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Implications of a recent general formulation for the effective dynamic response of a
composite, in which “effective displacement” is defined as a weighted average, which could,
for instance, be an average over the matrix material, are developed. A general formula
is already known [J.R. Willis, Effective constitutive relations for waves in composites and
metamaterials, Proc. R. Soc. A 467 (2011) 1865–1879], but it is expressed in terms of the
Green’s function of the actual composite. A corresponding formula, expressed relative to a
comparison medium, is developed here. The property of self-adjointness of the problem
for the actual medium is transmitted to the corresponding problem for the “effective
medium”. This permits, in the case of self-adjointness, variational characterizations of the
effective response, both directly and in a formulation of “Hashin–Shtrikman” type relative
to a comparison medium. The exposition is for waves in a viscoelastic composite but it
applies equally to other physical examples, including electromagnetic waves.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The current interest in metamaterials has carried with it a concern for the accurate representation of waves propagating
through them. A metamaterial is no more than a composite but its distinguishing feature is that the waves that it can
support can be represented by effective properties which, while not in conflict with the basic principles of physics, are
nevertheless not observed in materials that occur naturally. Such properties include negative effective mass density and
negative elastic constants in the context of elasticity, or simultaneously-negative dielectric constant and magnetic perme-
ability in the case of electromagnetics. Properties such as these depend on the frequency ω of the excitation and they are
in general complex, so that energy is dissipated, the purely real limit being achievable only mathematically, in the idealized
case that the constituent materials display no dissipation at all. Apparently anomalous properties such as negative (real part
of) mass density are associated with resonance on the scale of the microstructure and are realized at frequencies in some
band which contains a resonant frequency. Liu et al. [1] made an experimental study of an acoustic medium containing
resonators. They interpreted the observed spectral band gap at frequencies close to resonance as implying negative effective
elastic constant but later [2] developed a model that implied that the effective density was negative. Zhikov [3] considered
homogenization of the Helmholtz equation for a composite with high contrast and found negative effective moduli at some
frequencies. In electromagnetics, an early discussion on the construction of lenses made from what would now be termed
metamaterials appears in Chapter 19 of [4], and this includes an outline of how an array of resonators similar to present
split-ring resonators could induce artificial magnetism. However, the current explosion of interest in the design of such
resonating microstructures was largely stimulated by the more recent insights of J.B. Pendry [5,6].

The purpose of the present work is to develop, from rigorous definitions and a formal solution given by Willis [7],
procedures for the calculation (either exactly or approximately) of the effective dynamic properties of a composite. The
procedures in question are first, a formulation relative to a comparison medium, then, a variational characterization in the
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case that the original problem is self-adjoint, and finally a variational characterization which employs a comparison medium.
All are familiar in the context of homogenization in elasto- or electro-statics. However, for dynamics, not just restricted to
long waves, even the form of the effective response (see Eq. (8) below) was not widely recognized until fairly recently. It
was implicit in work of Willis [8,9] and was made explicit by Willis [10]. Subsequently, Milton and Willis [11] and Willis
[12,7] developed a wider definition of effective properties, which allows for a weighted average of the displacement. The
present work is based on this definition.

The sections that follow give the basic governing equations and the boundary-value problem associated with them, and
review the definition of effective response employed in the work of Willis [7,12]. Then in Section 4, the equations and
their solution are developed relative to a comparison medium. Section 5 gives the basic variational formulation in the
case that the original problem is self-adjoint, and Section 6 gives the corresponding formulation relative to a comparison
medium. Some concluding discussion is made in Section 7. The reasoning and the results are expressed employing a concise
notation in which the problem closely resembles the corresponding problem for elastostatics. This notation also permits the
immediate translation of virtually every line of reasoning to the case of electromagnetic waves, the precise correspondence
being recorded in Appendix B.

2. Basic equations

The explicit context of this article is the study of waves in a composite medium whose constituents are viscoelastic.
The medium occupies a domain Ω in d-dimensional space, with boundary ∂Ω . It is assumed to have undergone some
“transformation strain” ηi j(x, t), perhaps arising from plastic deformation, thermal strain or phase transformation. The stress
σi j(x, t) in the medium is then related to the total strain ei j(x, t) by the constitutive relation

σi j(x, t) = {
Cijkl ∗ [ekl − ηkl]

}
(x, t) ≡

t∫
−∞

Cijkl
(
x, t − t′)[ekl

(
x, t′) − ηkl

(
x, t′)] dt′ (1)

The field ηi j(x, t) will be regarded as prescribed. The major reason for its introduction is mathematical and will be explained
later. From the physical viewpoint, however, in concentrating on the viscoelastic aspect of the problem, the present work
studies only a part of a completely specified problem which should contain in addition some evolution equation for the
transformation strain. The medium has mass density ρ(x) and so momentum density pi is related to velocity vi by

pi(x, t) = ρ(x)vi(x, t) (2)

