. For the IP joint, only one
flexor, the FPL and one extensor, the EPL cross this joint and insert into the thumb distal phalanx.

2.2. Anatomy and kinematics of the index finger

The index finger is assumed to have only four DOF [18]. A universal joint models the flexion–extension and the
adduction–abduction movements of the MCP joint. Two hinge joints (one DOF) are used to model the flexion–extension
of the proximal interphalangeal (PIP) and the distal interphalangeal (DIP) joints.

The different coordinate systems and segment lengths used to compute the kinematic model of the index finger are
described in Fig. 1(b). The joint axes (Z1, Z2) match with the rotational axes of the MCP joint, which are the flexion–
extension and the abduction–adduction axes respectively. Vectors Z3 and Z4 represent the flexion/extension axes of the PIP
and the DIP joints, respectively. The axes X5, Y5 and Z5 define the frame fixed to the index fingertip.

The index finger has seven extrinsic muscles, which are described in Table 1. These muscles are responsible of the
movements of the index finger phalanges. For the first phalanx, the RI, the UI and the LUM muscles, assisted by the FDP
and the FDS muscles, actuate the flexion movement. The extension movement of the first phalanx is controlled by both the
EDC and the EI muscles, whereas, the abduction movement is actuated by the RI muscle and the adduction one by the UI
muscle. The FDS muscle actuates the flexion of the second phalanx, while the FDP muscle generates flexion movement of
the third phalanx. The extension of the interphalangeal index joints (DIP and PIP) is controlled by the complex extension
apparatus (Fig. 2(b)), which is made of a tendinous extensor network that wraps over the dorsum of the finger phalanx.
This extension apparatus is composed of the terminal extensor (TE), the extensor slip (ES), the radial band (RB) and the
ulnar band (UB).

The force transmitted to the extensor mechanism cannot be determined experimentally nor by geometrical computation,
except the fraction of the force transmitted by the radial band and the ulnar one to the terminal extensor (TE) [3]. This
model can be written as:

FTE = χRB FRB + χUB FUB (1)

The coefficients χRB and χUB are the cosine terms accounting for the convergence angles of the RB and UB tendons on
the TE one. The numerical values of these coefficients are χRB = 0.992 and χUB = 0.995 [3]. The same coefficients are later
used by Brook et al. [10] and Vigouroux [11]. The remaining proportions of the transmitted force to the extensor mechanism
are varying according to the relative flexion angles of the MCP and the PIP joints [19]. Vigouroux [11] proposed to represent
these proportions by αk unknown coefficients (2).

FRB = αEDC FEDC + αLUM FLUM

FUB = αEDC FEDC + αUI FUI

FES = (1 − αUI)FUI + (1 − αLUM)FLUM + (1 − 2αEDC)FEDC (2)

where Fi defines the tension of the ith muscle.
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Fig. 2. (a) Thumb muscles paths. (b) Index finger muscles paths and schematic representation of tendon junctions in the extensor mechanism.

These coefficients will be included in the unknown vector and will be determined with the unknown muscle tensions
using the optimization process. Finally, for the considered thumb and index finger system, the total number of considered
muscles is fifteen whereas the number of degrees of freedom is nine. Therefore, the musculoskeletal system, made of the
two fingers, is redundantly actuated.

2.3. The fingertip loadings and the corresponding joint torques

The reference frame, fixed to the thumb-tip axes X6, Y6 and Z6 define the distal, the dorsal and the lateral force
directions, respectively (Fig. 1(a)). The axes X5, Y5 and Z5, shown in Fig. 1(b), are the axes of the reference frame fixed to
the index fingertip. They also define the distal, the dorsal and the lateral force directions, respectively. The wrench applied
on each fingertip can be written as a six-dimensional vector of fingertip forces and moments (3).

F extn = [ fxn f yn f zn τxn τyn τzn ]T (3)

where n = the thumb or the index finger.
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Fig. 3. Posture adopted by the thumb and the index finger to insure a tip pinch task. The coordinates of the contact point on the index finger distal phalanx
px , p y and p y are equal respectively to 1 cm, −0.5 cm and 0. The considered contact point coordinates on the thumb distal phalanx are px = 2 cm, p y = 0
and pz = 0.

Table 2
Joint orientation angles for a tip pinch.

Finger Degree of freedom Notation Angle (degree)

Thumb CMC extension θ1t 24
CMC adduction θ2t −25
MCP adduction θ3t −5
MCP extension θ4t −25
IP extension θ5t −10

Index finger MCP extension θ1 f −48
MCP adduction θ2 f 0
PIP extension θ3 f −50
DIP extension θ4 f −25

In this work, only the tip pinch study is considered (Fig. 3). The index finger and the thumb are assumed to act on the
object through contact points. Since a very low friction between the fingertips and the object is assumed, the contact can
be considered frictionless.

