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This article aims at proposing various estimates of the size of the Representative Volume
Element (RVE) of random linear elastic matrix–inclusion composites. These estimates are
derived from the computation of the apparent behavior of finite size volume elements
(VE) by a new procedure presented in [18] by Salmi et al. (2012) and briefly recalled.
Two different points of view to define an RVE are considered: the RVE is defined as
being the smallest VE required either to evaluate numerically the considered effective
property of the composite by appropriate statistical averaging of apparent ones, or to be
allowed to replace any instance of the heterogeneous material by a unique homogeneous
equivalent one in structural mechanics problems. In order to introduce the fluctuations of
the apparent properties within such definitions of the RVE size, we first study the statistics
of the apparent properties. Then, relying on the results of this statistical study, several
proposals of RVE criteria are presented and applied to random linear elastic fiber–matrix
composites for several contrasts and inclusion (or pore) volume fractions.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For structural calculations where CPU time and memory are issues of concern, it is appealing to describe the behavior
of the volume elements (VEs) of a composite material as being homogeneous with constant overall properties. To this end,
the concept of representative volume element (RVE) is of paramount importance, especially when numerical simulations
are used to determine the expected effective properties. Many definitions of an RVE are available in the literature. Hill [1],
in his pioneering work on the effective elastic properties of reinforced composites, defined the RVE as “a sample that (a) is
structurally entirely typical of the whole mixture on average, and (b) contains a sufficiently large number of inclusions for
the apparent overall moduli to be effectively independent of surface values of traction and displacement, as long as these
values are macroscopically uniform”. Such a definition combines two major ideas behind the concept of RVE: the statistical
representativity of the microstructure and the independence of its apparent behavior with respect to details of the boundary
conditions (BC) applied to it, as long as their averages are uniform at some larger scale. This last concept of so-called
“macrohomogeneous” loading conditions is associated with a decomposition of the variations of the mechanical loading
conditions on two clearly separated length scales. Such a principle of separation of length scales has later been announced
again by Hashin [2] for whom “the RVE should be large enough to contain sufficient information about the microstructure in
order to be representative, however it should be much smaller than the macroscopic body”. Hill’s definition supplements this
principle by a pronouncement on the independence of the apparent behavior with respect to BC, defining this way a unique
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effective behavior. These definitions are in essence only qualitative and no practical procedure to determine their extension
is proposed. An important character is however that they consider only a single realization of the heterogeneous composite
and conditions that allow to replace it by an equivalent effective homogeneous medium. The conditions for the existence
of such an effective behavior have later been investigated from a theoretical point of view by several authors. As pointed
out by Ostoja-Starzewski [3] “the RVE is clearly defined in two situations only”: (i) unit cell in a periodic microstructure [4],
(ii) a volume containing a very large (mathematically infinite) set of micro-scale element (e.g. grains), possessing statistically
homogeneous and ergodic properties [5,6]. The present article will be focused on the second situation.

Instead of considering only one instance of the heterogeneous material, one may alternatively consider a composite as
a statistical process and focus attention on effective properties that link ensemble averages of mechanical fields, without
paying attention to fluctuations of individual apparent properties. This second perspective is taken by Drugan and Willis [7]
who define the RVE as “the smallest material volume element of the composite for which the usual spatially constant
overall modulus macroscopic representation is a sufficiently accurate model to represent mean constitutive response”. Their
definition of the RVE opens a way to evaluate analytically its size [7–9]. Indeed, they establish a nonlocal constitutive
equation relating the ensemble average of the stress and strain for random linear composites and produce quantitative
estimates of the minimum RVE size by comparing the magnitude of the nonlocal to local terms in the constitutive equation
when the ensemble average strain loading is spatially varying.

A third, more practical, point of view for the definition of the RVE and more precisely its size, is linked with the determi-
nation of the effective properties of a heterogeneous material by the combination of unit cell-type calculations and Monte
Carlo simulations of their microgeometries (e.g. [10–16]). The question is to evaluate the minimal size of a computational
volume element (VE) such that the average of its apparent behavior evaluated for a sufficiently large number of realizations
of its microgeometry converges to the wanted effective behavior. As a typical instance of this type of approaches, Kanit et
al. in [13] made use of the notion of integral range and confidence interval to derive a closed-form relation between the
relative error associated with the wanted effective property and both the size of the VE and the number of realizations. This
relation allows one to predict the number of virtual samples of a given size necessary to reach a given level of accuracy
and conversely to predict the relative accuracy for a given number of realizations. Applying their procedure to linear ran-
dom two-phase composites, Kanit et al. clearly showed that the size of the RVE, defined this way, not only depends on the
microgeometry (i.e. its morphology and volume fractions) of the composite, but also on the investigated physical property,
the contrast between the constitutive phases, and above all, a given accuracy in the prediction of the effective property.