The displacement ui(x, t) in the medium is assumed to be driven by a body-force f i(x, t) as well as by ηi j(x, t) and it will
be assumed that ui(x, t) ≡ 0 for all t < 0. It will be convenient to consider the problem in the Laplace transform domain so
that the transform variable s replaces the time t . The constitutive relation (1) then takes the “elastic” form

σ(x) = C(x)
[
e(x) − η(x)

]
(3)

having suppressed both the suffixes and the dependence on the transform variable s. In the special case of elastic response,
C(x, t) has the time-dependence δ(t), and in the transform domain C(x) is independent of s.1 The momentum–velocity
relation (2) similarly becomes

p(x) = ρ(x)v(x) (4)

The equation of motion in the transform domain is

divσ + f = sp (5)

It is necessary also to specify boundary conditions. It will be assumed that traction n ·σ = T is prescribed over a part S T of
the boundary, while displacement is prescribed over the complementary part Su .

3. Effective response

The effective response is intended to represent some form of “averaged” response, relating “effective” stress and mo-
mentum to effective strain and velocity. Precise definitions of course are necessary. The present work is based on those
advanced by Willis [7], which are now outlined.

The domain Ω is fixed but the medium within it is considered to be random. Thus, what is really represented is a family
of media, any member of which is parametrized by a variable α belonging to a sample space A, over which a probability

1 The tensor C(x) will henceforth be referred to as the elastic constant tensor even though, in the case of viscoelastic response, it depends on s as well
as x.
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measure p is defined. Thus, the probability that α ∈ A1 ⊂ A is p(A1). The elastic constant tensor C(x) then depends also
on α and its mean (or expectation) value is

〈C〉(x) =
∫
A

C(x,α)p(dα) (6)

Mean values of other variables are defined similarly. Before proceeding further, it merits emphasis that a periodic medium
with period cell Q fits into this scheme, if one specified “corner” of one specified period cell has position vector y. The
coordinate y serves as the sample parameter α and it is natural to assume that y is uniformly distributed over Q .

Now consider the boundary-value problem introduced above. Its solution depends on the realization α. Ensemble aver-
aging the equation of motion (5) gives

div〈σ 〉 + 〈 f 〉 = s〈p〉 (7)

and ensemble averaging the traction boundary condition gives n · 〈σ 〉 = 〈T 〉. It is considered appropriate to define the
effective stress to be 〈σ 〉 and the effective momentum density to be 〈p〉, so that the effective variables satisfy exactly the
equation of motion. It is necessary also to define effective strain and effective velocity. The most obvious way to do this is
to define the effective displacement to be 〈u〉 so that effective strain is 〈e〉 and effective velocity is 〈v〉. This description is
of very long standing, dating, in the case of elastostatics, back at least to the 1960’s (e.g. [13,14]). In the case of dynamics,
it was implicit in work of Willis [15,16,8,9] that this description lead to effective constitutive relations of the form2

( 〈σ 〉
〈p〉

)
=

(
Ceff Seff

Seff† ρeff

)( 〈e〉
〈v〉

)
(8)

The terms Ceff, etc. are non-local operators so that, for instance,

{
Ceff〈e〉}(x) =

∫
Ω

Ceff(x, x′)〈e〉(x′)dx′ (9)

Equations of this form were developed explicitly by Willis [10].
It is possible, however, to define effective strain and velocity more generally [11,12,7]. Just to motivate this, consider a

porous medium: the displacement is at least non-unique in the pores, and it is impossible to apply body force to the pores.
It seems appropriate, therefore, to allow the possibility to introduce a weighted mean displacement 〈wu〉 and to define
effective strain and effective velocity to be the associated strain and velocity. The weight w(x) is a random field with mean
value 〈w〉(x) = 1. It could be uniform over the matrix material (not occupied by pores or, more generally, inclusions) but
nothing in the mathematics requires this. It is appropriate, simultaneously, to take the body-force f (x) and the prescribed
surface traction T (x) to have the forms w(x) f1(x) and w(x)T1(x) respectively, where f1(x) and T1(x) are sure. Following
Willis [7], the displacement prescribed over Su and the transformation strain η(x) will be taken as sure.

Before giving more formulae, it is appropriate to introduce concise notation. Let E be the operator that takes displace-
ment to strain, so that

E : u → Eu = 1

2

[∇u + (∇u)T ]
(10)

In the transform domain, velocity is represented as v = su. Now define

s =
(

σ
p

)
, e =

(
e
v

)
, m =

(
η
0

)
, E =

(
E
s

)
, DT = (div −s ) and L =

(
C 0
0 ρ I

)
(11)

where I is the d × d identity. The constitutive relations (3) and (2) become

s = L(e − m) (12)

where

e = Eu (13)

and the equation of motion (5) becomes

DT s + w〈 f 〉 = 0 (14)

(employing the form f = w f1 for the body force so that f1 = 〈 f 〉).