The single contact point model leads to the fact that no fingertip torques will be produced (4). Moreover, the entire
fingertip force will be exerted only along the normal direction (the dorsal direction in the developed model). The distal and
the lateral fingertip force components have to be equal to zero, Eq. (4).

τxn = τyn = τzn = 0, fxn = f zn = 0 (4)

where n = the thumb or the index finger.
For the index finger (respectively for the thumb), the vector of fingertip forces and torques represented at the contact

point in the (X5, Y5, Z5) (respectively (X6, Y6, Z6)) coordinate frame is given by Eq. (5) (respectively (6)) as follows:

F extIndex = [ 0 10 0 0 0 0 ]T (5)

F extThumb = [ 0 10 0 0 0 0 ]T (6)

As only static analysis is considered in this paper, Table 2 gives the measured values of the thumb and of the index
finger joint angles defining the tip pinch configuration. The static equilibrium of the tip pinch configuration needs a set of
joint torques, which can be established using the virtual work principle since all joints are assumed to be frictionless. The
joint torques vector MFextn can be established using the Jacobian transpose matrix (7). It is well known that Jacobian matrix
depends on the phalanx lengths and joint angles (see Appendix A).

MFextn = JT
n F extn , n = the thumb or the index finger (7)

where:

• F extn is the forces and torques vector applied on the fingertip reference frame.
• JT

n defines the Jacobian transpose matrix, which is four by six for the index finger and five by six for the thumb.
• MFextn = (MFext j ) defines the joint torque vector (Table 3) resulting from the application of the fingertip forces and

torques. Each torque MFext j is written in the corresponding joint reference frame. j = CMC f ,CMCa,MCPa,MCP f , and IP
if n = the thumb and j = MCP f ,MCPa,PIP and DIP if n = the index finger.
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Table 3
Joint torques induced by the external loading.

Thumb

DOF CMCf CMCa MCPa MCPf IP

MFext j (N cm) 111 4.91 4.99 72 32

Index finger

DOF MCPf MCPa PIP DIP

MFext j (N cm) 51 −3.9 38 10

3. Optimization problem formulation

The three basic elements for the optimization problem formulation, i.e., the set of design variables, the objective func-
tion(s), and the constraints including the variables’ bounding values, have to be defined for the considered study.

3.1. Design variables

In the optimization problem, the design vector X (as called in the genetic algorithm procedure) contains the independent
variables of the biomechanical model. These variables include the muscle tensions vectors as specified below F f and F t
for the index finger and for the thumb respectively, in addition to the vector α = (αk)k=EDC,UI,LUM which is introduced by
Eq. (2) for the index finger case.

The design vector X = [X f X t]T is composed of:

• X f = [F f α]T which contains the index finger unknowns: F f = [FFDP FFDS FEDC FEI FLUM FRI FUI] and α =
[aEDC aLUM aUI].

• X t = [FFPL FEPL FAPB FADD FEPB FFPB FAPL FOP]T which corresponds to the thumb unknown forces.

3.2. Objective functions

Objective functions based on a performance criterion of the involved muscular tensions are set to be minimized subjected
to the constraints on the muscle tensions. The first objective function to be minimized is the muscle stress quadratic sum (8)
[4,20]. Bolhuis et al. [21] have shown that minimization of this function favours muscle force distribution where each muscle
has some contribution rather than one muscle taking the entire load.

The second objective function is the sum of all forces in the muscles (9). Minimizing the muscle forces sum leads
generally to predict a muscle force distribution where the number of the activated muscles is minimum. This function (5)
has been also criticized for being unable of predicting co-activation of synergistic muscles [21].

The third objective function is the maximum stress among the muscles (10) [22,23]. Minimizing this function is phys-
iologically identical to minimizing the total fatigue of the system [21,24]. This function allocates the load to the muscles
when minimizing the tension of the muscle having the highest value of stress.

f1 =
n∑

i=1

(
Fi

PCSAi

)2

(8)

f2 =
n∑

i=1

Fi (9)

f3 = max

(
Fi

PCSAi

)
(10)

The basic idea is to compute all possible solutions of various models when considering one, two or three objective functions
out of the set given by { f1, f2, f3}. Different algorithms, in which we minimize one or simultaneously multiple functions,
are used to study the impact of every process on the solutions.

3.3. Constraints

The use of appropriate constraints and physiologically realistic boundary conditions can improve the solution and leads
to functionally acceptable muscle tensions. These constraints are either inequalities concerning the variable bounds and the
distribution coefficient or equalities dealing with the joint torques.

1) The first considered set of constraint represents the limit values of the design variables. Inequality (11) ensures positive
muscle tensions, which have to be lower than the theoretical maximal isometric muscle tensions.

