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This article deals with the problem of an isolated, rigid inclusion with linear-magnetic
behavior embedded in a linear-elastic matrix. Under the hypothesis of infinitesimal
deformations, an analytical expression is obtained for the equilibrium rotation of the
magnetic inclusion under general magneto-mechanical loading conditions. The results
show that the inclusion undergoes an ‘extra’ rotation due to the presence of non-aligned
magnetic fields (even in the absence of mechanical loadings). Moreover, this extra rotation
is found to depend on the shape of the inclusion, as well as on its magnetic anisotropy.
Thus, the extra rotation increases monotonically to an asymptote with increasing magnetic
anisotropy of the inclusion, while, for fixed magnetic behavior of the inclusion, the extra
rotation increases up to a maximum with increasing aspect ratio, and then decays to
zero.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The problem of an isolated inclusion embedded in an infinite matrix, also known as the single-impurity problem, is a
central problem in the theory of composite materials, and other heterogeneous media. In the context of linear elasticity,
a general solution for a single ellipsoidal inclusion of one material embedded in a matrix of a second material was provided
by Eshelby in a highly-cited paper (Eshelby [1]). The main feature of this solution—which was known much earlier in the
context of electrostatics (e.g., Maxwell [2])—is that the stress and strain fields are uniform inside the ellipsoidal inclusion.
This feature has made possible the development of dilute and effective medium theories for composites containing random
distributions of such inclusions (Willis [3]). Because of this, generalizations of Eshelby’s solution, and of some of the methods
that are based on it, have been developed for magneto-elastic composites with piezomagnetic coupling in recent years (e.g.,
Benveniste [4]; Dunn and Taya [5]; Huang et al. [6]).

This work is concerned with magneto-elastic systems of a different type, involving coupled behavior through the Maxwell
stress. It is well known (e.g., Landau et al. [7]) that an externally applied magnetic field gives rise to forces and torques on
magnetically susceptible particles. When such particles are embedded in an elastic matrix (even if it is not itself magnet-
ically susceptible), the externally applied magnetic field can generate stress and strain fields in the matrix material, as a
consequence of the forces and torques that are transmitted by the particles to the surrounding matrix. These stresses and
strains can combine with corresponding stresses and strains arising solely from purely mechanical sources to produce inter-
esting coupled magneto-elastic behavior, such as magnetostriction. In this connection, it should be noted that the magnitude
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of the Maxwell stresses that are generated in the matrix material are quadratic in the magnetic field and can therefore be
significant for large values of the fields (even if the effect is limited by the magnetic saturation of the particles).

Magnetorheological elastomers, which consist of very stiff magnetic inclusions embedded in relatively soft elastic matri-
ces (Ginder et al. [8,9]; Guan et al. [10]), are composite materials which attempt to exploit the above described mechanism
to generate large field-induced (i.e. magnetostrictive) strains. These materials are examples of ‘smart’ materials, which can
be useful in many applications as actuators and sensors, as well as artificial analogues of muscles. Recent papers by Borcea
and Bruno [11] and Yin et al. [12] have addressed the effects of dipole forces between particles, and their implications for
the constitutive behavior of such materials. In addition, Liu et al. [13] have generated variational estimates for elastic-matrix
composites with a dilute concentration of a certain type of (deformable) magnetostrictive particles. However, it appears
that, to date, no systematic attempts have been made to describe the effects of the magnetic torques that would be ex-
pected to develop when the particles have a geometric shape and/or magnetic anisotropy. To this end, we develop in this
paper, building on the work of Eshelby and others, an analytical solution for a single, rigid inclusion with linear, anisotropic
magnetic behavior that is embedded in a non-magnetic, linear-elastic matrix.

The article is organized as follows. Section 2 provides a quick review of magneto-elasticity, where we present the gov-
erning equations, as well as the constitutive equations for the two special classes of materials involved: rigid materials
with linear-magnetic behavior and elastomers with linear-elastic, non-magnetic behavior. In addition, the problem for the
magnetic ellipsoidal inclusion in an elastic matrix is formulated, and the general strategy for solving the problem in terms
of two auxiliary problems in magnetostatics and linear elasticity is introduced. In Section 3 we address the magnetostatics
problem of the single rigid inclusion with linear-magnetic behavior in the deformed configuration, by means of the integral
equation formulation of Willis [14,3]. Furthermore, we obtain an explicit formula for the force and torque exerted on the in-
clusion by the external magnetic field. Section 4 is devoted to the elasticity problem of a single rigid inclusion in an infinite
elastic matrix under the combined action of an externally applied deformation and a prescribed rotation of the inclusion
(Walpole [15]). Using the results of Sections 3 and 4 for the magnetic and mechanical inclusion problems, together with
the fact that the Maxwell stress in the surrounding elastic matrix is self-equilibrated, we obtain an expression in Section 5
for the equilibrium rotation of a rigid inclusion with general ellipsoidal shape and magnetic anisotropy in an infinite elastic
matrix under both mechanical and magnetic loading of the system. More specifically, we show that, in the presence of an
external magnetic field, the inclusion can undergo an extra rotation in addition to the Eshelby-type, mechanically driven ro-
tation. In Section 6 an analytical expression is obtained for the in-plane rotation of the isolated inclusion under appropriate
loading conditions, and the results are analyzed for some special cases. In addition, the analytical results are compared with
the results of a simple finite element (FE) analysis for some two-dimensional examples. Finally, we conclude the paper in
Section 7 with a brief discussion of the results and possible future applications.

Throughout this article, scalars are denoted by italic Roman, a, or Greek letters, α; vectors by boldface Roman letters, b;
second-order tensors by boldface italic Roman letters, P , or Greek letters, α; and fourth-order tensors by barred letters, S.
Where necessary, conventional index notation is adopted, e.g., bi , Pij and Sijkl are the Cartesian components of the vector b,
second-order tensor P and fourth-order tensor S, respectively.

2. Problem formulation

Magneto-elastic materials are defined as materials exhibiting coupled magnetic and mechanical behaviors. Characterizing
the constitutive behavior of magneto-elastic materials requires a model for the interaction of the magnetic fields and matter.
Modeling the response of deformable bodies to magnetic fields (or in general, to electromagnetic fields) has been a chal-
lenging scientific issue (see, for example, Maxwell [2]), and, as a consequence, different formulations have been proposed
in the literature, which do not seem consistent at first glance. Despite the fact that there exist different formulations, it can
be shown that under certain assumptions, all these formulations are equivalent (see, for example, Hutter et al. [16]). In the
following, we present a brief summary of the governing equations that are required for the purposes of this article (see
Kovetz [17] and Hutter et al. [16] for more general formulations).

