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Complex microstructures in materials often involve multi-scale heterogeneous textures,
modeled by random sets derived from Mathematical Morphology. Our approach starts
from 2D or 3D images; a complete morphological characterization by image analysis is
performed, and used for the identification of a model of random structure. Morphologi-
cal models enter into the prediction of effective properties by estimation, bounds, or from
numerical simulations. Simulations of realistic microstructures are introduced in a numer-
ical solver to compute appropriate fields (electric, elastic, . . . ) and to estimate the effective
properties by numerical homogenization, accounting for scale dependent statistical fluctu-
ations of the fields. Our approach is illustrated by various examples of multi-scale models:
Boolean random sets based on Cox point processes and various random grains (spheres,
cylinders), showing a very low percolation threshold, and therefore a high conductivity or
high elastic moduli for a low volume fraction of a second phase. Multi-scale iterations of
random media provide another source of morphologies with interesting overall properties.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the context of the analysis of the behavior of many materials, it is common to encounter a superposition of different
scales, even in the continuum framework. For instance in nanocomposite materials, arrangement of aggregates (like carbon
black) appears at different scales [1]. This multi-scale arrangement has implications on the prediction of the effective prop-
erties of such composites (like the conductivity, the dielectric permittivity or the elastic moduli), from the properties of the
two components (charge and matrix), and their spatial distribution.

In this article, we introduce a general methodology for modeling these situations [2,3]. It is based on the theory of
random sets [4–7]. The morphology is summarized and simulated by multi-scale random models accounting for the hetero-
geneous distribution of aggregates. Identification of the model is made from image analysis.

In the next sections, we develop the following points:

– Principle of random structure modeling;
– Models of multi-scale random sets, simulation of microstructures, and percolation;
– Change of scale in random media: multi-scale iterations of random media, and prediction of effective properties by

numerical simulations.

2. Principle of random structure modeling

An appropriate way to deal with the heterogeneity of materials is to make use of a probabilistic approach, that enables
us to generate realistic models and simulation of the microstructures.

E-mail address: dominique.jeulin@mines-paristech.fr.
1631-0721/$ – see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2012.02.004

http://dx.doi.org/10.1016/j.crme.2012.02.004
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:dominique.jeulin@mines-paristech.fr
http://dx.doi.org/10.1016/j.crme.2012.02.004


220 D. Jeulin / C. R. Mecanique 340 (2012) 219–229
When considering two-phase materials (for instance a set of particles A embedded in a matrix, the complementary
set Ac), we use a model of random closed set (RACS) A [4–7], fully characterized from a probabilistic point of view by its
Choquet capacity T (K ) defined on the compact sets K , from (1) below, where P denotes a probability:

T (K ) = P (K ∩ A �= ∅) = 1 − Q (K ) = 1 − P
(

K ⊂ Ac) (1)

In practice, T (K ) can be estimated by area fraction measurements on 2D images, or from volume fraction estimation on
3D images (from true microstructures, or from simulations), after a morphological dilation of the set A by the set K [4–7],
noted A ⊕ Ǩ , where the symbol ⊕ denotes the Minkowski addition (A ⊕ K = ⋃

x∈K Ax) and Ǩ is the symmetrical set of K

with respect to the origin (Ǩ = {−x, x ∈ K }). It can alternatively be calculated in a closed form for a given theoretical model,
as illustrated by all examples of random sets given in this paper. Eq. (1) is used for the identification of a model (estimation
of its parameters, and test of its validity). Particular cases of morphological properties deduced from (1) are the volume
fraction V v (when the set K is made of a single point and the random set A is stationary), the covariance (a useful tool to
detect the presence of scales or anisotropies, obtained when K is made of a pair of points), the distribution of distances r of
a point in Ac to the boundary of A (when K is the ball of radius r). The access to 3D images of microstructures by means of
X-ray microtomography [8] makes it possible to use 3D compact sets K (like balls B(r) with various radii r) to characterize
the random set.