The above-mentioned definitions and analyses — as well as other definitions reviewed in Gitman et al. [17] — lead to
various RVE sizes, even for a same given material property, accuracy and similar morphology. For instance, for linear elastic
random disk–matrix reinforced composites, Ostoja-Starzewski [11] found large RVE sizes, 10 to 50 times a single inclusion,
with a relative error of 5% at a contrast between the phases moduli ranging from 102 to 104 for a reinforcement volume
fraction of 20%. At the opposite end of the range of proposed RVE sizes, Drugan and Willis [7] derived for the same type of
composite — however reinforced by spherical inclusions — and for the same accuracy an RVE size approximatively equal to
only two reinforcement diameters for any contrast and for all reinforcement volume fractions up to 40%. The quantitative
differences in the results obtained from the above-mentioned analysis is the result of the existence of various points of view
and definitions of the concept of RVE, which is still an issue of concern and requires more investigations.

The present article aims at applying some of the above described concepts of RVE and at proposing extensions of pre-
viously proposed RVE criteria for a particular class of matrix–inclusion random composites for which a new procedure to
compute sharp upper and lower bounds for the effective linear elastic properties has recently been proposed by Salmi et al.
[18]. The new bounds rely on a strategy which is inspired both by the work of Huet [19] — the bounds are obtained by per-
forming ensemble averages of their apparent elastic moduli computed with either affine displacement boundary conditions
(ADBC) or uniform traction boundary conditions (UTBC) — and by the one of Danielson et al. [20] — the apparent elastic
moduli are now defined on non-square instead of square VEs made of an assemblage of Voronoï cells, each cell being com-
posed of a single inclusion surrounded by matrix (see Fig. 1). It is shown in [18] that these new bounds converge quickly
with the VE size, even for infinite contrasts unlike the classical ones derived by Huet [19,11] for square VEs. The presented
work aims at defining new RVE criteria relying on the new scheme developed in [18]. For that, two different points of view
to define an RVE will be considered. The first one aims to determine the minimum VE size required to evaluate the effective
properties of a heterogeneous material. The RVE criteria provided in [19,11,3,7,10,13,17] are instances of such computational
RVEs. The second viewpoint considers that the RVE size is reached when one is allowed to replace a heterogeneous mate-
rial by an equivalent one in structural mechanics problems. This type of RVE criteria requires that the separation of scale
principle must be fulfilled. Hill [1] and Hashin [2] RVE definitions illustrate this second viewpoint. Both these viewpoints
define an RVE by means of qualitative arguments only. To go further, we need to introduce quantitative considerations. For
that, it is often useful to know, at least partially, the statistics of the apparent properties in order to quantify not only their
mean values but also their scatter. Based on these considerations, a statistical study of the apparent properties computed
by means of the new approach developed in Salmi et al. [18] is performed. Relying on the trends derived from this study,
some proposals to define RVE sizes are then presented.

The structure of this article is as follows. In Section 2, the procedure elaborated in [18] to derive new bounds for the
effective behavior of random linear elastic matrix–inclusion composites from weighted ensemble averages of the apparent
properties computed on non-square VEs is briefly recalled. Section 3 is dedicated to the study of the statistics of these
apparent behaviors computed on non-square Voronoï-type VEs subjected to either ADBC or UTBC. This statistical study is
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carried out for two-phase composites composed of a matrix and aligned identical cylindrical fibers randomly distributed in
the transverse plane. From the results of the statistical study, three different RVE criteria are proposed in Section 4. They
are applied to the fiber–matrix composite considered in Section 3 for various contrasts and volume fractions. Conclusions
are summarized in Section 5.

The tensor notation used herein is a fairly standard one. The orders of the tensors are clear when taken in context.
Products containing dots denote summation over repeated Latin indices. Regarding probabilistic aspects, all the random
quantities (variables, fields) considered in this work are assumed to be defined on the same probability space {Θ, F , P },
where Θ is a sample space, F is a σ -algebra of subsets of Θ and P is a probability on F . For the sake of simplicity, the
notation ξ(ω) will be used to denote both a random variable ξ and its realization for ω ∈ Θ . In the same way, ψ(x,ω) will
be used to denote an ω-realization of a random field ψ , its value at position x, as well as the random field itself. Finally,
the mathematical expectation and standard deviation of any random variable ξ will be denoted E(ξ) and σ(ξ), respectively.