0 � Fi � Fmax , i = 1, . . . ,15 (11)
i
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where Fmaxi defines the maximal isometric tension of the ith muscle in the finger computed from the following equa-
tion, Fmaxi = σPCSAi . We consider the PCSA values as given by Valero-Cuevas et al. [8] and Bouffier et al. [29] for the
thumb and the index finger, respectively. The stress σ = 35 N/cm2 is a constant value reported by Valero-Cuevas et al.
[25] for all the musculoskeletal systems of the human upper limb.

2) Inequality system (12), as described by Vigouroux [11], states that the factors αk transmitted by the muscles to the
extensor mechanism bands range from 0 to 1 for the LUM and the UI muscles, and from 0 to 0.5 for the EDC muscle.

0 � αUI � 1

0 � αLUM � 1

0 � αEDC � 0.5 (12)

3) For each degree of freedom, the following relation given the resulting torque Ceq j around the joint axis can be estab-
lished

Ceq j = τ j − MFext j (13)

where:

• j is the degree of freedom at a joint that defines the flexion–extension or the abduction–adduction movement ( j =
CMC f , CMCa , MCPa , MCP f , and IP if n = the thumb and j = MCP f , MCPa , PIP and DIP if n = the index finger).

• MFext j defines the torque over the jth degree of freedom (Table 3).
• τ j defines the torque over the jth degree of freedom generated by muscles crossing the corresponding joint. The

computation of each torque is established using the moment arms. The details are given in Appendix B.
• In the case of equilibrium, τ j must balance MFext j , which implies in this case Ceq j = 0.

3.4. The genetic algorithm implementation

Genetic algorithms have been shown to solve linear and nonlinear problems by exploring all regions of state space and
exponentially exploiting promising areas through selection, crossover and mutation applied to individuals in a population.
The flowchart of the genetic algorithm is illustrated in Fig. 4 for a multi-objective optimization. We define X0 the initial
population to be evaluated. X0 is created by the uniformly distributed pseudorandom numbers, using the function “rand”
in Matlab and taking into account the bounds of each design variable. Xest , Xpar and X i are respectively the static, the
Paretian (non-dominated) and the dynamic populations for the ith iteration (Fig. 4).

For a single objective function optimization, the dashed line and dashed boxes in the block diagram are omitted
(Fig. 4). For the multi-objective optimization, when optimizing all the objective functions simultaneously, the optimum
solutions define the Pareto front. The algorithm scans the whole search domain and compares all the individuals to keep
only those that are not dominated. Therefore, the Pareto front corresponds to the set of the non-dominated muscle ten-
sions. For three objective functions, the Pareto front is a surface in a three-dimensional space. For a detailed description,
see [26–28].

4. Results and discussions

4.1. Single objective genetic algorithm (SGA-models)

In this part we compare the results obtained by different single-objective genetic algorithm (SGA-models) based on one
general function (14), in which multiple objectives f1, f2, and f3 are transformed into one aggregated scalar objective
function L. Each objective function is multiplied by a weighting factor (c1, c2, or c3) and then a sum of all contributors
is carried out. The obtained function can either represent a single optimization problem (only one ci is non-zero) or a
multi-objective problem when at least two coefficients in Eq. (14) are non-zero.

The input functions ( f1, f2, f3) are weighted differently to give several priorities to the objectives. In order to study the
effects of the individual weighting factor on the total objective function given by Eq. (14), five SGA-models with different
values of the weighting factors (c1, c2, and c3) (Table 4) are carried out.

L( f1, f2, f3) = c1 f1 + c2 f2 + c3 f3 (14)

We add the squared sum H = ∑9
j=1(Ceq j )

2 where Ceq j is a relation obtained from Eq. (13). H defines the total constraint
violation. It is multiplied with a penalty parameter r and the product is added to the multi-objective function value as
penalty. Hence, we define the function G given by Eq. (15) which takes into account the constraint violations. For a feasible
solution, the corresponding H term is zero and G becomes equal to the original function L. For an infeasible solution the G
value exceeds the L computed value.

G( f1, f2, f3) = L( f1, f2, f3) + rH (15)
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Fig. 4. The block diagram of the genetic algorithm used in both single and multi-objective optimizations. For a single objective function optimization,
the dashed line and dashed boxes, in the block diagram, are omitted. X0, Xest , Xpar and X i are respectively the initial, static, Paretian and the dynamic
populations for the ith iteration.

Table 4
Weights used in the SGAs.

Weights SGA1 SGA2 SGA3 SGA4 SGA5

c1 1 0 0 1/3 1/2
c2 0 1 0 1/3 1/4
c3 0 0 1 1/3 1/4

with r = 100 is the penalty parameter. Eqs. (11) and (12), which define the lower and upper bounds, are used when creating
the initial population X0 at each iteration (Fig. 4).