3. One-scale models

The archetype of random structure model is a random point process. It represents the most simple kind of random
structure, like small defects isolated in a matrix. As a particular case of RACS, a random point process is characterized by
its Choquet capacity T (K ). For a locally finite point process, use can be made of the probability generating function G K (s)
of the random variable N(K ) (random number of points of the process contained in K ). We have, noting the mathematical
expectation (or average) of a given quantity by E{ }

G K (s) = E
{

sN(K )
} =

∞∑
0

Pn(K )sn

where Pn(K ) = P {N(K ) = n}, P being a probability. From this definition, we have 1 − T (K ) = G K (0) = P {N(K ) = 0}. For ex-
ample, a typical model is the Poisson point process. It is the prototype of random point process without any order, since
the numbers of points of the process contained in any pair of sets without intersection are independent random variables.
For the homogeneous Poisson point process (a stationary random closed set) with intensity θ (i.e. average number of points
per unit volume in 3D), we have, μ(K ) being the Lebesgue measure (volume in 3D) of the compact set K :

Pn(K ) = (θμ(K ))n

n! exp
(−θμ(K )

)
and G K (s) = exp

(
θμ(K )(s − 1)

)
This classical result is immediately derived from the stationarity of the process and from the independence of disjoints

volumes.
Starting from a point process, more general models, called grain models, can be generated, like the Boolean model,

multi-scale models from intersection of random sets, or the multi-scale Cox Boolean model.

3.1. Boolean model

Some materials (like porous media or composite materials) can be simulated by means of a basic random set model,
namely by distributions of overlapping objects. A random set model, the Boolean model, was proposed by G. Matheron [4,5]
to reproduce this situation. First, we consider a location of centers of grains by means of a Poisson point process with inten-
sity θ . In this condition, a volume V contains a random number of centers N following a Poisson distribution with average
value θ V . Then a random set is obtained by the union of random grains (any compact set). For this model, the Choquet
capacity is given by (2), where V (A′ ⊕ Ǩ ) is the average volume of the random primary grain A′ , dilated by K :

T (K ) = 1 − exp −θ V
(

A′ ⊕ Ǩ
)

(2)

As a particular case, the volume fraction V V of the grains, is given by (3):

1 − V V = q = 1 − exp −θ V
(

A′) (3)

Using for K a pair of points, 3 points, or a ball with radius r gives access to the covariance, the third order moment, and
to the spherical contact distribution (the distribution of the distance of a random point in Ac to the boundary of A). For a
given population of random grains, these morphological functions are theoretically available from (2). In the special case of
spherical grains, the distribution function of the spheres radii can be estimated from the covariance [9], and therefore the
model can be identified from the two-point statistics, which is a one-dimensional information. In more general situations,
the identification of the model requires higher order moments for estimating the population of random primary grains.



D. Jeulin / C. R. Mecanique 340 (2012) 219–229 221
3.2. Percolation of the Boolean model

For materials made of components with a high contrast of properties, like for instance conducting carbon black in an
insulating polymeric matrix, there is a strong effect on the macroscopic properties like the effective conductivity when a
given phase percolates through the structure, inducing connected paths in the samples of the medium. Analytical estima-
tions of the percolation of Boolean models of cylinders are available with the excluded volume model [10]. More recent
analytical estimates of the percolation threshold of isotropic Boolean models with convex grains are based on the zeroes
of the connectivity number [9,11,12]. They give an estimate of the percolation threshold p1

c of the grains and p2
c of Ac .

These two percolation thresholds are different, as a result of the fact that the two sets A and Ac are non-symmetrical. It
was shown in [12] that the critical intensities θc for which percolation is obtained can be evaluated as a function of the
expectations of the integral of mean curvature M(A′) and of the surface area S(A′) of the random convex grain A′ by the
roots of the connectivity number:

θc = 1

π2 S(A′)2

(
48M

(
A′) ± 8

√
6
√

−π3 S
(

A′) + 6M
(

A′)2 )
(4)

The two percolation thresholds are estimated as a function of the expectation of the volume of the grain V (A′) by (using
the lower value of θc in (4) for p1

c , and the higher for p2
c ):

p1
c = 1 − exp −θc V

(
A′)

qc = p2
c = exp−θc V

(
A′)

The percolation threshold can also be estimated on simulations of the microstructure. In many studied cases, the estimates
given by (4) are close to the results of simulations made with a single type of grain. It appears that a Boolean model with
anisotropic primary grains (for instance sphero-cylinders) shows a much lower percolation threshold (0.01145 for an aspect
ratio l/r = 100 [10,13]) than for isotropic grains (0.2895 for spheres [14,15]). This happens even for a uniform distribution
of orientations of the sphero-cylinders, giving an isotropic medium on the macroscopic scale. This can explain the expected
outstanding mechanical, electrical or chemical properties of composites containing carbon nanotubes, mainly due to their
shape, giving a low percolation threshold. The percolation of the complementary set of a Boolean model of spheres obtained
analytically from the connectivity number and by simulations is given by 0.05698 and 0.0540 ± 0.005 respectively [13].