2. New bounds of the effective behavior for matrix–inclusion-type composites

By making use of different arguments, Huet [19] and later Sab [6] independently showed that the arithmetic ensemble
average of the apparent stiffness associated with ADBC and the harmonic ensemble average of the apparent stiffness asso-
ciated with UTBC both applied to square (in 2D) or cubic (in 3D) shaped samples of size L are upper and lower bounds
of the effective behavior, respectively. When applied to different types of heterogeneous materials such as matrix–inclusion
composites [11,3] or polycrystals [21], it has been numerically checked that these bounds provide good estimates of the
effective behavior even for relatively low values of δ = L/d but only for weak to medium contrast between the constituents
of the composite. The micro-scale d refers to the typical size of the constitutive elements of the heterogeneous material (e.g.
grain size in a polycrystal, or inclusion or fiber diameter in a composite). For composites with large contrast, e.g. containing
rigid particles or pores, simulations performed on planar linear elastic disk–matrix composites [11] have revealed that the
discrepancy between the upper and lower bounds of the effective properties remains significant even for large value of δ.
This discrepancy is induced by a blow-up of either the upper bound for rigidly reinforced composites or the lower bound for
porous materials. This blow-up occurs because the part of the strain energy due to the particles which intersect the edges
of the square cell becomes very large when ADBC (resp. UTBC) are directly applied to rigid particles (resp. pores). To avoid
such limitations, Salmi et al. [18] considered non-square (or non-cubic) VEs comprised of cells assemblages (e.g. Voronoï
cells assemblages), each cell being composed of an inclusion, strictly located inside the cell, surrounded by the matrix, thus
forbidding any direct application of boundary conditions to particles. By making use of the classical bounding theorems for
linear elasticity and appropriate averaging procedures, sharp bounds of the effective behavior are derived from ensemble
averages of the apparent behaviors associated with non-square (resp. non-cubic) VEs. As mentioned in the introduction,
these new bounds converge quickly with the VE size towards the effective behavior, even for infinite contrasts, thus provid-
ing a new numerical approach which might be employed to determine RVE sizes. The principles of this approach are briefly
recalled in this section. Since the governing ideas are the same in 2 or 3 dimensions, only 2D situations are considered.

2.1. Non-square VEs

We consider a random microstructure made of K constitutive phases, characterized by a set of K stochastic fields

B ∈
{
χ r ∈ {0,1}Rd×Θ,1 � r � K ,

K∑
r=1

χ r = 1

}

where d = 2 is the space dimension and χ r the random characteristic functions, being 1 if the position vector x is in
phase r, and 0 otherwise. The microstructure B is assumed to be stationary and ergodic. From B , we obtain for each ω ∈ Θ

a realization B(ω) of the composite. In order to design non-square VEs the boundaries of which do not intersect very stiff
or very soft phases, the microstructures B(ω) considered in this article are of the matrix–inclusion type only. Further, it is
assumed that no contact occurs between the inclusions which can be of any size and any shape. The new non-square VEs
are defined as connex assemblages of elementary cells, each elementary cell being composed of a sole inclusion surrounded
by matrix. The cells are not allowed to intersect and their union is supposed to cover the whole microstructure. A possible
way to decompose the microstructure into such cells is to associate to any particular inclusion the points in the matrix that
are closer to this inclusion than to any other. The boundaries of the cells are then defined as the watershed lines of the
distance function to the inclusions [22]. A particular case of practical interest is when the inclusions are disks of the same
diameter; the corresponding decomposition coincides then with the classical Voronoï subdivision of the 2D space associated
with the disks centers. This situation will be considered in the next section and is illustrated in Fig. 1. Other definitions of
cells could however be used.