2.1. Governing equations

Under application of mechanical and magnetic loadings a typical magneto-elastic material deforms from its original,
reference configuration to a new, current configuration. This deformation can be parametrized by a continuous map, x =
x(X), which is a one-to-one correspondence between the position of material points in the reference configuration, X,
and in the current configuration, x. In the infinitesimal limit, such deformations can be characterized by the displacement
gradient ∇u, where u := x − X denotes the infinitesimal displacement. Its symmetric part, with Cartesian components
εi j = 1

2 (ui, j + u j,i), and antisymmetric part, ωi j = 1
2 (ui, j − u j,i), correspond respectively to the infinitesimal strain and

rotation tensors.
In the absence of electric and relativistic effects, as well as external current densities, Maxwell’s equations for the case

of static magnetic fields are given by

div b = 0, and curl h = 0 (1)
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where b and h are the magnetic induction and magnetic fields, respectively. In the classical theory of electromagnetism for
magnetizable materials, it is standard to introduce the magnetization, denoted by m, such that

m = 1

μ0
b − h (2)

Neglecting inertial and external forces, the conservation of linear and angular momentum for a homogeneous, magneto-
elastic material may be written as

div T = 0, and T T = T (3)

where T is the total stress, including magnetic effects. In the presence of material interfaces (between two different phases
in a composite), the following set of jump conditions has to be satisfied: �u� = 0, �T �n = 0, �b� · n = 0, and �h� × n = 0,
where n is the unit normal to the interface in the current configuration.

The above set of governing equations is completed by appropriate constitutive relations between the pairs, b and T , and
h and ∇u. As already mentioned, in this investigation, a rigid magnetically linear inclusion is embedded in a linear-elastic,
magnetically insensitive material. Their constitutive responses are described as follows (Kovetz [17]; Hutter et al. [16]).

2.1.1. Magnetically impermeable, linear-elastic materials
For elastic materials, which are not susceptible to magnetic fields, the magnetization is always zero. Therefore, for this

class of materials, the constitutive behavior reduces to

b = μ0h, and T := T el + T M (4)

where μ0 is the permeability of vacuum, and T el and T M denote the “purely mechanical” and Maxwell stresses, given
respectively by the expressions

T el = C(1)ε, and T M = b ⊗ b

μ0
− b · b

2μ0
I (5)

In the first of these equations, C(1) is the stiffness of the material, which in general is a fully symmetric, fourth-order tensor,
but for isotropic material behavior reduces to an isotropic tensor depending only on the elastic shear modulus, μel , and the
Poisson’s ratio, ν .

2.1.2. Rigid magnetic materials
A rigid material can only undergo a rigid displacement (a translation and a rotation). Therefore, in the context of in-

finitesimal deformations, the displacement gradient in the rigid particles is given by an infinitesimal rotation, i.e.

∇u = ω̄(2) (6)

while the total stress is indeterminate.
In the current configuration, the magnetic response of the rigid material will be taken to be described by the relation

b = μ(2)h (7)

where μ(2) is the magnetic permeability of the material. This linear model is appropriate for diamagnetic and paramagnetic
materials. However, it should be noted that the analysis may be generalized for nonlinear responses of the type that may
be exhibited by a soft ferromagnetic material (with small hysteresis). We will come back to this point in the concluding
remarks. It should also be noted (see e.g. Ponte Castañeda and Galipeau [18]) in the context of expression (7) that the
permeability in the current configuration μ(2) is related to the corresponding permeability in the reference configuration
M (2) via

μ(2) = M (2) + ω̄(2)M (2) − M (2)ω̄(2) (8)

where terms of order (ω̄(2))2 and higher have been neglected because of the small-deformation approximation.

2.2. Solution procedure

We consider a single rigid magnetic inclusion, denoted by Ω0, embedded in an infinite elastic, and non-magnetic
matrix, occupying R3 \ Ω0. For the inclusion, we assume a general ellipsoidal shape in the reference configuration
Ω0 = {X : |Z−T

0 X| � 1}, where Z 0 is a symmetric, second-order tensor representing the shape of the inclusion. In addi-
tion, we assume a general, anisotropic, reference permeability tensor, M (2) , for the magnetic behavior of the inclusion. The
rigid inclusion in the presence of mechanical and magnetic loadings is expected to undergo an infinitesimal rotation until
reaching an equilibrium point at which the infinitesimal rotation is ω̄(2)

e (see Fig. 1). It is important to note that even in
the absence of the external magnetic fields the inclusion may undergo an infinitesimal rotation (see Eshelby [1]). Since the
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Fig. 1. Schematic of the single inclusion’s magneto-elasticity problem. (a) The reference configuration, and (b) the deformed configuration.

inclusion is rigid, its shape in the deformed configuration is characterized by Ω = {x: |Z−T x| � 1}, where, on account of
the small rotations involved, the shape tensor Z in the current configuration is related to the corresponding reference shape
tensor Z 0 by

Z = Z 0 + ω̄(2) Z 0 − Z 0ω̄
(2) (9)

To determine the equilibrium rotation of the inclusion, we note that for static equilibrium, the global versions of the
conservation laws of linear and angular momentum must be satisfied for any part of the body. In particular, for the domain
Ω enclosing the rigid particle with boundary surface ∂Ω , we have that the total force f and torque l on Ω must vanish
identically, or

f = 1

V

∫
∂Ω

T n dS = 0, and l = 1

V

∫
∂Ω

x × T n dS = 0 (10)

where T is the total stress defined in the previous section (which includes both mechanical and magnetic contributions),
V is the volume of the inclusion and n is the unit outward normal to ∂Ω .