4. Models of multi-scale random sets

4.1. Combination of independent random sets to generate multi-scale random media

Starting from the basic models, more complex structures, such as superposition of scales, or fluctuations of the local
volume fraction p of one phase can be generated in a simple way by a combination of various random sets, considering
independent realizations. A convenient construction of multi-scale models makes use of the union or intersection of in-
dependent random sets Ai with different scales. In the case of intersections, A = ⋂

i Ai , and it is easy to show that we
have:

P (K ) = P

{
K ⊂

(⋂
i

Ai

)}
=

∏
i

P {K ⊂ Ai} (5)

The result (5) is exact without any approximation, whatever the independent random sets Ai and their scales. For in-
stance the overall volume fraction is the product of the volume fractions of the Ai . Similarly the binary covariance
C(h) = P {x ∈ A, x + h ∈ A}, and more generally the n-point probabilities are obtained as a product of the corresponding
individual n-point probabilities. A lower bound of the corresponding percolation threshold pc can be estimated by the prod-
ucts of percolation thresholds pi

c when the scales are widely separated: pc � ∏
i pi

c . This model was used to simulate the
random distribution of carbon black in composites by means of the intersection of three Boolean models of spheres at
different scales, reproducing the carbon black particles, aggregates, and zones of exclusion in the matrix [16]. The identifica-
tion of the model is made from the measurement of the overall binary covariance on C(h) images obtained by transmission
electron microscope on thin sections of the material.

4.2. The multi-scale Cox Boolean model

Another way to account for a non-homogeneous distribution of random grains, is obtained by replacing the Poisson point
process, to locate germs for random grains, by a Cox point process [17]. Consider a positive random function (RF) giving
a non-homogeneous intensity θ(x). For any realization of this RF, a Poisson point process with intensity θ(x) is generated.
For a given realization, the number of points in a domain D follows a Poisson distribution with average θ(D) = ∫

D θ(dx):

Pn(D) = P
{

N(D) = n
} = θ(D)n

exp
(−θ(D)

)

n!
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Fig. 1. Principle of 3D simulation of multi-scale random spheres aggregates. Left: exclusion spheres (distribution of radii f3(r)), center: inclusion spheres
( f2(r)), right: aggregate spheres ( f1(r)).

Furthermore, for each realization, the number of points falling in any family of domains without any intersection are in-
dependent random variables. This is not anymore the case when considering the ensemble of realizations of the random
intensity. If ϕK (λ) is the Laplace transform with respect to the random function θ(x) of the positive random variable
E A′ {θ(A′ ⊕ Ǩ )}, where E A′ states for the mathematical expectation with respect to the random set A′ , and Eθ the mathe-
matical expectation with respect to the random function θ(x), we have:

T (K ) = 1 − Eθ

{
exp

(−E A′
{
θ
(

Ǎ′ ⊕ K
)})} = 1 − ϕK (1) (6)

An interesting particular case is obtained by means of a constant intensity θ inside a first random set A. For instance A
is a Boolean model of spheres with a large radius R . In a second step we keep only the points of a Poisson point process
contained in A, as germs for centers of spheres with a smaller radius r, so that there is no germ in the set Ac [14].
The random measure becomes θ(dx) = θ1A(x)dx, where 1A(x) is the indicator function of the set A (1A(x) = 1 if x ∈ A and
1A(x) = 0 if x ∈ Ac). We have

T (K ) = 1 − ΦK (θ) (7)

where ΦK (λ) is the Laplace transform of the random variable E A′ {V (( Ǎ′ ⊕ K ) ∩ A)} obtained on the realizations of the
random set A, after averaging over the realizations of the primary grain A′ . As a particular case for a deterministic grain A′
the Choquet capacity of the Boolean Cox model is deduced from the probability law of V (( Ǎ′ ⊕ K )∩ A). It is usually difficult
to access to this law for any random set A, but it can be easily estimated from simulations. We can therefore estimate the
theoretical covariance (or higher order moments) of the model.

In the case of a large separation of scales between the two sets A and A′ we obtained an approximation of the T (K )

and then of P (K ) when assuming that V ( Ǎ′ ⊕ K ) → 0 [3]. The covariance, the three-point probability and more generally
any n-point probability and any moment P {K ⊂ A} are asymptotically equal to the corresponding theoretical values (5)
given for the intersection of independent random sets.