2 Here, the transformation strain η = 0.
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Willis [7] developed, for this problem, the effective relation

〈s〉 = Leff[E〈wu〉 − m
]

(15)

where

Leff = 〈L〉 − 〈
LE

(
EG†)†L

〉 + 〈
L(EG)w

〉〈wG w〉−1〈w(
EG†)†L

〉
(16)

The elastic constant tensor was taken to have the symmetries Cijkl = C jikl = Cijlk but was not assumed to have the sym-
metry C T = C (i.e. Cijkl = Clkji ) that delivers self-adjointness and the associated self-adjointness of the Green’s function,
G†(x, x′) ≡ G T (x′, x) = G(x, x′). However, when the medium does possess the self-adjoint symmetry, it follows immediately
from (16) that Leff is self-adjoint, i.e. (Leff)† =Leff. The relation (15) remains true when η = 0 (so m = 0). The mathemati-
cal consideration that lead Willis [7] to introduce η �= 0 is that this renders all components3 of E〈wu〉 − m independent so
that Leff is unique. In the absence of η, even the effective strain E〈wu〉 is compatible with 〈wu〉 and therefore C ′E〈wu〉 = 0
for any C ′ for which ∂C ′

i jkl(x, x′)/∂x′
l = 0 for x′ ∈ Ω and C ′

i jkl(x, x′)nl(x′) = 0 for x′ ∈ ∂Ω . Thus, Leff cannot be unique, even
in the case of elastostatics. The possibilities for non-uniqueness of course are wider in the case of dynamics. See Willis [17]
for further discussion, illustrated by an example involving one space dimension (d = 1).

This article is concerned with two issues following from the formula (16). The first is that (16) contains the Green’s
function G of the random medium which may be hard to calculate, even approximately. This will be circumvented by
developing a formula equivalent to (16) that employs the Green’s function G0 of a fixed comparison medium. The second
is that, since it is now known – even at the level of generality of employing a weighted mean displacement – that self-
adjointness of the original problem induces self-adjointness of the effective medium, it is possible to develop variational
formulations in the self-adjoint case, with prospects for the development of rational approximations and in some cases
bounds for effective response.

4. Formulation relative to a comparison medium

Introduce a comparison medium with properties

L0 =
(

C0 0
0 ρ0 I

)
(17)

and a “polarization” n such that

s = L(e − m) = L0(e − m) + n (18)

The equation of motion (14) then implies that

DT L0Eu −DT L0m +DT n + w〈 f 〉 = 0 (19)

Green’s function G0 for the comparison medium is defined so that its adjoint G†
0(x, x′) = G T

0 (x′, x) satisfies the equation

DT LT
0EG†

0 + Iδ
(
x − x′) = 0 (20)

together with the homogeneous boundary conditions

n(x) · C T
0 (x)EG†

0

(
x, x′) = 0, x ∈ ST , G†

0

(
x, x′) = 0, x ∈ Su (21)

It follows4 that

u
(
x′) =

∫
Ω

{[
G†

0

(
x, x′)]T

w(x)〈 f 〉(x) + [
EG†

0

(
x, x′)]T [

L0(x)m(x) − n(x)
]}

dx

+
∫
ST

[
G†

0

(
x, x′)]T

w(x)〈T 〉(x)dS −
∫
Su

[
EG†

0

(
x, x′)]T

C0(x)
[
n(x) ⊗ u(x)

]
dS (22)

having expressed the traction over ST as T = w〈T 〉 (matching the form of the body force). For future use, (22) is written
more concisely as

u = G0
{

w〈 f 〉, w〈T 〉} + (
EG†

0

)†
(L0m − n) + u∗

0 (23)

3 There are d(d + 1)/2 components corresponding to strain and d to velocity.
4 See, for instance, the Appendix of [7] for a similar derivation relative to the actual medium.
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where

u∗
0(x) = −

∫
Su

{
EG†

0

}†(
x, x′)C0

(
x′)[n

(
x′) ⊗ u

(
x′)] dS

(
x′) (24)

Since u is prescribed, sure, on Su , it follows that it can be replaced in the integral in (24) by 〈wu〉. Also, the integral can be
extended to the whole of ∂Ω , on account of the boundary condition (21)1. An application of the divergence theorem and
use of the governing equation (20) for G†

0 then gives

u∗
0 = 〈wu〉 − (

EG†
0

)†L0E〈wu〉 (25)

Thus, u can be represented in the form

u = 〈wu〉 + G0
{

w〈 f 〉, w〈T 〉} − (
EG†

0

)†[L0
(
E〈wu〉 − m

) + n
]

(26)