Noting that the inclusion Ω is surrounded by the matrix material (i.e., the surface ∂Ω in Eq. (10) is just outside the
inclusion, and therefore in the matrix), the stress T in the total force and torque integrals correspond to the total stress in
the matrix which is given by Eq. (4) in terms of the elastic stress, T el , and the Maxwell stress, T M , as defined by Eqs. (5).
In conclusion, Eqs. (10) can be rewritten as

fel + fmg = 0, and lel + lmg = 0 (11)

where fel and fmg , and lel and lel denote the “elastic” and “magnetic” components of the forces and the torques (per unit
volume) acting on the inclusion due to the elastic matrix and the magnetic field, respectively. They are given by the same
integrals as in (10) with T being replaced by T el (or T M ) for the elastic (or magnetic) force and torque.

Independent of the rotation of the inclusion, the elastic and magnetic forces acting on it will turn out to vanish (as will
be discussed in more detail below). Thus, Eq. (11)1 is automatically satisfied. On the other hand, for an arbitrary rotation
of the inclusion, ω̄(2) , both elastic and magnetic torques in Eq. (11)2 can be thought of as functions of the rotation (i.e.
lel = lel(ω̄(2)) and lmg = lmg(ω̄(2))). Noting that the sum of these two torques must be zero at equilibrium, the following
equation for the equilibrium rotation of the inclusion is obtained

lel(ω̄(2)
) + lmg(ω̄(2)

) = 0, for ω̄(2) = ω̄(2)
e (12)

As will be shown in more detail in Section 3, it is possible to obtain the magnetic fields for a given rotation of the
inclusion, ω̄(2) , independent of the deformation field in the matrix. Having the solution for the magnetic fields, the magnetic
torque can be obtained as a function of ω̄(2) in terms of the Maxwell stress tensor (5), evaluated immediately outside the
inclusion, by means of the integral appearing in (10)1 with T replaced by the Maxwell stress T M .

Similarly, as will be shown in Section 4, since the matrix is not responsive to the magnetic fields, for the given rotation
of the inclusion, ω̄(2) , the elasticity problem can be solved independent of the magnetic fields. Moreover, the elastic torque
applied on the inclusion can be obtained in terms of the same integral appearing in (10)1 with T replaced by the elastic
stress T el = C(1)ε(x) (for x ∈ ∂Ω).

In the following two sections, the magnetic and elastic problems described above will be solved independently in order
to determine the elastic and magnetic torques acting on the inclusion. Then, the equilibrium rotation of the inclusion under
combined mechanical and magnetic loadings will be determined by means of (12).
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3. Rigid magnetizable inclusion in an external magnetic field

In this section, we address the solution of the magnetostatic problem consisting of a magnetic inclusion (denoted by Ω

in the deformed configuration) placed in an external magnetic field, h̄, which is the field in the absence of the inclusion, or
simply the magnetic field at infinity. Recalling Eqs. (1) and (2), the magnetostatic problem reduces to the following boundary
value problem

μ0∇2φ + μ0∇ · m = 0, x ∈R3

φ → h̄ · x, |x| → ∞ (13)

where φ is the magnetic potential, such that h = ∇φ, and where m is the magnetization, given by

μ0m = (
μ(2) − μ0 I

)∇φ, when x ∈ Ω (14)

and zero otherwise.
There are well-known solutions for the case of isotropic permeability tensors and simple geometries, such as spheres

(Reitz and Milford [19]) and ellipsoids (Landau et al. [7]). For the general case of anisotropic magnetic properties, it is
possible to rewrite the governing equations of magnetostatics (i.e. the Maxwell’s equations) in an integral equation form
analogous to the Eshelby problem in elasticity (see Willis [14]) in order to find the magnetic fields. The main advantage of
the integral equation approach is the compact form of the solution, inside and outside of the inclusion, for the most general
case of anisotropic magnetic behaviors and ellipsoidal shapes of the inclusion. Therefore, by application of the procedure of
Willis [14] to deal with anisotropic magnetic behavior for the inclusions, it can be shown that for ellipsoidal shapes of the
inclusion, the magnetization, magnetic field and magnetic induction are constant inside the inclusion and therefore equal to
their averages, i.e.

m̄(2) = α(2)h̄, h̄(2) = β(2)h̄, and b̄(2) = μ(2)β(2)h̄ (15)

where μ(2) is the permeability of the inclusion, and α(2) and β(2) are symmetric, second-order tensors denoting the mag-
netization and magnetic field concentration tensors, respectively, and are given by

α(2) = μ−1
0

{(
μ(2) − μ0 I

)−1 + P
}−1

, and β(2) = {
I + P

(
μ(2) − μ0 I

)}−1
(16)

Here the second-order, symmetric tensor P describes the magnetic microstructural tensor of the inclusion and is defined by

P := det Z

4πμ0

∫
|ξ |=1

ξ ⊗ ξ |Zξ |−3 dS (17)

Note that it depends only on the magnetic properties of the matrix (i.e. μ0) and shape of the inclusion. It is also important
to note that the above results are given in the current configuration which differs from the reference configuration by a
rigid rotation, as already mentioned in the previous section.

The net force and torque on the inclusion due to the magnetic field can be determined via the Maxwell stress tensor as
explained in Section 2.2, i.e.

fmg = 1

V

∫
∂Ω

T M n dS, and lmg = 1

V

∫
∂Ω

x × (
T M n

)
dS (18)

where T M is given by Eq. (5) with b denoting the magnetic field just outside the inclusion. For the single inclusion problem,
it is given by (see Reitz and Milford [19] for the details)

b(x) = μ0h̄ − μ0

4π

∫
x′∈Ω

{
m̄(2)

r3
− 3(m̄(2) · r)r

r5

}
dx′, r = x − x′ (19)

After a long, but straightforward calculation (Landau et al. [7]), it can be shown that the force and torque (per unit
volume) exerted on the inclusion by the magnetic field are given by

fmg = 0, and lmg = μ0m̄(2) × h̄ (20)

Note that the magnetic force on the inclusion vanishes as expected. On the other hand, using expression (15)1, and the fact
that the torque is an axial vector, we can write the components of the torque in terms of a skew-symmetric, second-order
tensor, τmg , such that the Cartesian components of lmg read

lmg
i = εi jkτ

mg
kj , with τmg = −μ0 {(

α(2)h̄
) ⊗ h̄ − h̄ ⊗ (

α(2)h̄
)}

(21)

2
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To make the dependence of τmg (or equivalently lmg) on the rotation of the inclusion more explicit, we note that the
magnetization concentration tensor α(2) , which in the current configuration is given by (16)1, can be written in terms of its
reference counterpart, A(2) , and the rotation, ω̄(2) , as follows