For such a random microstructure and its decomposition into cells, n non-square VEs of size δ are generated by con-
sidering square windows Ω s

δ,Xk
of width δ and centered on positions Xk = (xk

1, xk
2) (k = 1, . . . ,n), defined by Ω s

δ,Xk
=

[x1 − L/2, x1 + L/2] × [x2 − L/2, x2 + L/2], and by extracting, for each window Ω s
δ,Xk

, the set of inclusions which have

their center of mass inside this window. The non-square domains Ωδ,X (ω), of size δ and centered on positions Xk , are
k
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Fig. 1. VEs generation from a large microstructure: square cell (SC) and Voronoï (VOR)-type windows and VEs.

then defined as the unions of the cells associated with these sets of inclusions. See Fig. 1 for a graphical illustration of
the construction of the domains Ω s

δ,Xk
and Ωδ,Xk (ω). The n VEs, the apparent behaviors of which will be computed to

bound the effective properties of the composite, are the restrictions Bδ,Xk (ω) of a realization of the composite B(ω) to its
corresponding non-square domains Ωδ,Xk (ω). In the following, because of the stationarity of the random set B , the spatial
dependence relative to the windows centers Xk will no longer be specified unless required. Note however that in order to
avoid any bias in the statistical ensemble averaging of the apparent properties, the centers Xk have to be chosen such that
the windows Ω s

δ,Xk
(and consequently Ωδ,Xk (ω)) do not overlap. They may be placed randomly or on a regular grid.

2.2. Definition of the apparent behavior

In what follows, the outer surface of any domain A and its normal will be denoted by ∂ A and n(x), respectively. When
the VE Bδ(ω) is smaller than the RVE, its apparent behavior depends both on ω and on the prescribed BC on ∂Ωδ(ω). In
linear elasticity, the apparent behaviors of Bδ(ω) associated with ADBC — u(x,ω) = ε̄.x,∀x ∈ ∂Ωδ(ω) — or with UTBC —
σ(x,ω).n(x) = σ̄ .n(x),∀x ∈ ∂Ωδ(ω) — are, respectively, described by the fourth-order stiffness Cd

δ (ω) or compliance St
δ(ω)

tensors. They are defined by

∀ε̄, V δ(ω) ε̄ : Cd
δ (ω) : ε̄ = inf

u∈Kδ(ε̄,ω)

∫
Ωδ(ω)

ε
(
u(x)

) : C(x,ω) : ε(
u(x)

)
dx

with Kδ(ε̄,ω) = {
u(x)/u(x) = ε̄.x ∀x ∈ ∂Ωδ(ω)

}
(1)

∀σ̄ , V δ(ω)σ̄ : St
δ(ω) : σ̄ = inf

σ∈Sδ(σ̄ ,ω)

∫
Ωδ(ω)

σ (x) : S(x,ω) : σ(x)dx

with Sδ(σ̄ ,ω) = {
σ(x)/div

(
σ(x)

) = 0 ∀x ∈ Ωδ(ω);σ(x).n(x,ω) = σ̄ .n(x,ω) ∀x ∈ ∂Ωδ(ω)
}

(2)

In Eqs. (1) and (2) as well as hereafter, the superscripts d and t refer to ADBC and UTBC, respectively. The random variable
V δ(ω) denotes the volume of the domain Ωδ(ω). The tensors C(x,ω) and S(x,ω) are the local stiffness and compliance
associated with an ω-realization of the composite. In the sequel, they are assumed to be defined by

C(x,ω) =
K∑

r=1

Crχ r(x,ω), S(x,ω) =
K∑

r=1

Srχ r(x,ω) (3)

where Cr (resp. Sr ) is the non-random stiffness (resp. compliance) tensor of phase r.
For ergodic and stationary materials, Papanicolaou [5] and later Sab [6] have shown that

lim
δ→∞ Cd

δ (ω) = lim
δ→∞ St

δ(ω) = Ceff = (
Seff )−1

(4)

thus defining the effective behavior Ceff which does not depend on either the BC or the realization ω. In practice, Eq. (4) is
satisfied, at a specified accuracy, for δ greater than a critical size δc which, according to the viewpoint adopted by Hill [1],
may be interpreted as one possible definition of the RVE size, as discussed in Section 4.
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2.3. Order relations for the apparent tensor moduli

Relying on the non-regular VEs defined in Section 2.1 and considering stationary and ergodic matrix–inclusion compos-
ites, Salmi et al. [18] recently derived new bounds of the effective behavior stemming from weighted ensemble average of
the apparent properties. The obtained bounds — referred to as the VOR bounds in the sequel — are defined by

CVOR+
δ = E

(
V δ

E(V δ)
Cd

δ

)
, CVOR−

δ = E

(
V δ

E(V δ)
St

δ

)−1

(5)

and satisfy the following order relations:

∀δ ∈R
+, CVOR−

δ′ � CVOR−
δ �

(
Seff )−1 = Ceff � CVOR+

δ � CVOR+
δ′ for δ′ = δ/2 (6)