For carbon black nanocomposites, it is usual to model the distribution of carbon black particles by means of a three-scale
model [16,14,1]: as illustrated in Fig. 1, spherical carbon particles (with a possible distribution of radii f1(r)) are located on
Poisson points inside inclusion zones (Boolean model of spheres with a distribution of radii f2(r)) and outside of exclusion
zones (Boolean model of spheres with a distribution of radii f3(r)). The identification of the parameters of the model is
made by means of an iterative optimization process, minimizing the difference between probabilistic properties of sim-
ulations and of images of the material: in [1], the multi-scale model is identified from measurements of the covariance,
the third order moment, and of the area fraction after 2D closings on transmission electron images. To initialize the op-
timization process, use is made of the asymptotic approximation of the moments by the theoretical results obtained for
independent random sets (5).

Another estimate of the Choquet capacity of the present version of the Cox Boolean model is obtained even for no large
separation of scale. We consider a Boolean Cox random set built by considering implantations of a primary grain A′ on
the points of a Poisson point process with intensity θ inside a random set A. For a deterministic grain A′ , with a good
approximation the local volume fraction Z of the random set A inside Ǎ′ ⊕ K , Z = V (( Ǎ′ ⊕ K ) ∩ A)/V ( Ǎ′ ⊕ K ) follows a
Beta distribution, with parameters α and β:

f (z) = Γ (α + β)

Γ (α)Γ (β)
zα−1(1 − z)β−1

E(Z) = α

α + β

Var(Z) = αβ

(α + β)2(α + β + 1)
(8)

The Laplace transform φ(λ) of the Beta distribution (8) is given by:
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φ(λ) = Γ (α + β)

Γ (α)

k=∞∑
k=0

(−1)kλk

k!
Γ (α + k)

Γ (α + β + k)
(9)

and, using the property of the Γ function Γ (α) = (α − 1)Γ (α − 1)

Γ (α + β)

Γ (α)

Γ (α + k)

Γ (α + β + k)
= (α + k − 1) · · · (α + 1)a

(α + β + k − 1) · · · (α + β)
(10)

For a random set A with volume fraction p and with centered covariance C(h), we have

E(Z) = p (11)

Var(Z) = 1

V ( Ǎ′ ⊕ K )2

∫

Ǎ′⊕K

∫

Ǎ′⊕K

C(x − y)dx dy (12)

For large volumes, when V ( Ǎ′ ⊕ K )  A3 (A3 being the integral range deduced from the integral of the centered covariance
of the random set A, as defined by Eq. (18) below), the variance becomes

Var(Z) = p(1 − p)
A3

V ( Ǎ′ ⊕ K )
(13)

This can occur for sets Ǎ′ ⊕ K that may not be considered as negligible with respect to A, while a large separation of
scales was considered previously. The parameters α and β are expressed as a function of p and of Var(Z) or of A3 for large
specimens, that are microstructural properties. We have:

α

α + β
= p

αβ

(α + β)2(α + β + 1)
= α

α + β

β

α + β

A3

V ( Ǎ′ ⊕ K )

and therefore

α = p

(
V ( Ǎ′ ⊕ K )

A3
− 1

)
(14)

β = (1 − p)

(
V ( Ǎ′ ⊕ K )

A3
− 1

)
(15)

Similar expressions can be worked out for α and β from the expression (12), when the approximation (13) cannot be used,
for instance for small volumes with V ( Ǎ′ ⊕ K ) � A3. The Laplace transform ΦK (λ) of the random variable V (( Ǎ′ ⊕ K )∩ A) =
Z V ( Ǎ′ ⊕ K ), necessary to compute T (K ) from (7), is deduced from Eq. (9), replacing λ by λV ( Ǎ′ ⊕ K ), and using the values
of α and β ((14) and (15)) in the expression (10). The Choquet capacity is then obtained from 7 by making λ = θ . Variants
of this model were developed for multi-scale fracture statistics models [3].

4.3. Percolation of the Cox Boolean model

As expected, the generation of aggregates produces random media with a lower percolation threshold: for a large sepa-
ration of scales in a two-scale model, the lower bound of the overall percolation threshold pc is given by the product p1

c p2
c

of the corresponding thresholds, as in the case of the intersection of independent random sets. Models involving iteration
of scales generate microstructure with a very low percolating threshold, and therefore with improved macroscopic prop-
erties when the percolating component presents the higher property (e.g. conductivity or elastic moduli). It shows that a
typical homogeneous distribution of grains in space (like for the standard Boolean model) does not produce a medium with
optimal properties for a given volume fraction. The percolation threshold of various multi-scale models was estimated in
various situations [14,18,13]. In [13], we get pc = 0.0849 for a scale factor equal to 30 in a two-scale Cox Boolean model
of spheres, close to 0.28972 = 0.0839. In [18] the percolation threshold of sphero-cylinders (aspect ratio l/r = 100) with
centers located in a primary Boolean model of spheres (with V v = 0.32) percolates for pc = 0.0056. Again, considering the
case of aggregates of carbon nanotubes, high performances are expected from such a microstructure for a very low volume
fraction of charge, due to the presence of clusters of nanotubes.
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5. Change of scale in random media