α(2) = A(2) + ω̄(2) A(2) − A(2)ω̄(2) (22)

where

A(2) = μ−1
0

{(
M (2) − μ0 I

)−1 + P 0
}−1

(23)

and P 0 is given by the same expression (17), except that Z should be replaced by Z 0, as defined in (9).
Then, substituting (22) into (21)2, and ignoring higher-order terms in ω̄(2) , we obtain the result

τmg(ω̄(2)
) = τmg

0 + μ0

2
Tω̄(2) (24)

where τmg
0 denotes the magnetic torque in the reference (unrotated) configuration of the inclusion and is given by

τmg
0 = −μ0

2

{(
A(2)h̄

) ⊗ h̄ − h̄ ⊗ (
A(2)h̄

)}
(25)

and where the Cartesian components of the fourth-order tensor T are given by

Tijst = δis A(2)
tq h̄qh̄ j − δ js A(2)

tq h̄qh̄i + h̄ih̄t A(2)
js − h̄ jh̄t A(2)

is (26)

Note that they satisfy the symmetries Tijkl = −T jikl = −Tijlk .

4. Rigid ellipsoidal inclusion in an infinite elastic matrix

In the previous section, we found the torque produced by an external magnetic field on the rigid inclusion Ω , as a
function of its rotation (i.e., lmg(ω̄(2))). In this section, we would like to obtain the corresponding torque applied by the
surrounding elastic medium on the inclusion as a function of the rotation ω̄(2) . Toward this goal, it is first noted that the
Maxwell stress T M , as given by (5), is divergence-free for a non-magnetic matrix. This can be easily shown by means of the
Maxwell’s equations, given by (1), and the fact that for a non-magnetic material b = μ0h. Therefore, the magnetic fields do
not appear explicitly in the equilibrium equation, and we can solve for the displacement field in the matrix independent
of the magnetic fields. Thus, for the infinite elastic matrix with stiffness tensor C(1) , subjected to an affine displacement
boundary condition at infinity, and an arbitrary rotation ω̄(2) just outside the inclusion, we have the following “purely
mechanical” boundary value problem (BVP) for the displacement field u in the elastic-matrix material:

div
(
C(1)∇u

) = 0, x ∈ R3 \ Ω0

u(x) → ε̄x + ω̄x, |x| → ∞
u(x) = ω̄(2)x, x ∈ ∂Ω0 (27)

where ε̄ is a constant symmetric second-order tensor denoting the macroscopic strain and ω̄ is a constant antisymmetric
second-order tensor representing the macroscopic rotation of the system.

For the special case of ε̄ = ω̄ = 0, the BVP (27) has been solved by making use of an orthogonal ellipsoidal coordinate
system (Kachanov et al. [20]). On the other hand, for ω̄ = 0 and ω̄(2) not prescribed, it reduces to the well-known Eshelby
problem which can be solved by using the so-called simple set of imaginary cutting, straining and welding operations,
as described by Eshelby [1]. The above more general problem has been addressed by Walpole [15]. For completeness, the
solution for the above BVP is briefly summarized in Appendix A.

Thus, it is shown in this appendix that the “mechanical” traction T eln on the surface of the inclusion is given by

T eln = (σ + τ )n (28)

where σ and τ are respectively symmetric and skew-symmetric, second-order tensors, given by

σ = P−1ε̄ − P−1Q
{
S−RP−1Q

}−1(
ω̄ − ω̄(2) −RP−1ε̄

)
τ = {

S−RP−1Q
}−1(

ω̄ − ω̄(2) −RP−1ε̄
)

(29)

where P, Q, R and S are mechanical microstructural (Eshelby) tensors, defined by relations (48) and (47). Note that the
stress is indeterminate inside the rigid inclusion, and hence the need for the traction on the boundary of the inclusion in
order to compute the force and torque exerted by the surrounding elastic medium on the inclusion. Then, by means of
expressions of the form (18) (with T mg replaced by T el), it can be shown that the elastic force is zero (i.e. fel = 0) and that
the torque (per unit volume) exerted by the surrounding elastic medium on the inclusion is given by

lel
i

(
ω̄(2)

) = εi jkτkj (30)

where τ is given in terms of ω̄(2) by Eq. (29)2.
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5. Equilibrium rotation of inclusion in an infinite elastic matrix subjected to an external magnetic field

It is recalled from Section 2.1 that the magnetic and elastic torques must add up to zero at equilibrium. Thus, substituting
the magnetic and elastic torque from expressions (21)1 and (30), respectively, into Eq. (12), the following equation for the
equilibrium rotation, ω̄(2)

e is obtained

τmg(ω̄(2)
) + τ

(
ω̄(2)

) = 0, for ω̄(2) = ω̄(2)
e (31)

where τmg and τ are given in terms of the particle rotation ω̄(2) by expressions (24) and (29)2, respectively. Therefore,
solving for the equilibrium rotation we obtain the result

ω̄(2)
e =

(
I− μ0

2
VT

)−1(
ω̄ −RP−1ε̄ +Vτmg

0

)
(32)

where V := {S−RP−1Q} and it is recalled that τmg
0 denotes the magnetic torque exerted on the inclusion in its reference

configuration. It is important to note that ω̄(2)
e depends linearly on ε̄ and ω̄ and quadratically on the external magnetic

field h̄.
Introducing dimensionless parameter

κ = μ0h̄2

2μel
(33)

serving to characterize the relative strength of the magnetic versus the elastic effects, and the dimensionless variables

T̂ = T/h̄2, V̂ = μelV, and τ̂mg
0 = 2τmg

0 /
(
μ0h̄2) (34)

the following asymptotic result is obtained for the equilibrium rotation

ω̄(2)
e = ω̄ −RP−1ε̄ + κV̂

[
τ̂mg

0 + T̂
(
ω̄ −RP−1ε̄

)] +O
(
κ2) (35)

which is valid for κ 	 1. In this connection, it should be noted that κ 	 1 is the typical situation in applications. Indeed, in
most of the recent experimental studies on two-phase, magnetorheological composites, the choices of the materials and the
actuating fields are such that the largest value of κ is in the order of 0.1 (see Ginder et al. [8,9]; Guan et al. [10], where the
elastic matrix is made of silicon or natural rubber with a shear modulus of 1.0–1.2 MPa, and the magnetic induction fields
are of magnitude 0–1.2 T). In any case, it is useful to distinguish three different limiting cases in reference to the above
expressions for the particle rotation:

Case 1. κ is small compared to |ε̄| and |ω̄|. In this limit, terms of order one or higher in the parameter κ can be neglected,
compared to the zeroth-order term, and the equilibrium rotation of the inclusion is given by the (purely mechanical) Eshelby
result

ω̄(2)
e = ω̄ −RP−1ε̄ (36)

Clearly, this case corresponds to situations where the matrix is so stiff compared to the strength of the magnetic field that
the rotation of the inclusion is independent of the magnetic field.