The five objective functions are tested using the following genetic algorithm parameters:

• N = 500 (population size),
• Number of generation = 300,
• Pc = 0.85 (crossover probability),
• Pm = 0.001 (mutation probability).

All programming algorithms in Matlab are run on a minicomputer (Intel (R) core (TM) 2 DUO, Hewlett–Packard). Taking
into account the implementation values stated before, the average computation time required to perform one SGA-model is
equal 10 minutes.

The objective function values obtained by the application of the SGA-models are shown in Table 5. We summarize in
Table 6 the results found with different SGAs for the thumb and the index muscle tensions in units of the applied forces.
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Table 5
Objective function values obtained by the SGAs.

Objective function SGA1 SGA2 SGA3 SGA4 SGA5

f1 141.87 209.46 321.92 178.53 166.60
f2 64.02 57.69 100.16 69.12 69.63
f3 8.45 10.65 7.68 8.59 8.32

Table 6
Muscle tensions (in units of applied forces) predicted by the SGAs.

Thumb muscle SGA1 SGA2 SGA3 SGA4 SGA5 Giurintano et al. [2]

FPL 3.52 3.40 3.19 3.58 3.46 2.44
EPL 0 0 0 0 0 0
APB 0.55 0.41 0.55 0.53 0.63 0
ADD 0.93 0.87 1.44 0.81 1.08 1.45
EPB 0 0 0 0 0 0.51
FPB 0.61 1.41 1.01 0.81 0.74 0
APL 0.41 0 3 0.39 0.84 2.54
OP 0.60 0.11 1.35 0.82 0.65 0.14

Index finger muscle SGA1 SGA2 SGA3 SGA4 SGA5 An et al. [7]

FDP 2.91 3.14 3.64 3.10 3.03 1.93–2.08
FDS 1.59 1.15 1.88 1.60 1.56 1.75–2.16
EDC 0.08 0 1 0 0 –
EI 0.32 0.02 1.72 0.77 0.56 –
LUM 0 0 0 0 0 0–0.72
RI 1.28 1.03 1.86 1.43 1.37 0–0.99
UI 0 0 0 0 0 0.21–0.65

The weighted sum method based on the correct selection of the weights is highly sensitive since any small perturbation in
the selected weights can lead to different solutions (Table 6). In the SGA-model, the optimization process provides only one
optimal solution. Since averaged values for the anatomical parameters are used, uncertainties occur in the parameter values.
Hence, no SGA based optimization results are identical to those reported in the literature. This non-conformity can also
be attributed to the difference between the biomechanical models used for the human fingers in each work. The obtained
ratios, except for the UI muscle (see Table 6), are higher than those predicted by Giurintano et al. [2] and An et al. [7] for
the thumb and the index finger, respectively. In fact, the APB, the OP and the FPB tendons show considerable activities; the
FPL and the APL muscles are strongly activated also. The ADD muscle is also activated to balance the effect of the thumb
abductors. The index finger extrinsic muscles, FDP, FDS, EDC, EI and RI provide the major contribution in the pinching force.

With SGA1 and SGA3 models, more muscles, for instance the EDC muscle, are shown to be activated. The SGA4 and
SGA5 models do not improve the simulation results in terms of the number of activated muscles and the predicted ratios.
The SGA1 and SGA3 models give an activation behaviour that is comparable to the one reported by Valero-Cuevas et al. [8]
with the recorded EMG signals. For the two last models, a significantly activation of extrinsic extensors, particularly with
SGA3-model, is also noticed as reported by Valero-Cuevas et al. [8]. The SGA1-model predictions are also found to be close
to An et al. results. Thus, at this level, we can state that the SGA1-model, which minimize only the muscle stress quadratic
sum, and the SGA3-model, which minimize only the maximum stress among muscles, are the best criteria compared to the
three other models yielding to a real physiological interpretation.

4.2. Genetic algorithm applied in multi-objective optimization (MOGA-model)

As seen in the previous subsection, the SGA-models are not efficient in finding an acceptable tendon tensions combi-
nation. Alternatively, a genetic algorithm based on the Pareto dominance principle can be efficiently used to eliminate the
above mentioned difficulties.

4.2.1. Two criteria minimization
Bi-objective optimization using genetic algorithm is implemented. We minimize two criteria simultaneously. The penalty

method is also used in this case through Eq. (16). The original objective functions ( f1, f2, f3) are penalized proportionally to
the violation of the equality constraints stated in Eq. (13). Hence, when minimizing ( f1, f2), for instance, the two penalized
functions g( f1) and g( f2), as given by Eq. (16), are minimized in the optimisation process.