Relation (26) would be equally true if 〈wu〉 were replaced by any displacement field taking the prescribed values on Su .
Taking the weighted mean of (26) shows that, for consistency, 〈 f 〉 and 〈T 〉 must be chosen so that

〈wG0 w〉{〈 f 〉, 〈T 〉} = (
EG†

0

)†L0
(
E〈wu〉 − m

) + 〈
w

(
EG†

0

)†
n
〉

(27)

The fact that m is taken to be sure has been used at this point. Eq. (27) defines 〈 f 〉 and 〈T 〉 if 〈wu〉, m and n are prescribed.
Then,

u = 〈wu〉 + G0 w〈wG0 w〉−1{(EG†
0

)†L0
(
E〈wu〉 − m

) + 〈
w

(
EG†

0

)†
n
〉}

− (
EG†

0

)†[L0
(
E〈wu〉 − m

) + n
]

(28)

Now with a view towards the construction of an effective constitutive relation, note that, from (18),

〈s〉 = L0
(〈e〉 − m

) + 〈n〉 (29)

Operating on (28) with E and subtracting m gives

e − m = (I − Γ0L0)
(
E〈wu〉 − m

) − Γ0n + EG0 w〈wG0 w〉−1{(EG†
0

)†L0
(
E〈wu〉 − m

) + 〈
w

(
EG†

0

)†
n
〉}

(30)

where

Γ0 = E
(
EG†

0

)†
(31)

and I is the identity operator on the space of “column vectors” of the form of E〈wu〉 and m. The polarization n has still to
be determined. The equation that it must satisfy is obtained by noting that (18) implies that

e − m = (L−L0)
−1n (32)

Thus, from (30) and (32),

[
(L−L0)

−1 + Γ0
]
n = (I − Γ0L0)

(
E〈wu〉 − m

)
+ EG0 w〈wG0 w〉−1{(EG†

0

)†L0
(
E〈wu〉 − m

) + 〈
w

(
EG†

0

)†
n
〉}

(33)

Solving first for 〈w(EG†
0)

†n〉 gives

〈wG0 w〉−1〈w(
EG†

0

)†
n
〉 = [〈wG0 w〉 − 〈

w
(
EG†

0

)†[
(L−L0)

−1 + Γ0
]−1

(EG0)w
〉]−1

× {〈
w

(
EG†

0

)†[
(L−L0)

−1 + Γ0
]−1

(EG0)w
〉〈wG0 w〉−1(EG†

0

)†L0
(
E〈wu〉 − m

)
+ 〈

w
(
EG†

0

)†[
(L−L0)

−1 + Γ0
]−1〉

(I − Γ0L0)
(
E〈wu〉 − m

)}
(34)

Also from (33),

〈n〉 = 〈[
(L−L0)

−1 + Γ0
]−1

(EG0)w
〉〈wG0 w〉−1{(EG†

0

)†L0
(
E〈wu〉 − m

) + 〈
w

(
EG†

0

)†
n
〉}

+ 〈[
(L−L0)

−1 + Γ0
]−1〉

(I − Γ0L0)
(
E〈wu〉 − m

)
(35)

Finally, substituting these expressions into (29) gives, after simplification,

〈s〉 = Leff(E〈wu〉 − m
)

(36)
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where

Leff = 〈(
I −LΓ0

[
I + (L−L0)Γ0

]−1)L〉
+ 〈

L
[
I + Γ0(L−L0)

]−1
(EG0)w

〉[〈wG0 w〉 − 〈
w

(
EG†

0

)†[
(L−L0)

−1 + Γ0
]−1

(EG0)w
〉]−1

× 〈
w

(
EG†

0

)†[I + (L−L0)Γ0
]−1L

〉
(37)

This expression is completely explicit, in the sense that it requires only the calculation of the single Green’s function G0, as
opposed to the whole family of Green’s functions G for the random medium. In fact, it is demonstrated in Appendix A that

(EG) = [
I + Γ0(L−L0)

]−1
(EG0) (38)(

EG†)† = (
EG†

0

)†[I + (L−L0)Γ0
]−1

(39)

Γ = Γ0
[
I + (L−L0)Γ0

]−1
(40)

and

G = G0 − (
EG†

0

)†[I + (L−L0)Γ0
]−1

(EG0) (41)

Thus, the new formula (37) is precisely equivalent to (16).

5. Variational principles

Attention henceforth will be restricted to the self-adjoint case, in which the elastic constants have the symmetry C T = C .
The original problem then has a variational formulation (in fact, more than one) and formula (16) shows that Leff is self-
adjoint so that the corresponding problem for the effective medium also has a variational formulation. The main purpose of
this section is to derive the latter from the former, exposing in the process the physical interpretation of the latter. It will
be convenient, at least for the sake of explicit discussion, to regard the transform variable s as real, since then the basic
variational principle that will be invoked is of “minimum energy” type. In the general case of complex s, the variational
principles retain the same form but are only stationary principles.