Case 2. κ is of the same order as |ε̄| and |ω̄|. In this case the second- and higher-order terms in Eq. (35) can be neglected,
and the equilibrium rotation of the inclusion is given by

ω̄(2)
e = ω̄ −RP−1ε̄ + κV̂τ̂mg

0 (37)

It is important to emphasize that the small-strain and -rotation assumptions that are implicit in this linearized deformation
approximation essentially require that κ be at most of the same order as |ε̄| and |ω̄|, for otherwise the resulting particle ro-
tation and associated strain distributions would violate the small-deformation approximation. In addition, it is evident from
expression (37), which depends on the magnetic torque τ̂mg

0 in the reference configuration that in this limit the differences
between the reference and deformed configuration become irrelevant, as far as the computation of the equilibrium rotation
ω̄(2)

e is concerned.

Case 3. Nearly aligned magnetic fields. For the special cases where the magnetic field is almost aligned with the inclusion
(or its magnetic anisotropy axes), the equilibrium rotation of the inclusion would be infinitesimally small, independent of
the parameter κ . Therefore, for these special cases the general expression (32) should be used to obtain the equilibrium
rotation of the inclusion.
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Fig. 2. Schematic representation of the in-plane rotation of the particle under magnetic loading. (a) The inclusion in the reference configuration, and (b) the
inclusion in the current configuration (after application of the external magnetic field h̄). Note that here the coordinate systems {x1, x2, x3} and {x′

1, x′
2, x′

3}
defining the geometric and magnetic axes of the inclusion are fixed on the rigid inclusion and are such that x′

3 = x3.

6. Applications for in-plane particle rotations

In this section, the general results of the previous section are specialized for magnetic loading applied on a plane of
symmetry of the inclusion (with ε̄ = ω̄ = 0), so that the rigid inclusion undergoes an in-plane rotation. For simplicity, the
matrix is assumed to be isotropic with stiffness tensor C(1) , depending on the elastic moduli, μel and ν , and the rigid,
ellipsoidal inclusion to be magnetically anisotropic with magnetic permeability μ, such that the principal permeabilities
are μ′

1, μ′
2 and μ′

3. As depicted in Fig. 2, the geometric axes of the inclusion, defined by {x1, x2, x3}, are initially aligned
with the laboratory axes, characterized by {X1, X2, X3}, but rotate about the X3-axis by an angle φ under the magnetic
loading h̄, which in turn is applied on the X1–X2 plane at an angle ψ0 relative to the X1-axis. Note that in order for the
rotation of the particle to remain in the plane (so that x3 = X3), the magnetic axes of the inclusion, defined by {x′

1, x′
2, x′

3},
must be oriented such that x′

3 = x3 = X3. For some generality, however, we assume that the magnetic axes may differ from
the geometric axes by an angle θ (about the x3-axis). Finally, we label the semi-axes of the ellipsoidal inclusion in the 1, 2
and 3 directions, a, b and c, respectively.

Under the above-mentioned hypotheses with the external magnetic fields h̄ being applied on the X1–X2 plane at an
angle ψ0 relative to the X1-axis, it can be shown that the only non-zero components of the antisymmetric magnetic moment
tensor, τ̂mg

0 , in Eq. (37) are

(
τ̂

mg
0

)
21 = −(

τ̂
mg
0

)
12 = 1

2

(
A(2)

11 − A(2)
22

)
sin(2ψ0) − A(2)

12 cos(2ψ0) (38)

where A(2)
i j are the components of the magnetization concentration tensor defined by expression (23). On the other hand, it

follows from expression (37) for ω̄(2)
e that the in-plane particle rotation φ = (ω̄

(2)
e )21 is given by φ = 2κ V̂ 2121(τ̂

mg
0 )21, where

V̂ 2121 = Ŝ2121 − Q̂ 2
2121/ P̂2121 is the relevant component of the fourth-order tensor V̂ = μel{S − RP−1Q}, defined earlier.

Then, substituting expression (38) for (τ̂
mg
0 )21 into this expression for φ, it can be readily shown that

φ = κα

cos ξ
sin(2ψ0 − ξ) (39)

where

α = (
A(2)

11 − A(2)
22

)
V̂ 2121, and tan ξ := A(2)

12

A(2)
11 − A(2)

22

(40)

Note that the equilibrium particle rotation φ is periodic on the magnetic field angle ψ0, with period π . It is also linear
on the dimensionless parameter κ , and therefore quadratic in the magnetic field h̄ and inversely proportional to the shear
modulus μel . In addition, it depends on both the “mechanical” microstructural tensors, P,Q,R, and S (through V̂), as well
as on the corresponding “magnetic” microstructural tensor P 0 (through A), and therefore also depends on the Poisson’s
ratio ν , the magnetic permeabilities μ′

1, μ′
2 and μ′

3, the particle shape, as determined by a, b and c, and the orientation
of the magnetic axis relative to the geometric axes, as specified by θ . In an effort to elucidate the dependence of the
inclusion rotation on all these variables and parameters, results will be provided next for cylindrical inclusions of elliptical
cross-section aligned with the x3-axis, and for spheroidal inclusions with their axis of symmetry lying in the rotation plane.