In Eq. (6) and in what follows, the inequality A � B between two fourth-order tensors A and B should be understood
in the sense of quadratic form, i.e. t : A : t � t : B : t for any second-order tensor t . The proof of Eq. (6) is given in [18].
Briefly, Salmi et al. derive relation (6) by making use of the classical energy bounding theorems and appropriate averaging
procedures. Stationarity and ergodicity of the microstructure are required in the proof. A key point is to notice that the
volume V δ(ω) of the non-square VE Bδ(ω) is a random variable unlike in Huet’s approach [19] based on square VEs where
V s

δ = |Ω s
δ | = (δd)2 is a constant. When applying Eqs. (5) and (6) to such square VEs, the bounds and order relations derived

by Huet [19] and later by Sab [6] are recovered straightforwardly.
As shown in Eq. (5), the VOR bounds are defined as weighted ensemble averages of the apparent properties. In what

follows, for ease of notation the weight V δ

E(V δ )
associated with each ω-realization of the apparent properties will be omitted

in the expectation unless required, i.e. E( V δ

E(V δ )
Cd

δ ) ≡ E(Cd
δ ). The same weights are used later on for the computation of

standard deviations and probability density functions relative to VOR-type quantities.
Salmi et al. have shown in [18] that the VOR bounds converge quickly towards the effective behavior and improve on the

classical Huet’s bounds for all contrasts and particle volume fractions. Therefore, they can be used to evaluate RVE sizes. In
contrast to other numerical studies of RVE sizes [13] which are based on estimates of effective properties, the present work
relies on exact and efficient bounds. The efficiency of the bounds is mainly due to the fact that the matrix–inclusion nature
of the microstructure is well taken into account. In essence, the proposed approach is an adaptation of the Morphologically
Representative Pattern-based approach [23] which leads to efficient bounds for similar matrix–inclusion microstructures
which strongly improve on more general ones [24].

More generally, the entire statistics of the apparent behaviors Cd
δ (ω) and St

δ(ω) defined on non-square Voronoï-type VEs
Bδ(ω) can be employed to evaluate RVE sizes especially if the considered RVE criterion is based not only on the mean value
of the apparent behaviors but also on their fluctuations. To this end, the next section is devoted to a statistical study of the
apparent properties.

3. A statistical study of the apparent properties of random matrix–fiber composites

As a first illustration, in order to reduce the numerical cost required to compute the apparent behaviors for each realiza-
tion we consider the case of aligned fiber–matrix composites which can be addressed with low cost 2D simulations.

3.1. Description of the composite

More precisely, the studied material is a two-phase composite made of a matrix and aligned identical non-overlapping
fibers randomly and isotropically distributed in the transverse plane. Both phases are isotropic and follow Hooke’s law. All
results relative to stresses are given in a non-dimensional scale in which the shear modulus of the matrix is μM = 1. The
contrast c between the phases is such that the bulk and shear moduli are given by kI = μI = c for the inclusions and
kM = μM for the matrix. It should be noted that the effective behavior of the linear composite is transversally isotropic
due to rotational invariance along the fiber axis e3 of both the behaviors of the constitutive phases and the statistics of
their spatial distribution. Further, the same property holds true for the upper and lower bounds CVOR+/−

δ defined in Eq. (5)
(see [18] for detailed explanations). In order to reduce the numerical cost, we only consider the transverse response of the
composite. The local problem to be solved can thereby be reduced to a two-dimensional problem in plane strain framework
for which the fibers are represented by disks of same diameter d and the VEs are subjected to in-plane loadings.

3.2. Microstructure and non-square VEs generation

The microstructure of the composite is generated by a slightly modified version of the well-known random sequential
adsorption (RSA) algorithm [25]. The centers of the disks are randomly and sequentially implemented by a Poisson process
in a large window of size 125d containing approximatively 3000 fibers for f = 15%. A constraint on the minimum distance
between the disks of same diameter d is imposed to prevent overlapping and contact. If the current disk the position of
which is randomly chosen in the large window does not satisfy the minimum distance requirement, it is rejected and a new
one is generated until the distance condition is fulfilled. New disks are added until the prescribed porosity is reached.
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Once a large microstructure is generated, a Voronoï subdivision into elementary cells is performed by using a Matlab
function. As explained in Section 2.1, each cell is composed of a sole inclusion surrounded by matrix. Then, n square
windows of same size L = δd are extracted sequentially from this subdivision by means of a Poisson process providing
the centers of the square windows. They are used to generate their corresponding n non-square VEs made of the set of
elementary Voronoï cells the centers of which belong to a same δ-sized window. In order to prevent windows overlapping
and possible statistical bias, a minimum distance of

√
2δd between the window centers is imposed. Centers are also placed

sufficiently far away from the borders of the large microstructure. In order to generate large numbers of VEs, several large
microstructures might need to be generated. Details of this procedure are given in [18].