The penalized functions (16) are developed in such a way that, if all constraints are satisfied, they have the values of the
objectives to be minimized themselves. Otherwise, they are penalized proportionally to the discrepancy on the constraints.
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Fig. 5. The Pareto optimal curve: Set of non-dominated individuals found by genetic algorithm applied in multi-objective optimization (MOGA) when
minimizing simultaneously the two penalized functions g( f1), g( f2) associated respectively to the muscle stress quadratic objective function f1 and the
muscle tensions sum function f2. Solutions I, II and III are three different optimal design vectors.

Fig. 6. The Pareto optimal curve: Set of non-dominated individuals found by genetic algorithm applied in multi-objective optimization (MOGA) when
minimizing simultaneously the two penalized functions g( f1), g( f3) associated respectively to the muscle stress quadratic objective function f1 and to the
maximum of muscle stress function f3. Solutions I, II and III are three different optimal design vectors.

The ith penalized function g( f i) is, then, given by:

g( f i)i=1 or 2 =
{

f i if H = ∑9
j=1(Ceq j )

2 = 0

f i + r
∑9

j=1(Ceq j )
2 if H = ∑9

j=1(Ceq j )
2 �= 0

(16)

where r = 100.
For the implementation of the genetic algorithm the following parameters are used:

• N = 500 (population size),
• Number of generation = 300,
• Pc = 0.85 (crossover probability),
• Pm = 0.001 (mutation probability),
• δ = 0.1 (sharing parameter).

Taking into account the implementation values stated before, the average computation time required to perform the
MOGA-model when minimizing two criteria is equal to 8 minutes on the above-mentioned machine.

Figs. 5 and 6 show respectively typical plots representing the evaluations of individuals ( f1, f2) and ( f1, f3) inside the
non-dominated filter in the objective functions. First, one can notice that the MOGA-model is able to find a diverse set of
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(a)

(b)

Fig. 7. (a) Thumb case. (b) Index finger case. Muscle tension distributions (in units of applied palmar fingertip force) representing respectively solutions I,
II and III extracted from Pareto optimal curve corresponding to the minimization of the muscle stress quadratic sum function f1 and the muscle tensions
sum function f2 using MOGA method.

non-dominated individuals, which yield the Pareto front. We select from the “Pareto front” (Fig. 5) three solutions: I, II and
III. The corresponding design variables, the muscle tensions, are depicted in Figs. 7(a) and 7(b) for the thumb and the index
finger, respectively. The simulated objective functions values for the couple ( f1, f2) associated to solutions I, II and III are
(219.5, 135.2), (229.7, 123.4), and (244.5, 119), respectively. In the case of minimizing ( f1, f3) (Fig. 6), three solutions are
also chosen and the corresponding design variables are depicted in Figs. 8(a) and 8(b) for the thumb and the index finger,
respectively. The simulated objective functions values for the couple ( f1, f3) that correspond to solutions I, II and III are
respectively (223.6, 78.2), (324.6, 37.7), and (496.4, 25.5).

The normalized muscle tensions (Figs. 7(a) and 7(b)) show that, when minimizing ( f1, f2) simultaneously, practically the
same muscle activation behaviour in the three resulted distributions is obtained. The model converges towards a unique
activation behaviour. However, it is not the case when minimizing ( f1, f3) (Figs. 8(a) and 8(b)), we get significantly different
distributions for the thumb and the index finger.

The EPL, EPB, LUM, and UI muscles, for the three selected solutions (Figs. 7 and 8), remain inactive when minimizing
( f1, f2) or ( f1, f3), respectively. These simulated results are in general identical to the ones found with the SGA-models.
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(a)

(b)

Fig. 8. (a) Thumb case. (b) Index finger case. Muscle tension distributions (in units of applied palmar fingertip force) representing respectively solutions I, II
and III extracted from Pareto optimal curve corresponding to the minimization of the muscle stress quadratic sum function f1 and the maximum of muscle
stress function f3 using MOGA method.

Minimizing ( f1, f2) does not improve the simulated results, since the EDC is not active for all the distributions repre-
sented in Fig. 7(b). Conversely, when minimizing ( f1, f3) the computed results (Fig. 7(b)) are close to the one measured by
Valero-Cuevas et al. [8], particularly in distribution III which is the best computed solution in terms of maximum stress.