6.1. Cylindrical (2D) inclusions

We begin by considering cylindrical inclusions with elliptical cross-section of aspect ratio w = a/b, and with in-plane
(principal) magnetic permeabilities, μ′ , μ′ , and generally non-aligned magnetic axes, as determined by θ . As shown in
1 2
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Fig. 3. Analytical predictions (lines) and FE results (symbols) for the equilibrium rotation φ as a function of the magnetic loading angle ψ0. (a) Cylindrical
inclusion with aligned magnetic and geometric axes (θ = 0◦) for three different cases: (1) circular cross-section and principal permeabilities μ′

1/μ0 = 10
and μ′

2/μ0 = 2, (2) elliptic cross-section with aspect ratio w = a/b = 2 and isotropic permeability μ′
1/μ0 = μ′

2/μ0 = 10, and (3) elliptic cross-section with
aspect ratio w = 2 and principal permeabilities μ′

1/μ0 = 10 and μ′
2/μ0 = 2. (b) Cylindrical inclusion with aspect ratio w = 2 and principal permeabilities

μ′
1/μ0 = 10 and μ′

2/μ0 = 2, for θ = 0◦ , θ = 40◦ and θ = 90◦ .

Fig. 3, the theoretical results are also compared to numerical results obtained using the general purpose FEM software
COMSOL. These numerical simulations have been carried out for a square cell of finite length L. The length L is chosen in
the following manner. We start with length L0 (∼ 4 × a for the above specific example). Then we double the length until
the condition φn+1−φn

φn
< 0.0001 is satisfied, where φn and φn+1 are respectively the equilibrium rotations when L = Ln and

L = Ln+1 = 2Ln .
In Fig. 3(a), results are shown for θ = 0◦ corresponding to aligned geometric and magnetic axes, such that the largest

axis of the elliptical inclusion (if it is not circular) is always aligned with the largest principal permeability (if the magnetic
properties of the inclusion are not isotropic). Results are presented for three cases: (1) circular cross-section (w = 1) and
principal permeabilities μ′

1/μ0 = 10 and μ′
2/μ0 = 2, (2) elliptic cross-section with aspect ratio w = a/b = 2 and isotropic

permeability μ′
1/μ0 = μ′

2/μ0 = 10, and (3) elliptic cross-section with aspect ratio w = 2 and principal permeabilities
μ′

1/μ0 = 10 and μ′
2/μ0 = 2. The main observation from the results presented in this figure is that the particle always

tends to align the magnetic axis with the largest permeability (if not magnetically isotropic), or its largest geometric axis
(if it is isotropic) with the applied magnetic field (i.e. φ > 0 for 0 < ψ0 < π/2). Note also that the particle rotation φ is
periodic in ψ0, with period π , as already mentioned in connection with Eq. (39), and that φ = 0 when the magnetic field
is aligned with the particle axes (ψ0 = 0, π/2 or π ). The second important observation is that the particle shape and mag-
netic anisotropy have a synergistic effect for the case when the largest geometric axis is aligned with the largest principal
permeability. Thus, the amplitude of the particle rotation is largest for case (3) above.

In Fig. 3(b), results are shown for elliptical particles with fixed aspect ratio w = 2 and magnetic permeabilities μ′
1/μ0 =

10 and μ′
2/μ0 = 2, for three values of θ between 0 and π/2. Note that changing θ changes the components A(2)

i j , and

therefore, α and ξ in Eq. (39). For θ = 0◦ , the magnetization concentration tensor A(2) is diagonal (i.e. A(2)
12 = 0), which

implies that ξ = 0, consistent with what is shown in the figure. For 0◦ < θ < 90◦ , we have A(2)
12 �= 0 which results in a

non-zero ξ , and therefore, a phase shift in the plot for the equilibrium rotation of the inclusion. Finally, for θ = 90◦ , the
magnetic concentration tensor is diagonal which again implies that ξ = 0; however, α < 0 for the specific choice of the
parameters in Fig. 3. Consequently, the inclusion no longer tends to align its largest geometric axis with the applied field,
but instead prefers, for this specific choice of parameters, to align its largest magnetic axis with the applied field, resulting
in φ < 0 for 0 < ψ0 < π/2. In this case the magnetic and geometric effects oppose each other and the amplitude of the
resulting particle rotation is also the smallest. In this connection, it should be noted that when θ = 90◦ it is possible to
choose w �= 1, μ′

1 and μ′
2 �= μ′

1 such that the equilibrium rotation of the inclusion is zero for all values of ψ0.
For a more detailed analysis of the effect of inclusion shape or magnetic behavior, we focus our attention on θ = 0◦ since

in this case ξ = 0 and the equilibrium rotation simplifies to

φ = ακ sin(2ψ0) (41)

Then, the effect of the shape and magnetic behavior on the rotation of the cylindrical inclusion with aspect ratio w = a/b,
and magnetic permeabilities, μ′

1,μ
′
2, is completely described by α. We consider the following two cases:

Case 1. Cylindrical inclusion with circular cross-section (w = 1) and anisotropic permeability (μ′
1 �= μ′

2). Then, the amplitude
coefficient α, as given by expression (40)1, simplifies to
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Fig. 4. The effects of magnetic anisotropy and inclusion shape on the magnitude of the particle rotation in aligned external magnetic fields. (a) The
coefficient αcir for different values of the parameter μ′

2/μ0 as a function of μ′
1/μ0, and (b) the coefficient αell for fixed permeability μ/μ0 = 10, and

different values of the Poisson’s ratio of the matrix.

αcir(μ′
1/μ0,μ

′
2/μ0

) = 1

2

(
μ′

1/μ0 − 1

μ′
1/μ0 + 1

− μ′
2/μ0 − 1

μ′
2/μ0 + 1

)

Note that for this special case there is no dependence on the Poisson’s ratio of the matrix ν . Plots of αcir as a function of
μ′

1/μ0, for fixed values of μ′
2/μ0, are shown in Fig. 4(a). It can be seen that αcir increases monotonically with increasing

the magnetic anisotropy, μ′
1/μ0, and saturates for large values of μ′

1/μ0. In addition, note that the graphs corresponding
to the larger values of μ′

2/μ0, can be obtained by translations in the negative vertical direction.

Case 2. Cylindrical inclusion with aspect ratio w = a/b and isotropic in-plane magnetic behavior (μ′
1 = μ′

2 = μ). The coefficient α
in this case reduces to

αell(μ/μ0, w, ν) = w − w/4(1 − ν)

(w + 1)2 − w/(1 − ν)

(w2 − 1)(μ/μ0 − 1)2

(w + μ/μ0)(1 + μ/μ0 w)

which does depend on the Poisson’s ratio ν . Plots of αell as a function of w , for μ/μ0 = 10, are shown in Fig. 4(b). In
this figure, it can be seen that αell increases up to a maximum, and then decays to zero as the aspect ratio is further
increased (for w > 1). This is due to the fixed displacement boundary condition at infinity, and the fact that as the aspect
ratio tends to infinity the rigid inclusion approaches the boundary. Note that αell(w) = −αell(1/w), due to the symmetry of
the problem.