Studies of the effect of clustering of a second phase, like inclusions in a matrix, on the mechanical behavior of random
composites were published in the recent years. It is not the scope of the present paper to make a systematic review of
these studies. Some representative papers of different approaches are given by [19–22]. In [19], two-scale porous media
with a perfectly plastic matrix are simulated for a comparison between a homogeneous distribution of voids and clusters of
non-overlapping pores. The porosity is very low (less than 5%), and constant over 3D images of a low size (643 and 1283),
neglecting fluctuations of pore volume fraction. In [20], fluctuations of pore volume fraction at a mesoscale are accounted
for in an analytical model of viscous material. Based on a Taylor expansion of the energy of the material with respect to the
fluctuations of porosity, it is restricted to a weak variability of the pore volume fraction at a mesoscale. A weakening of the
material with porosity fluctuations is predicted. The review on polymer nanocomposites [21] covers many topics, ranging
from molecular dynamics to lattice gas models and mesoscale continuum models. The morphological models describing the
mesoscale (pp. 222–232) are rather schematic and based on distributions of ellipsoidal particles with different orientations,
or on phase separation patterns. These models are not in fact multi-scale in the same way as in our approach. Finally in [22],
fluctuations of fiber volume fraction at a mesoscale are modeled and simulated by means of random functions, losing all
information at the microscale. In these approaches, no construction of models of random set with multi-scale randomness
is developed, and effects like the changes of physical behavior induced by the morphological percolation are ignored.

In what follows, the incidence of the presence of multiple scales in random media on their effective properties is illus-
trated by some examples.

5.1. Multi-scale iterations of random media

Using multi-scale iterations of random media gives processes to generate two-component microstructures with “optimal
properties”, i.e. with the highest possible effective properties, given the volume fraction and the physical properties of
components. The probably most famous case is given by the Hashin coated spheres assemblage [23]. It can be shown that
for this isotropic morphology the effective conductivity (or effective dielectric permittivity) is given by the upper (resp.
lower) Hashin–Shtrikman (H–S) bound when the material with the highest (resp. lowest) conductivity is put on the outer
layer of spheres. We give here two other types of models, based on iterations of random sets.

5.2. Dilated Poisson hyperplanes

Third order bounds (depending on the three-point statistics of a random medium) of effective properties (like con-
ductivity, elastic moduli) were derived in [24,25] from a classical variational principle. It was shown that for an isotropic
two-component random set, these bounds depend on two positive functions of the parameters of the model of random
set (like the volume fraction p among others), bounded by 1 [26]. When these functions summarizing the three-point
probability of a random set are equal to 1 (resp. 0), the two third order bounds coincide with the upper (resp. lower)
Hashin–Shtrikman (H–S) bound. We have shown [27,28] that for an infinite iteration of unions of dilated Poisson flats [29,30]
(as illustrated in Fig. 2) with widely separated scales, we get a multi-scale structure percolating for any volume fraction, and
corresponding to this situation: its effective permittivity is given by the upper (resp. lower) H–S bound, when attributing
the highest permittivity to the union of dilated flats (resp. to their complementary set). This result is valid for a porous
medium, where the upper (H–S) bound becomes the effective permittivity. The same result holds when considering the
case of the bulk modulus κ in linear elasticity for well-ordered two-component media, satisfying (κ1 − κ2)(μ1 − μ2) > 0,
μ being the shear modulus. Infinite-rank laminates studied in [31] provide another type of microstructure leading to the
same optimal properties.

5.3. A two-scale hard-core composite

In some composites, a microstructure is made of non-overlapping objects (for instance spheres), described by a so-
called hard-core process [6]. It turns out that for the sequential absorption version of this model generated with spheres
of a single radius, numerical simulations show that the obtained effective properties are close to the lower H–S bound
for a “soft” matrix, and close to the higher H–S bound for “soft” spheres (like pores) [32,33]. This was also observed on
a microscopic scale, using 2D images (with dimensions 850 μm2) of a fiber composites larger than the RVE, the effective
conductivity, bulk and shear moduli of images estimated by Finite Element computations being quite well predicted by the
lower 2D H–S bound at that scale [34], so that fluctuations of effective properties between images can immediately be
deduced from fluctuations of fiber area fraction at the scale of images of the microstructure. This proximity with the H–S
bounds can be explained by the fact that for this model the morphological parameter involved in the calculation of bounds
is close to 1 in the first case [35], and to 0 in the second one.