4.2.2. Three criteria minimization
Multi-objective optimization using genetic algorithm is implemented. We minimize the three criteria ( f1, f2 and f3)

simultaneously. The use of the penalty method leads to three penalized objective functions as described in the following
equation:

g( f i)i=1,2,3 =
{

f i if H = ∑9
j=1(Ceq j )

2 = 0

f i + r
∑9

j=1(Ceq j )
2 if H = ∑9

j=1(Ceq j )
2 �= 0

(17)

The value of r is chosen to 100 as an arbitrarily large value of the penalty parameter.
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Fig. 9. Pareto front in the objective space using MOGA evolutionary process when minimizing simultaneously the three penalized functions g( f1), g( f2)

and g( f3) associated respectively to the muscle stress quadratic objective function f1, muscle tensions sum function f2 and to the maximum of muscle
stress function f3 (initial population = 500, number of generations = 300, number of simulated non-dominated solutions = 296). Solutions I to VII are
seven different optimal design vectors.

We used the same implementation parameters of the genetic algorithm as for the minimization of two criteria. The
average computation time, on the same machine, required to perform a MOGA-model when minimizing the three criteria
simultaneously is equal to 11 minutes.

Each point plotted in Fig. 9 belongs to the Pareto front and represents a non-dominated solution. Each non-dominated
solution is defined by the three objective functions values and it corresponds to an optimal muscles tension combination.
Solutions I to VII, as shown in Fig. 10, are scattered on the Pareto curve. To illustrate the diversity of the seven proposed
solutions (Figs. 9 and 10), the associated distributions are given in Table 7. These optimal distributions represent a differ-
ent compromise between the three criteria. Solution V, for instance, is the best if considering only the maximum muscle
stress criterion. Solution VI is the best in terms of muscle stress sum optimization criterion, and solution VII is the best if
considering the muscle tension sum criterion.

For all the selected solutions, we can conclude that the FPL flexor develops the highest force among all thumb muscles
(Table 7). The APL muscle gets a normalized force which is higher than the SGA-models simulated ones (Table 6) but close
to the one reported by Giurintano et al. [2]. The simulated APB muscle ratio does not match the one reported by Giurintano
et al. work [2]. This ratio goes from 0.77 to 0.9, which is also higher than 0.4 to 0.63 (Table 6), the range of the APB ratio
obtained from SGA-model simulations. The obtained value of the OP ratio is 0.6 (Table 7). It is higher than the one reported
by Giurintano et al. work [2] but it remains comparable to the ratios given by the SGA-models, except for the SGA3 one
(Table 6).

In the index finger, as with the previous computed models, the UI muscle is inactive for the seven selected solutions,
(Table 7). The FDP, FDS, EDC, EI and LUM muscle have ratios (see Table 7) that exceed the ones reported by An et al. [7].
The extrinsic flexors carried high muscle tensions compared to the rest of the muscles. In particular, the average value of
the FDS ratio, which is equal to 2.36 (Table 6), is higher than the one reported by An et al. [7] but it is similar to the one
measured experimentally in Dennerlein et al. [30].

With the MOGA-model, various tension combinations can be obtained. Up to fourteen muscles are activated at least
for the selected solutions (Table 7). Solutions II and V, for example, are neighbours on the Pareto curve, get different
activated muscles number, twelve and fourteen respectively. Comparing solution VI and SGA1-model predictions leads to
a similar number of activated muscles. In fact, as mentioned before, solution VI is the best in terms of muscle stress sum
optimization criterion. However, we notice that the FDP muscle gets higher ratio than with the SGA1-model. The EDC muscle
is also noticed to be more activated. The EDC ratio is equal to 0.86 (Table 7) against 0.08 obtained with the SGA1-model
(Table 6).

Both solution V and the predictions of the SGA3-model favour the minimization of the maximum muscle stress among
muscle. However, solution V gets more activated muscles than SGA3-model predictions. Furthermore, solution V has the
highest ratios of the EDC and EI muscles, result which is already found with SGA3-model and has already been proved
qualitatively by the EMGs recorded by Valero-Cuevas et al. [8].
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(a)

(b)

Fig. 10. (a) The f1– f2 objective plane. (b) The f1– f3 objective plane. Projection of the obtained Pareto front when minimizing simultaneously the three
penalized functions g( f1), g( f2) and g( f3). Solutions I to VII are seven different optimal design vectors.

5. Conclusion

In this paper a biomechanical model of the thumb and the index finger during a tip pinch task is investigated. This study
presents a theoretical analysis of various models that compares the muscular tension predictions. The problem of determin-
ing muscle tensions, as a muscular redundant one, is solved using a constrained single and multi-objective optimization
base on genetic algorithms. With the MOGA-model, more antagonist muscles, such as the EPB muscle for the thumb and
the EDC muscle for the index finger, are shown to be activated. Conversely, this co-contraction is not observed with the
most of SGA-models even when using a weighted sum method.

Although MOGA-model process gives better tendon forces distributions than SGA-models, one needs to know, when
looking for a unique pattern, which criterion among the three discussed yields the best tendon force distribution compared
to MOGA-model results and to experimental data.