6.2. Spheroidal (3D) inclusions

In this subsection, we consider spheroidal (c = b) inclusions of aspect ratio w = a/b with aligned magnetic and geometric
axes (θ = 0◦) in the plane of the rotation. In this case, the equilibrium rotation also satisfies the relation (41) with α
serving to describe the amplitude of the particle rotation as a function of the various geometric and material parameters.
For simplicity here, we consider the following two cases:

Case 1. Spherical inclusion (w = 1) with anisotropic permeability (μ′
1 �= μ′

2). In this case, the coefficient α reduces to

αsph(μ′
1/μ0,μ

′
2/μ0

) = 1

2

(
μ′

1/μ0 − 1

μ′
1/μ0 + 2

− μ′
2/μ0 − 1

μ′
2/μ0 + 2

)

which is independent of the Poisson’s ratio of the matrix ν . As it is shown in Fig. 5(a), similar to the cylindrical inclusion
with circular cross-section case, αsph increases monotonically with increasing the magnetic anisotropy, μ′

1/μ0, and saturates
for large values of μ′

1/μ0.

Case 2. Prolate spheroidal inclusion with aspect ratio w = a/b > 1 and isotropic in-plane magnetic behavior (μ′
1 = μ′

2 = μ). The
coefficient α for this case can be written as

αsrd(μ/μ0, w, ν) =
(

Ŝ2121 − Q̂ 2
2121

P̂2121

)
(μ/μ0 − 1)2( P̂22 − P̂11)

[1 + P̂11(μ/μ0 − 1)][1 + P̂22(μ/μ0 − 1)]
where
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Fig. 5. The effect of anisotropy, due to the magnetic behavior and shape of the inclusion, on the response of the single inclusion to the external magnetic
field. (a) The coefficient αsph as a function of μ′

1/μ0 for different values of the parameter μ′
2/μ0, and (b) the coefficient αsrd for fixed permeability

μ/μ0 = 10, and different values of the Poisson’s ratio of the matrix.

P̂11 = w

k2

{
sinh−1 k

k
− 1

w

}
, P̂22 = w

2k2

{
w − sinh−1 k

k

}

P̂2121 = w

8k4

{
(1 − ν)k4 + (2 + ν)k2 + 3

(1 − ν)w
− 1 + ν

1 − ν
k sinh−1 k − 3

1 − ν

sinh−1 k

k

}

Q̂ 2121 = w

8k2

{
3 sinh−1 k

k
− k2 + 3

w

}
, Ŝ2121 = w

8k2

{
sinh−1 k

k
+ k2 − 1

w

}

In these expressions, k = √
w2 − 1, where w = a/b is the aspect ratio of the spheroid. As shown in Fig. 5(b) (for w > 1),

and similar to the elliptical particle, αsrd increases up to a maximum and then decays to zero with increasing the aspect
ratio. However, for the spheroidal particles, the results for oblate (w < 1) spheroidal inclusions and the corresponding ones
for prolate inclusions (w > 1) do not satisfy the symmetry relation αsrd(w) = −αsrd(1/w) for w < 1, because oblate and
prolate spheroids are geometrically different. Nonetheless, the general shape of the curve for oblate inclusions is similar to
that of prolate inclusions, except for the sign of the rotation, of course.

7. Concluding remarks

In this paper, we have addressed the magneto-elasticity problem of a single rigid inclusion with linear-magnetic behavior
embedded in a non-magnetic, and linear-elastic matrix. The main result is given by Eq. (32), which shows that the magnetic
torque induced by an externally applied magnetic field will affect the overall rotation of the ellipsoidal inclusion embedded
in a matrix that is being subjected to a remotely applied deformation, as long as the inclusion is not both spherical and
magnetically isotropic, and provided that the magnetic field is not aligned with one of its geometric, or magnetic axes.

To shed some light on the range of validity of the resulting expression for the equilibrium rotation of the inclusion, an
asymptotic expansion in terms of the dimensionless parameter κ = μ0h̄2/2μel , serving to describe the relative strengths of
the magnetic and elastic fields, was obtained (see Eq. (35) in Section 5). It is shown that in order to be consistent with the
assumption of infinitesimal deformations the parameter κ can be at most of the order of the displacement gradient (i.e.
κ ∼ |∇u|). Because of this, it is possible to neglect second-order terms in κ in the expression for the equilibrium rotation
of the inclusion.

The effect of magnetic anisotropy and inclusion shape on the particle rotation is investigated in some detail for both
cylindrical (2D) and spheroidal (3D) inclusions, subjected to an in-plane magnetic field. The dependence of the particle
rotation on the orientation of the applied magnetic field is found to be sinusoidal with period π , and it vanishes when the
field is aligned with the symmetry axes of the particle, when both the magnetic and geometric axes coincide, and for some
other intermediate orientations, when they are not. In addition, it is shown that the amplitude of the magnetically induced
rotation monotonically increases and asymptotes to a constant value with increasing magnetic anisotropy of the inclusion.
On the other hand, for magnetically isotropic inclusions with non-spherical shape, the equilibrium rotation increases up to
a maximum, and then decays to zero, as the aspect ratio is increased.

The results of this article can be used to determine the effective behavior of magnetorheological composites consisting
of a dilute concentration of rigid, magnetic inclusions distributed randomly in a non-magnetic elastomeric matrix in the
small-deformation limit. The details of such a study are beyond the scope of this paper and are left for a future publi-
cation. Furthermore, the results of this paper provide some justification for the “stiff matrix” approximation in the work
of Ponte Castañeda and Galipeau [18], which consists in the approximation that the particles are convected by the purely
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Fig. 6. Schematic of the problem given by the BVP (27). (a) The original problem, and (b) the auxiliary problem.

mechanical deformation in the limit when κ 	 1. Indeed, when a magnetorheological composite is subjected to finite
strains, the additional rotations of the particles due to the applied magnetic fields would still be expected to be of order κ ,
and therefore small, compared to the mechanically driven particle rotations, which can be large compared to κ .