The basic principle for the original random medium is

inf
u

〈∫
Ω

{
1

2
(e − m)L(e − m) − w〈 f 〉u

}
dx −

∫
ST

w〈T 〉u dS

〉
(42)

the infimum being taken over displacement fields u(x,α) that take the given (sure) values on Su . The principle is entirely
conventional, except for the inclusion of the ensemble average (i.e. the additional integration

∫
A . . . p(dα)) which, as ob-

served by Willis [9], ensures that the principle generates the solution in every realization. The minimizing field u(x,α)

satisfies the stationarity condition〈∫
Ω

{
δeL(e − m) − δuw〈 f 〉}dx −

∫
ST

δuw〈T 〉dS

〉
= 0 (43)

for all δu(x,α) = 0 on Su . The condition (43) implies the equation of motion (14) as well as the boundary condition that
n · σ = w〈T 〉 on ST .

Now consider evaluating the infimum sequentially, by first evaluating the infimum conditional upon the field 〈wu〉 being
given, and then minimizing the resulting expression (which depends only on 〈wu〉) with respect to 〈wu〉. The conditional
minimizer u(x,α) satisfies (43), for all δu(x,α) that satisfy the constraint

〈wδu〉 ≡
∫
A

w(x,α)δu(x,α)p(dα) = 0 (44)

as well as δu(x,α) = 0 on Su . It follows that there must exist “Lagrange multipliers” f1 over Ω and T1 over ST , both sure,
such that

DT s + w f1 = 0, x ∈ Ω (45)

and

n · σ = wT1, x ∈ ST (46)

with s obtained from the constitutive relation (12).



J.R. Willis / C. R. Mecanique 340 (2012) 181–192 187
Eqs. (45) and (46) imply that

DT s = wDT 〈s〉, x ∈ Ω (47)

and

n · σ = w
(
n · 〈σ 〉), x ∈ ST (48)

It merits emphasis that these relations apply to s evaluated at the conditional minimizer u(x,α), for any α. They allow the
simplification of the conditionally-minimized variational functional, F(〈wu〉) say, which can be written in the form

F
(〈wu〉) =

〈∫
Ω

{
1

2
s(e − m) − w〈 f 〉u

}
dx −

∫
ST

w〈T 〉u dS

〉

≡
〈∫
Ω

{
−1

2

(
DT su + sm

)}
dx + 1

2

∫
∂Ω

(n · σ)u dS

〉
−

∫
Ω

〈 f 〉〈wu〉dx −
∫
ST

〈T 〉〈wu〉dS (49)

by the divergence theorem. Now use condition (47) to replace DT s by wDT 〈s〉 over Ω . Also, use (48) to replace n · σ by
w(n · 〈σ 〉) over ST , and note that u can be replaced by 〈wu〉 over Su , since u is specified as sure there. Taking the ensemble
mean then gives

F
(〈wu〉) =

∫
Ω

{
−1

2

(
DT 〈s〉〈wu〉 + 〈s〉m

) − 〈 f 〉〈wu〉
}

dx + 1

2

∫
∂Ω

〈wu〉(n · 〈σ 〉) dS −
∫
ST

〈T 〉〈wu〉dS (50)

Use of the divergence theorem in the reverse direction now gives

F
(〈wu〉) =

∫
Ω

{
1

2
〈s〉(E〈wu〉 − m

) − 〈 f 〉〈wu〉
}

dx −
∫
ST

〈T 〉〈wu〉dS (51)

or equivalently,

F
(〈wu〉) =

∫
Ω

{
1

2

(
E〈wu〉 − m

)
Leff(E〈wu〉 − m

) − 〈 f 〉〈wu〉
}

dx −
∫
ST

〈T 〉〈wu〉dS (52)

This final expression is of exactly the same form as the original functional in the variational principle (42). It could have
been written down directly from the equations governing the problem for the effective medium. What has been gained,
however, is a clear interpretation of its physical significance, as a conditional minimizer of the original functional, even
when 〈wu〉 is no more than a trial field rather than the one that actually solves the problem. Another fact, of potential
significance, is the deduction that∫

Ω

1

2

(
E〈wu〉 − m

)
Leff(E〈wu〉 − m

)
dx = inf

〈∫
Ω

1

2
(e − m)L(e − m)dx

〉
(53)

the infimum taken with 〈wu〉 prescribed over Ω and u(x,α) = 〈wu〉, sure, on Su , which will permit the development
of rigorous bounds on the non-local operator Leff, when s is real. As observed from the outset, the minimum principle
becomes just a stationary principle when s is complex. It may be noted, however, that, when s = −iω with ω real, Milton
and Willis [18] have constructed a partial dual of the original functional which delivers a minimum principle in the case
that the original medium dissipates energy.