It has been shown, based on the performed analysis, that the principle of minimal total muscle force (SGA2-model)
predicts far fewer active muscles than indicated by EMG provides the most distant results from the experimental ones,
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Table 7
Pareto optimum solutions (muscle tensions in units of applied pinch force).

Thumb muscle Solution I Solution II Solution III Solution IV Solution V Solution VI Solution VII

FPL 3.27 3.26 3.27 3.27 3.31 3.46 3.36
EPL 0 0 0 0 0.05 0 0
APB 0.78 0.90 0.78 0.77 0.86 0.63 0.55
ADD 1.55 1.60 1.55 1.56 1.61 0.94 1.02
EPB 0 0.01 0 0 0.01 0 0
FPB 0.75 1.01 0.71 0.98 0.97 0.71 1.08
APL 2.19 2.32 2.01 2.27 2.33 0.35 1.03
OP 0.65 0.64 0.65 0.64 0.65 0.52 0.85

Index finger muscle Solution I Solution II Solution III Solution IV Solution V Solution VI Solution VII

FDP 2.90 4.13 3.30 3.07 4.24 3.27 3.27
FDS 2.02 2.76 2.27 2.06 2.69 1.81 1.81
EDC 0.58 2.94 1.38 0.00 3.03 0.86 0
EI 0.68 1.76 0.83 1.50 1.78 0.39 0.72
LUM 0 0 0 0 0.02 0 0
RI 1.67 1.75 1.48 1.64 1.78 1.53 1.53
UI 0 0 0 0 0 0 0

in particular no co-activation of the antagonist muscles is observed. It is also interesting to notice that SGA1 and SGA3
models have the same weighting if considering only the number of activated muscles. However, the SGA3-model, which
minimizes the maximum stress among muscles, is the best criterion since it provides the most physiological acceptable
results comparing to previous experimental results. In summary, the results of this study do not reveal only one model that
gives significantly better predictions that any other model. However, it may be more advantageous and physiological to use
the maximum muscle stress model, when looking for a unique pattern such as the case in motor control research.

Appendix A

A.1. Thumb Jacobian transpose matrix

θ1t = CMC extension, θ2t = CMC adduction, θ3t = MCP adduction, θ4t = MCP extension, and θ5t = IP extension (Fig. 1(a)).
pxt , p yt and pzt define the distances from the IP joint to contact point with object maintained.

J T
Thumb is the transpose of the Jacobian matrix written in the thumb-tip coordinate frame (X6, Y6, Z6).

J T
Thumb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−p yt pxt 0 0 0

−p yt + LMP f
sin θ5t pxt + LMP f

cos θ5t 0 0 0

pzt cos(θ4t + θ5t) −pzt sin(θ4 + θ5) A33 sin(θ4t + θ5t) cos(θ4t + θ5t)

cos(θ4t + θ5t)[pzt + LTM sin θ3t ]
A51

− sin(θ4t + θ5t)[pzt + LTM sin θ3t ]
A52

A43

A53

sin(θ4t + θ5t)

A54

cos(θ4t + θ5t)

A55

1

1

0

0

A56

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

A33 = −lMPt cos θ4t + p yt sin(θ4t + θ5t) − pxt cos(θ4t + θ5t)

A43 = p yt sin(θ4t + θ5t) − lMPt cos θ4t − lTM cos θ3t − pxt cos(θ4t + θ5t)

A51 = pzt sin(θ4t + θ5t) sin(θ2t + θ3t) − p yt cos(θ2t + θ3t) + lMPt sin(θ5t) + cos(θ2t + θ3t) + lTM sin(θ4t + θ5t) cos θ2t

A52 = pxt cos(θ2t + θ3t) + pzt cos(θ4t + θ5t) sin(θ2t + θ3t) + lMPt cos θ5t cos(θ2t + θ3t) + lTM cos(θ4t + θ5t) cos θ2t

A53 = −pxt sin(θ4t + θ5t) sin(θ2t + θ3t) − p yt cos(θ4t + θ5t) sin(θ2t + θ3t) − lMPt sin(θ2t + θ3t) sin(θ4t)

A54 = − cos(θ4t + θ5t) sin(θ2t + θ3t)

A55 = sin(θ4t + θ5t) sin(θ2t + θ3t)

A56 = cos(θ2t + θ3t)

A.2. Index finger’s Jacobian transpose matrix

θ1 f = MCP extension, θ2 f = MCP adduction, θ3 f = PIP extension, and θ4 f = DIP extension (Fig. 1(b)). px f , p y f , and pz f

define the distances from the DIP joint to the contact point.
J T is the transpose of the index finger Jacobian matrix written in the index-tip coordinate frame (X5, Y5, Z5).
Index
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J T
Index =