This point can be used to give an approximate estimate of the effective properties of a two-scale material containing non-
overlapping aggregates (similar to the mentioned Cox Boolean model), obtained in two steps, as illustrated in an elastomeric
matrix containing carbon black particles (CB) [1,33]. Composite spherical aggregates are made of percolating CB spheres
(a Boolean model with volume fraction p1) and of the elastomeric component (with volume fraction 1 − p1), as represented
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Fig. 2. 2D section of dilated Poisson planes.

in central and right parts of Fig. 1. The elastic properties of the aggregates are estimated by the third order upper bound of a
Boolean model of spheres with volume fraction p1. In a second step, these spherical aggregates (with a radius much larger
than the radius of CB spheres, involving a separation of scales) are implanted in the same elastomeric matrix according
to a hard-core process forbidding overlaps between aggregates, with volume fraction p2, giving an overall volume fraction
p = p1 p2. The overall moduli are now estimated by the H–S lower bound computed for this composite, and using the same
matrix properties as before. As shown in [2], the estimates of the shear modulus G , obtained for different values of p1 are
consistent with the experimental measurements obtained for various mixes, a more uniform distribution in space giving a
lower G . For a given CB volume fraction p, G increases when p1 decreases, making easier the percolation in the two-scale
model (the extreme value p1 = 1 gives the standard hard-core two-component composite with moduli close to the lower
H–S bound). A more accurate estimate is obtained by computer intensive numerical simulations [33], but the analytical
model easily provides a good estimate of the elastic moduli.

5.4. Prediction of effective properties by numerical simulations

An efficient way to solve the problem of homogenization of physical properties, for instance to predict the dielectric
permittivity or the effective mechanical properties of heterogeneous media, makes use of numerical solutions of the cor-
responding partial differential equations (PDE) solutions, before estimating the effective properties by spatial averaging of
the solution. This requires the input of 3D images (real images, as obtained by confocal microscopy, or by X-ray microto-
mography) or simulations, so-called digital materials. In a second step a computational code (Finite Elements, Fast Fourier
Transform FFT, PDE numerical solver) is implemented.

We extensively use a method based on the FFT, derived from [36,37], to estimate the equivalent macroscopic dielectric
constant ε∗ from the structure of a material and the properties of its constituents [38]. The numerical solution is obtained
by means of the Green function of a homogeneous reference medium for the corresponding PDE for the electrical field or
for the elastic field problem.

Using the FFT approach is very versatile and does not require any meshing of the microstructure, in contrast with other
numerical methods such as Finite Elements. In elasticity, stress and strain field maps are obtained on the scale of microstruc-
ture, to get a detailed study of the effect of the microstructure on the local fields. With the Morph-Hom code developed
by F. Willot [39,40] images of large sizes (up to 16003) can be handled for any contrast of properties, and therefore the
electrostatic or elastic behavior of porous media or of rigid media could be successfully studied by numerical techniques.
This was applied to the Boolean model of spheres with any volume fractions [39] and to two-scale and three-scale Cox
Boolean models of spheres [40]. To check the validity of FFT calculations on multi-scale microstructures, several arguments
were developed and illustrated in [40]. First, a comparison was made between the direct numerical simulations on 3-scale
media and the iteration of calculations on 2-scale media after a first homogenization. The obtained effective properties
coincide when the ratio of scales is of order of 10. A second control is made from the statistical approach of the RVE,
summarized in the next section: the validity of Eqs. (17) and (19) have to be checked by plotting the change of the variance
of fields with the volume of averaging subdomains (see for instance Fig. 11 in [40]). In addition, the integral range A3 esti-
mated from these plots should be much smaller than the smallest volume v involved in its estimation (typically A3

v � 103

for 3D simulations), to insure the statistical representativeness of the simulations. We systematically apply this approach in
our numerical studies.
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The reinforcing effect of the iteration of scales with a large separation is clearly observed in the case of a very high
conductivity or of a rigid phase, as a result of a lower percolation threshold. In the case of porous media, the reverse
effect is observed, as would appear in the case of a damage at the interface between clusters of rigid particles and the
matrix. A similar approach was applied to a microtomographic image of a mortar material [41]. A detailed study of the
local enhancement of the stress field by the microstructure was made by means of image analysis of the maps obtained
by FFT. From a quantitative study of the components of the 3D stress field at increasing distances from the boundaries of
aggregates, a stress concentration was observed on a part of a surface defined by the 3D skeleton by zones of influence
(SKIZ) of the aggregates. This is a promising approach to study the sensitivity of microstructural elements on damage, or to
suggest new trial fields as input in variational principles.