6. Principle of Hashin–Shtrikman type

A variational principle of the type first constructed (in the case of statics) by Hashin and Shtrikman [19,20] will now be
developed. It employs a comparison medium with properties defined by L0, as in Section 4, except that now it is assumed
that LT

0 =L0. The starting point is to note that

1

2
(e − m)(L−L0)(e − m) � (e − m)n − 1

2
n(L−L0)

−1n (54)

so long as the quadratic forms are negative-definite,5 with equality when Eq. (18) is satisfied. Therefore, (53) can be ex-
pressed in the form

5 Negative-definiteness of one implies negative-definiteness of the other.
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∫
Ω

1

2

(
E〈wu〉 − m

)
Leff(E〈wu〉 − m

)
dx

= inf
n

inf
u

〈∫
Ω

{
1

2
(e − m)L0(e − m) + (e − m)n − 1

2
n(L−L0)

−1n
}

dx

〉
(55)

First, evaluate the infimum with respect to u, conditional on 〈wu〉 being specified, as required in (53). As in Section 5, the
conditional minimizer must satisfy Eqs. (45) and (46) where f1 and T1 are Lagrange multipliers, except that now s is given
by (18). Note that the problem so defined is identical to the one posed in Section 4, except that 〈 f 〉 and 〈T 〉 are replaced
by f1 and T1. The conditional minimizer u(x,α) is thus given by (28) and the corresponding e − m is given by (30). It is
helpful to note that, at the conditional minimizer u(x,α),〈∫

Ω

{
1

2
(e − m)L0(e − m) + (e − m)n

}
dx

〉
=

〈∫
Ω

{
1

2
(e − m)s + 1

2
(e − m)n

}
dx

〉

=
∫
Ω

{
1

2

(〈e〉 − m
)〈s〉 + 1

2

〈
(e − m)n

〉}
dx (56)

by an application of the divergence theorem like that used in deriving (51). It follows that6

∫
Ω

1

2

(
E〈wu〉 − m

)
Leff(E〈wu〉 − m

)
dx

�
∫
Ω

{
1

2

(
E〈wu〉 − m

)
(L0 −L0Γ0L0)

(
E〈wu〉 − m

)

+ 1

2

(
E〈wu〉 − m

)
L0EG0〈wG0 w〉−1(EG†

0

)†L0
(
E〈wu〉 − m

)

+ 〈n〉(I − Γ0L0)
(
E〈wu〉 − m

) + 〈nEG0 w〉〈wG0 w〉−1(EG†
0

)†L0
(
E〈wu〉 − m

)

+ 1

2
〈nEG0 w〉〈wG0 w〉−1〈w(

EG†
0

)†
n
〉 − 1

2
〈nΓ0n〉 − 1

2

〈
n(L−L0)

−1n
〉}

dx (57)

The condition for minimizing the right side of (57) is exactly (33). Note that the inequality is true so long as L<L0 in the
sense of quadratic forms, and s is real. Parallel reasoning shows that the inequality is reversed if L > L0. Whether or not
L − L0 is definite, and whether s is real or complex, the stationary value of the right side of (57) coincides with the left
side, and Leff is given by (37).

It is of interest now to exploit (57) to obtain bounds (or more generally, approximations) for Leff. This is done by
optimizing the right side, with n restricted to a chosen linear space. For illustration, take n(x,α) to have the form

n(x,α) =
∑

r

nr(x)φr(x,α) (58)

where {φr(x,α)} is the set of basis functions and nr(x) are to be chosen optimally. Thus, {nr} must satisfy
∑

s

Arsns = Br
(
E〈wu〉 − m

)
(59)

where7

Ars = 〈
φr

[
(L−L0)

−1 + Γ0
]
φs

〉 − 〈φrEG0 w〉〈wG0 w〉−1〈w(
EG†

0

)†
φs

〉
(60)

and

Br = 〈φr〉(I − Γ0L0) + 〈φrEG0 w〉〈wG0 w〉−1(EG†
0

)†L0 (61)

The generalization of the Hashin–Shtrikman prescription as developed by Willis [9] is realized within the framework of
(58) by taking φr(x,α) to be the characteristic function of “phase r” of the composite. A scheme of the type employed
by Nemat-Nasser and Srivastava [21] (with one spatial dimension, d = 1) and Srivastava and Nemat-Nasser [22] (three

6 Self-adjointness is exploited here.
7 It is important to note that here (L−L0)−1 is interpreted as an operator, containing the factor δ(x − x′).
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dimensions, d = 3) for a periodic medium with period Q is obtained by sub-dividing Q by a grid. Then φ0r(x) is taken to
be 1 in the rth sub-division, zero elsewhere in Q and extended periodically throughout space. Finally, φr is taken to be
φr(x, y) = φ0r(x − y), the variable y ∈ Q playing the role of the sample parameter α. More generally, the basis functions φr

need not be piecewise constant, but could, for instance, have the spatial character of a finite-element basis.
The solution of Eq. (33) may formally be written as

n = N
(
E〈wu〉 − m

)
(62)