It should also be noted that the results of this paper can be easily “translated” into corresponding results for the analo-
gous problem of a stiff dielectric inclusion embedded in a soft dielectric matrix with a different dielectric coefficient which
is assumed to be isotropic and deformation independent. Thus, identifying h with the electric field, b with the electric dis-
placement, and μ0 and μ(2) with the dielectric coefficients of the matrix and inclusion, respectively, expression (25)—with
an appropriate reinterpretation of A(2)—will correspond to the electric torque of the particle, while expression (35) will
provide the rotation of the particle under the combined action of electric and mechanical loadings.

Finally, it is remarked that the results of this work for the particle rotation in a linear-elastic matrix under the action of
a magnetic field could be generalized in at least two ways. First, the constitutive behavior of the particles could be taken
to be non-linear, corresponding to ferromagnetic behavior, and second, the constitutive response of the elastomeric matrix
material could be taken to be neo-Hookean, or some other suitably chosen hyperelasticity model to account for finite
strains and rotations. The first would require generalization of the magnetostatic problem described in Section 3 of this
paper to include nonlinear magnetization, which can be accomplished by application of the ‘linear comparison’ methods
developed by Ponte Castañeda [21] in the analogous context of nonlinear dielectric behavior (see also Ponte Castañeda
et al. [22]). The second is a little more challenging and would require generalization of the elastic problem described in
Section 4 for the torque required to produce a finite rotation of the particle in the hyperelastic matrix. This could also be
accomplished, at least in principle, by suitable application of the ‘second-order’ homogenization methods of Ponte Castañeda
and Tiberio [23] and Lopez-Pamies and Ponte Castañeda [24] for hyperelastic composites. These possible generalizations are
under investigation and will be dealt with elsewhere.
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Appendix A. Solution of the BVP (27)

To find the solution of the BVP (27), we consider an auxiliary problem in which the whole space, R3, is filled with
the elastic-matrix material (see Fig. 6). In this case, a part of the homogeneous body, P0, which is geometrically the same
as the inclusion but made up of the elastic-matrix phase, undergoes a constant strain and a constant rotation due to the
boundary condition (27)2. To account for the fact that the strain in the actual rigid inclusion vanishes, it is necessary to
apply a surface traction on the boundary of P0 as follows

s1 = −σ
(
x′)n′, x′ ∈ ∂ P0 (42)

where σ (x′) is a divergence-free symmetric second-order tensor defined inside P0. On the other hand, to satisfy the bound-
ary condition (27)3 and account for the rigid body rotation of the actual inclusion, it is required to apply a body torque
distribution inside P0 (i.e., l = l(x′) for x′ ∈ P0). However, to make the formulation more symmetric, instead of specifying
the body torque to enforce the boundary condition (27)3, we define a surface traction s2 on the boundary of P0 as follows

s2 = −τ
(
x′)n′, x′ ∈ ∂ P0 (43)

where τ (x′) is a divergence-free, skew-symmetric, second-order tensor defined in P0. Therefore, finding the solution of the
BVP (27), shown schematically in Fig. 6(a), is equivalent to finding the solution of the auxiliary problem depicted in Fig. 6(b)
with σ and τ chosen such that
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ε(x) = 0, and ω(x) = ω̄(2), x ∈ P0 (44)

Moreover, since the boundary conditions of the general BVP (27) are satisfied, the displacement field of the auxiliary prob-
lem, described above, is guaranteed to be the solution of (27) by the uniqueness theorem of elasticity (Love [25]).

Using the linearity of the problem, the total displacement field for the above auxiliary problem can be divided into three
parts. The first part is an affine displacement due to the boundary condition (27)3 at infinity. Then, there is the displacement
field due to the surface traction s1 which can be found by integration (over ∂ P0) from the solution of the concentrated force
problem in an infinite elastic matrix (or the Green’s tensor function of elasticity). Finally, there is the displacement field due
to the traction s2. Noting that the surface traction s2 has a similar structure to s1, its contribution to the total displacement
can be found by following the same procedure. It is important to note that, due to its singular character, the Green’s function
in the above computation has to be treated as a generalized function. However, to avoid the difficulties of dealing with such
functions, it is useful to deploy the plane-wave decomposition of the delta function to generate alternative representations
(in terms of the acoustic tensor) for the Green’s function (see e.g. Willis [14,3]). Details for the calculations involved can be
found in the works of Willis [3] and Walpole [15]; the important results are summarized next.

Thus, it can be shown that the constraints (44) for inside the inclusion can be satisfied for constant σ and τ , i.e.

σ
(
x′) = σ , and τ

(
x′) = τ , x′ ∈ P0 (45)

Therefore, the infinitesimal strain and rotation tensors for x ∈ P0 are uniform and equal to

ε = ε̄ − Pσ −Qτ , and ω = ω̄ −Rσ − Sτ (46)

where the fourth-order microstructural tensors P, Q, R and S are defined by

Pijpq = X(i j)(pq), Rijpq = X[i j](pq), Q ijpq = X(i j)[pq], and Sijpq = X[i j][pq] (47)

in terms of

Xijpq = det Z 0

4π

∫
|ξ |=1

ξqξ j K −1
ip (ξ)|Z 0ξ |−3 dS (48)

and depend only on the shape of the inclusion, through Z 0, and on the elastic properties of the matrix, through the acoustic
tensor Kip(ξ ) = C (1)

i jpqξ jξq . Note that P and R are the usual Eshelby tensors characterizing the particle rotations in the small-
strain/small-rotation limit, in the absence of external torque. On the other hand, Q and S, which are such that Q ijkl = Rkli j ,
serve to account for the additional rotation of the inclusion due to the external torque.

Applying the constraints (44), the following system of equations is obtained

ε̄ = Pσ +Qτ , and ω̄ − ω̄(2) =Rσ + Sτ (49)

which can be inverted for σ and τ to yield the results in expressions (29). Having obtained expressions for σ and τ , it is
now a simple matter to compute the total traction needed to produce the above-mentioned deformation in the auxiliary
problem via s = s1 + s2 = −(σ + τ )n. This is of course the negative of the “mechanical” traction required to produce the
needed rotation ω̄(2) of the rigid particle in the original problem, as is given by expression (28) in terms of σ and τ .
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