5.5. Statistical approach of the RVE

When working on images of a material or on realizations of a random medium, a natural question arises [27,42]: what
is the representativeness of the effective property estimated on a bounded domain of a microstructure? In other words,
what is the size of a so-called “Representative Volume Element” RVE? In many industrial applications, mainly in the case of
electronic parts such as MEMS, the size of the microstructure cannot be neglected with respect to the size of parts. The parts
cannot be considered as an infinite homogeneous medium, as is almost always the case in standard homogenization of
periodic or random media. On bounded domains, fluctuations of effective properties (often called apparent properties in the
literature, while effective properties, independent on boundary conditions, are defined as limits for domains with an infinite
extension) are observed and must be accounted for. We address this problem by means of a probabilistic approach giving
size-dependent intervals of confidence, initially developed in the framework of the homogenization of the elastic moduli
of random media [42,43], and based on the size effect of the variance of the effective properties of simulations of random
media. This approach was applied to the elastic properties of rigid and of porous Boolean models of spheres [39,40], and to
real materials like mortar [41] or fiber glass composites [34].

5.5.1. The integral range and scaling of the variance
We consider fluctuations of average values over different realizations of a random medium inside the domain B with the

volume V . In Geostatistics [44], it is well known that for an ergodic stationary random function Z(x), with mathematical
expectation E(Z), one can compute the variance D2

Z (V ) of its average value Z(V ) over the volume V as a function of the
central covariance function C(h) of Z(x) by:

D2
Z (V ) = 1

V 2

∫
B

∫
B

C(x − y)dx dy (16)

where

C(h) = E
{(

Z(x) − E(Z)
)(

Z(x + h) − E(Z)
)}

In Section 4.2 we were using the indicator function of the random set A, Z(x) = 1A(x). For a large specimen (with V  A3),
Eq. (16) can be expressed to the first order in 1/V as a function of the integral range in the space R3, A3, by

D2
Z (V ) = D2

Z
A3

V
(17)

with A3 = 1

D2
Z

∫

R3

C(h)dh (18)

where D2
Z is the point variance of Z(x) (here estimated on simulations) and A3 is the integral range of the random function

Z(x), defined when the integral in Eqs. (16) and (18) is finite. The asymptotic scaling law (17) is valid for an additive variable
Z over the region of interest B . To estimate the effective elasticity or permittivity tensors from simulations, we have to
compute the spatial average stress 〈σ 〉 and strain 〈ε〉 (elastic case) or electric displacement 〈D〉 and electrical field 〈E〉. For
the applied boundary conditions, the local modulus is obtained from the estimations of a scalar, namely the average in the
domain B of the stress, strain, electric displacement, or electric field. Therefore the variance of the local apparent property
follows Eq. (17) when the integral range A3 of the relevant field is known. To be valid, the approach requires the stationarity
and the ergodicity of the fields (σ or ε). This is satisfied for random media with stationary and ergodic moduli [28]. Since
the theoretical covariance of the fields (σ or ε) is not available, the integral range can be estimated according to the
procedure proposed by G. Matheron for any random function [45]: working with realizations of Z(x) on domains B with
an increasing volume V (or in the present case of homogenization, considering average values in subdomains v of large
simulations, with a wide range of sizes), the parameter A3 is estimated by fitting the obtained variance according to the
expression (17). This parameter does not depend on V , provided it is large enough to insure the stationarity of the field by
minimizing the effect of boundary conditions.
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Some typical microstructures with long range correlations, like dilated Poisson hyperplanes mentioned in Section 5.2 or
like dilated Poisson lines in 3D have an infinite integral range [29,30], so that the computation of the variance D2

Z (V ) of
Eq. (17) cannot be used anymore. In this situation, a scaling law by a power γ < 1 was suggested [46], and used in various
applications where a coefficient close to 1 was empirically estimated [42,43]. With this scaling law, the variance becomes

D2
Z (V ) = D2

Z

(
A3

V

)γ

(19)

where the volume A3 is no more the integral of the central covariance function C(h), but is still homogeneous to a mi-
crostructural volume.