The resulting expression for Leff is then

Leff = L0 −L0Γ0L0 +L0EG0〈wG0 w〉−1(EG†
0

)†L0 + (I −L0Γ0)〈N 〉 +L0EG0〈wG0 w〉−1〈w(
EG†

0

)†N
〉

(63)

If an optimal approximation for N is found, for instance as the solution of Eq. (59), then

N ≈
∑

r

∑
s

φr
{

A−1}
rs Bs (64)

and (63) provides an optimal approximation for Leff, which is an upper or lower bound in the case that L0 is greater than
or smaller than L in the sense of quadratic forms, and s is real.

Study of the full implications of this formulation will require fairly extensive computations and forms a project for the
future.

7. Discussion

It should perhaps be emphasized first that the reasoning developed in this work is applicable to different types of wave
propagation. In particular, it applies directly to the propagation of electromagnetic waves. Appendix B summarizes Maxwell’s
equations and provides definitions for L, etc. under which every result recorded in this work applies to electromagnetic
waves. In fact, the work of Willis [7] was developed primarily for Maxwell’s equations, with elastodynamics treated as a
corollary. The resulting effective relation in the electromagnetic case has bi-anisotropic form; see, for instance, [23] for an
account of such media.

The main message of this paper is that it is possible to develop variational descriptions of the effective dynamic response
of composites, when the “effective displacement” is taken as the weighted mean, 〈wu〉. This is facilitated by the demonstra-
tion, contained in formula (16) derived by Willis [7], that the effective medium is defined by operators that are self-adjoint,
so long as the components of the original composite have self-adjoint symmetry. There are, however, also insights of recent
origin that apply even when the unweighted mean, 〈u〉 is employed. The main one is that effective dynamic properties are
inevitably non-unique, if the intention is to develop theory to describe fields driven by any combination of body force and
surface traction and/or displacement (without any “transformation strain”). Explicitly, if

〈s〉 = LeffE〈wu〉 (65)

then also 〈s〉 = (Leff +L′)E〈wu〉, for any L′ of the form

L′ =
(

C ′ S ′
Ŝ ′ ρ ′

)
(66)

for which

∂C ′
i jkl(x, x′)
∂x′

l

− sS ′
i jk

(
x, x′) = 0, x′ ∈ Ω and C ′

i jkl

(
x, x′)nl

(
x′) = 0, x′ ∈ ∂Ω (67)

∂ Ŝ ′
ikl(x, x′)
∂x′

l

− sρ ′
ik

(
x, x′) = 0, x′ ∈ Ω and Ŝ ′

ikl

(
x, x′)nl

(
x′) = 0, x′ ∈ ∂Ω (68)

As already noted in Section 3, it is possible to generate tensors C ′ that satisfy the conditions (67) with S ′ = 0. The non-
uniqueness thus remains, even in the case of elastostatics. The conditions on L′ were given in symbolic form by Willis [7]
but were not presented quite so explicitly. The implication of this non-uniqueness is that no set of experiments – or compu-
tations – can be comprehensive enough to determine Leff. There is, rather, an equivalence class of constitutive operators, but
this is not a helpful notion for practical use. What is needed, instead, is some selection procedure which ensures that only
one Leff is defined, and this can be taken as representative of the whole equivalence class. Shuvalov et al. [24], for instance,
found, for the propagation of free waves in a layered medium, that they could always develop a prescription in which the
effective density and the “S-terms” as in (8) were functions only of frequency while the effective tensor Ceff was allowed
to depend also on wavenumber. They did not, however, consider disturbances driven by body force. The device employed
by Willis [7] was to require that the effective medium could support also an arbitrary transformation strain, the effective
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relation thus taking the form (36). The advantage of this is that it is applicable for any composite microgeometry, with
body-force present – as well as giving the correct (unique) Leff if inelastic strain happens to be present. The problem of
non-uniqueness appears first to have been confronted by Feitz and Shvets [25] in the electromagnetic context. Their concern
was to deduce the components in reciprocal space of the effective operator Leff for an infinite periodic medium, by solving
numerically a sufficient set of linearly independent problems, and did this by imposing, in addition to electric current, a
fictitious “magnetic monopole current”. The introduction of magnetization M by Willis [7] is an alternative which has the
virtue that it fits exactly the pattern resulting from introducing inelastic strain in the context of (visco-)elastodynamics.