⎡
⎢⎢⎢⎣

−p y f px f 0 0 0

−p y f + LMP f sin θ4 f px f + LMP f cos θ4 f 0 0 0

A31 A32 A33 sin θ2 f − cos θ2 f

A41 A42 A43 − sin θ2 f cos(θ3 f + θ4 f ) sin θ2 f sin(θ3 f + θ4 f )

1

1

0

cos θ2 f

⎤
⎥⎥⎥⎦

A31 = − cos θ2 f cos(θ3 f + θ4 f )
(

px f sin θ2 f cos(θ3 f + θ4 f ) − p y f sin θ2 f sin(θ3 f + θ4 f )

+ (lPP f + lMP f cos θ3 f ) sin θ2 f − pz f cos θ2 f
)

A32 = − sin θ2 f cos(θ3 f + θ4 f )
(

px f sin θ2 f cos(θ3 f + θ4 f ) − p y f sin θ2 f sin(θ3 f + θ4 f )

+ lMP f sin θ2 f cos θ3 f − pz f cos θ2 f + lPP f sin θ2 f
)

A33 = px f

[
cos(θ2 f + θ3 f + θ4 f ) cos(θ3 f + θ4 f )

] + p y f

[− cos(θ3 f + θ4 f ) sin(θ2 f + θ3 f + θ4 f ) + sin θ2 f
]

+ pz f sin(θ2 f + θ3 f + θ4 f ) + lMP f cos θ3 f cos(θ2 f + θ3 f + θ4 f ) + lPP f cos(θ2 f + θ3 f + θ4 f )

A41 = pz f sin θ2 f sin(θ3 f + θ4 f ) − cos θ2 f
(

p y f − lPP f sin(θ3 f + θ4 f ) − lMP f sin θ4 f
)

A42 = cos θ2 f
(

px f + lPP f cos(θ3 f + θ4 f ) + lMP f cos θ4 f
) + pz f sin θ2 f cos(θ3 f + θ4 f )

A43 = sin θ2 f
(−p y f cos(θ3 f + θ4 f ) + lMP f cos(θ3 f + θ4 f ) sin θ4 f − px f sin(θ3 f + θ4 f )

− lMP f sin(θ3 f + θ4 f ) cos θ4 f
)

Appendix B

The moment over the jth degree of freedom is computed according to the following equation: τ j = ∑
i ri j F i . j = CMC f ,

CMCa , MCPa , MC P f , and IP for the thumb. j = MCP f , MCPa,PIP and DIP for the index finger, where:

• rij is the distance from the ith muscle’s line of action to the jth joint centre of rotation defining the moment arm. ri j ’s
values are reported by Smutz et al. [31] for the muscles of the thumb and by Valero-Cuevas et al. [8] for the muscle of
the index finger.

• Fi is the tension of the ith muscle.

B.1. Joint torques for the thumb

τIP = −FFPLrFPL/IP + FEPLrEPL/IP

τMCP f = −FFPLrFPL/MCP f − FAPBrAPB/MCP f − FADDrADD/MCP f − FFPBrFPB/MCP f + FEPLrEPL/MCP f + FEPBrEPB/MCP f

τMCPa = FFPLrFPL/MCPa + FEPLrEPL/MCPa + FADDrADD/MCPa − FFPBrFPB/MCPa − FEPBrEPB/MCPa − FAPBrAPB/MCPa

τCMCa = −FFPLrFPL/CMCa − FFPBrFPB/CMCa − FEPBrEPB/CMCa − FAPLrAPL/CMCa − FAPBrAPB/CMCa + FEPLrEPL/CMCa

+ FADDrADD/CMCa + FOPrOP/CMCa

τCMCf = −FFPLrFPL/CMC f − FFPBrFPB/CMC f − FAPBrAPB/CMC f − FADDrADD/CMC f − FOPrOP/CMC f + FEPLrEPL/CMC f

+ FEPBrEPB/CMC f + FAPLrAPL/CMC f

B.2. Joint torques for the index finger

τDIP = −FFDPrFDP/DIP + FTErTE/DIP

τPIP = −FFDPrFDP/PIP − FFDSrFDS/PIP + FESrES/PIP + FRBrRB/PIP + FUBrUB/PIP

τMCPa = FFDPrFDP/MCPa + FFDSrFDS/MCPa + FUIrUI/MCPa + FEIrEI/MCPa − FLUMrLUM/MCPa − FRIrRI/MCPa

− FEDCrEDC/MCPa

τMCP f = −FFDPrFDP/MCP f − FFDSrFDS/MCP f − FLUMrLUM/MCP f − FUIrUI/MCP f − FRIrRI/MCP f + FEDCrEDC/MCP f

+ FEIrEI/MCP f
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