We have theoretically shown [47] that we have γ = 2
3 for isotropic dilated Poisson lines in 3D, γ = 1

3 for isotropic dilated
Poisson hyperplanes in 3D (Fig. 2). When working in 2D, dilated Poisson lines can be used to model a fiber network [48].
In that case the variance of the area fraction scales with the inverse of the area of 2D images with an exponent equal to 1

2 .
Therefore the decrease of the variance with the scale is much slower for these models as compared to situations with a
finite integral range, like the Boolean model with compact primary grains. Simulations of the elastic properties and of the
conductivity of 3D random fiber networks by finite elements [49] or by FFT [50] provide an empirical scaling law of the
variance close to the theoretical one obtained for the volume fraction ( 2

3 ).

5.5.2. Practical determination of the size of the RVE
The size of an RVE can be defined for a physical property Z , a contrast, and a given precision in the estimation of

the effective properties depending on the number n of realizations that are available. By means of a standard statistical
approach, the absolute error εabs and the relative error εrela on the mean value obtained with n independent realizations of
volume V are deduced from the 95% interval of confidence by:

εabs = 2D Z (V )√
n

; εrela = εabs

Z
= 2D Z (V )

Z
√

n
(20)

The size of the RVE can now be defined as the volume for which for instance n = 1 realization (as a result of an
ergodicity assumption on the microstructure) is necessary to estimate the mean property Z with a relative error (for in-
stance εrela = 1%), provided we know the variance D2

Z (V ) from the asymptotic scaling law (17) or (19). Alternatively, we can
decide to operate on smaller volumes (provided no bias is introduced by the edge effect resulting from the boundary con-
ditions), and consider n realizations to obtain the same relative error. This methodology was applied to the case of the
dielectric permittivity of various random media [51], and to the elastic properties and thermal conductivity of a Voronoï
mosaic [42], of materials from food industry [52], or of Boolean models of spheres [39]. Further results were obtained for
the Boolean model and for the multi-scale Cox Boolean model of rigid spheres (with radius 10 voxels, the larger scale
being a Boolean model of spheres with radius 100 voxels). The results in [39] indicate that the largest RVE sizes for the
one-scale model correspond to rigidly-reinforced media with V v ≈ 0.49. Accordingly, the variances D2

Z (V ) and D2
Z , with

Z = σm (mean stress or 1/3 of the trace of the stress tensor), have been computed for the two-scale Cox Boolean model
when V v1 = V v2 = 0.7 for a contrast higher than 10,000 of the bulk and shear moduli and a scale ratio equal to 10 [40].
It is found that the integral range of the two scales is increased by a factor close to 5.8 times, whereas the point variance
increases by a factor 32. A 10% precision (i.e. εrela = 0.1) is achieved when V ≈ 5503, which corresponds to an increase
of the RVE by a factor 5.8 × 32 = 5.73. The drastic increase of the point variance in the case of the two-scale random
medium underlies very large local stresses, that could induce more damage in the matrix if it contains defect, as compared
to the one-scale model for the same volume fraction. Larger RVE, combined to the difficulty of observation of multi-scale
microstructures in single images, make the experimental study of such materials much more challenging than their the-
oretical approach. However, in the case of a large separation of scales (for typically an order of magnitude as illustrated
from simulations in [40]), investigations made at different resolutions are of common practice, and can be combined with
iterative models, where the homogenization starts from the smaller scales.

The same approach was applied to a nonlinear behavior, namely for 2D/3D viscoplastic composite materials [53], the
creep following a simple power law with exponents 3.5 in the hard phase and 4 in the soft phase. Shear tests were
simulated under a macroscopic shear stress, and the statistical analysis was performed on the shear strain rate field. In that
case it was found that for the same statistical precision, the linear elastic RVE was larger than the nonlinear RVE. The degree
of generality of this result is not known. It is expected that in the case of a strong localization with a nonlinear behavior,
long range correlations of the fields will appear, and scaling laws similar to the dilated Poisson hyperplanes (with a scaling
exponent close to 1

3 ) will be recovered, so that a slow convergence towards the effective properties could be observed on
numerical simulations. This point remains to be investigated.

6. Conclusion

Multi-scale models of random media provide a wide variety of morphologies to simulate complex microstructures for
application to real materials. These models are able to capture phenomena like the observation of very low percolation
thresholds, explaining the enhancement of some effective properties for a low volume fraction of additions in a matrix.
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Our approach is based on measurements obtained by image analysis, to test and select appropriate models, and to esti-
mate their parameters. Combined to predictive models, by analytical means, or more generally by numerical simulations,
the multi-scale models give access to the optimization of microstructures with respect to the required properties. This ap-
proach can be followed in many domains of application, like materials, nanocomposites, porous media, or biological media.
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