It is common practice, particularly for a matrix-inclusion composite, to develop equations relative to a comparison
medium, usually chosen to be composed of matrix material. This has not been formulated previously when the chosen
effective displacement is the weighted mean 〈wu〉. The advantage of including Section 4 is that it introduces this formula-
tion in full generality, allowing both for inelastic strain and non-self-adjoint response, and provides in the process several
formulae needed subsequently, in the associated variational description given in Section 6. It is possible, in fact, to im-
plement the “comparison medium” formulation without explicit allowance for m, although this has never previously been
done for the case of a weighted mean displacement. In the context of the approximate description (59), for example, it
would be natural to develop the solution operator N even in the absence of m, thus providing a prescription for obtaining
an approximation to a particular Leff, even though it would not be unique. It is interesting that, in fact, this Leff is the one
that remains correct when m is present.

It is remarked in closing that, in the unweighted case (w ≡ 1), factors involving G0 and G−1
0 cancel to give the identity,

with the result that Eq. (33) reduces to the familiar form

(L−L0)
−1n + Γ0

(
n − 〈n〉) = 〈e〉 − m (69)

the representation (63) for Leff becomes

Leff = L0 + 〈N 〉 (70)

and the inequality (57) reduces to∫
Ω

1

2

(〈e〉 − m
)
Leff(〈e〉 − m

)
dx �

∫
Ω

{
1

2

(〈e〉 − m
)
L0

(〈e〉 − m
) + 〈n〉(〈e〉 − m

)

+ 1

2
〈n〉Γ0〈n〉 − 1

2
〈nΓ0n〉 − 1

2

〈
n(L−L0)

−1n
〉}

dx (71)

valid when the quadratic form associated with L−L0 is negative-definite and s is real.

Appendix A. Some identities relating operators for the actual and the comparison medium

Green’s function G for the actual medium is defined so that its adjoint G† satisfies the same equations, (20) and (21), as
the comparison medium, except that the suffix 0 is omitted. First, it is demonstrated that G also satisfies the equation

DT LEG
(
x, x′′) + Iδ

(
x − x′′) = 0, x ∈ Ω (A.1)

and the boundary conditions

n · {C(x)EG
(
x, x′′)} = 0, x ∈ ST and G

(
x, x′′) = 0, x ∈ Su (A.2)

Towards this end, call the field that satisfies (A.1) and (A.2) U rather than G . It follows from the representation (23)
(appropriately specialized, with suffix 0 omitted) that

U
(
x′, x′′) = [

G†(x′′, x′)]T ≡ G
(
x′, x′′) (A.3)

from the basic definition of G† as the adjoint of G .
Next, G is expressed relative to the comparison medium. By noting that the stress Σ = C(EG) and momentum P = ρ(sG)

associated with G can be written as(
Σ

P

)
= L(EG) ≡ L0(EG) + (L−L0)(EG) (A.4)

it follows immediately from the representation (23) that

G = G0 − (
EG†

0

)†
(L−L0)(EG) (A.5)

Also, by interchanging the roles of L and L0,

G0 = G + (EG)†(L−L0)(EG0) (A.6)
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Therefore, from (A.5),

(EG) = (EG0) − Γ0(L−L0)(EG) (A.7)

which immediately implies (38). Also, from (A.6),

(
EG†)† = (

EG†
0

)† − (
EG†)†

(L−L0)Γ0 (A.8)

which implies (39). Relation (40) follows by application of E to (39) (or to (A.8)). Finally, Eq. (41) is obtained from combining
(A.5) and (38).

Appendix B. Notation for electromagnetic waves

Maxwell’s equations (in the Laplace transform domain) are

curl H − sD − j = 0 (B.1)

curl E + sB = 0 (B.2)

which are to be solved in conjunction with the constitutive relations

D = εE and B = μH + M (B.3)

The unconventional feature here is the presence of the “magnetization” M relative to the medium: it serves the same
purpose as the inelastic strain η introduced into the (visco)elastic constitutive relation (3). The second Maxwell equation,
(B.2), is satisfied identically if a vector potential A is introduced, such that

B = curl A and E = −sA (B.4)

Now, in analogy with Eqs. (11), define

s =
(

H
D

)
, e =

(
B
E

)
, m =

(
M
0

)
, E =

(
curl
−s

)
, DT = ( curl −s ) and L =

(
μ−1 0

0 ε

)
(B.5)

The Maxwell system can then be written in the form

DT s − j = 0 (B.6)

in conjunction with the constitutive relation

s = L(e − m), where e = E A (B.7)

For more detail, including specification of boundary conditions, the reader is referred to Willis [7]. He primarily discussed
the Maxwell system and afterwards deduced the corresponding result for elasticity. Correspondingly, certain different sym-
bols (b instead of e, and B instead of E , for example) were employed, but otherwise the structure is identical. The point is
that the notation introduced in (B.5) places the Maxwell system in exact correspondence with the (visco)elastic system, so
that every line of the reasoning developed in the main text is applicable directly also to electromagnetic waves.
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