3.3. Computation of the apparent behaviors

Once the generation of the non-square VEs is completed, their apparent stiffness Cd
δ (ω) and compliance St

δ(ω) tensors
are computed. For that, the following 2D local problem has been solved in plane strain framework by means of finite
element techniques⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

div
(
σ(x,ω)

) = 0

σm(x,ω) = 2K (x,ω)εm(x,ω), σ d(x,ω) = 2μ(x,ω)εd(x,ω)

ε(x,ω) = 1

2

(∇u(x,ω) +T ∇u(x,ω)
)

⎫⎪⎪⎬
⎪⎪⎭ ∀x ∈ Ωδ(ω)

for ADBC: u(x,ω) = ε̄.x

for UTBC: σ(x,ω).n(x,ω) = σ̄ .n(x,ω)

}
∀x ∈ ∂Ωδ(ω)

(7)

where

K (x,ω) =
∑

r=I,M

K rχ r(x,ω), K r = kr + μr/3, μ(x,ω) =
∑

r=I,M

μrχ r(x,ω) (8)

The scalar K r in Eq. (8) is the in-plane bulk modulus of phase r. In system (7), the decomposition of any second-order
tensor field a in plane strain framework into hydrostatic am , pure shear aps , simple shear ass and deviatoric ad components
has been used:

a = ami + apseps + assess = ami + ad (9)

where the second-order tensors i, eps and ess are defined on the considered Cartesian basis by

i = e1 ⊗ e1 + e2 ⊗ e2, eps = e1 ⊗ e1 − e2 ⊗ e2, ess = e1 ⊗ e2 + e2 ⊗ e1 (10)

The in-plane macroscopic strain ε̄ and stress σ̄ also take the form of Eq. (9).
Although the fibers are isotropically distributed in the transverse plane for the whole microstructure B(ω), the fibers

distribution and as a consequence each ω-realization of the apparent behavior Cd
δ (ω), St

δ(ω) are no longer transversally
isotropic for VEs Bδ(ω) of finite size δ smaller than the RVE size. In plane strain conditions, the apparent tensors read

Cd
δ (ω) = 2kd

δ (ω) J T + 2λd
δ(ω)E ps + 2μd

δ(ω)Ess + 2αd
δ (ω)Es

m,ps + 2βd
δ (ω)Es

m,ss + 2γ d
δ (ω)Es

ps,ss

St
δ(ω) = 1

2kt
δ(ω)

J T + 1

2λt
δ(ω)

E ps + 1

2μt
δ(ω)

Ess + 1

2αt
δ(ω)

Es
m,ps + 1

2βt
δ(ω)

Es
m,ss + 1

2γ t
δ (ω)

Es
ps,ss (11)

where the fourth-order tensors J T , E ps , Ess , Es
m,ps , Es

m,ss , Es
ps,ss are defined by

J T = 1

2
i ⊗ i, E ps = 1

2
eps ⊗ eps, Ess = 1

2
ess ⊗ ess, Es

m,ps = 1

2
(i ⊗ eps + eps ⊗ i)

Es
m,ss = 1

2
(i ⊗ ess + ess ⊗ i), Es

ps,ss = 1

2
(eps ⊗ ess + ess ⊗ eps) (12)

The tensors J T , E ps , Ess (the two latter being recently introduced by Willot et al. [26]) are projectors on the subspaces of
isotropic or deviatoric second-order tensors spanned by i, eps , ess , respectively. The remaining tensors Es

m,ps , Es
m,ss , Es

ps,ss
— which allow for the coupling between hydrostatic, pure shear and simple shear components — are introduced to fully
characterize any material anisotropy in plane strain conditions. The components kd,t

δ (ω) are the in-plane apparent bulk

modulus for ADBC (d) or UTBC (t) while λ
d,t
δ (ω),μd,t

δ (ω) are the in-plane apparent pure shear and simple shear moduli,
respectively.

The 6 components of the apparent moduli tensor Cd
δ (ω) (resp. apparent compliance St

δ(ω)) are classically derived by
solving the local problem (7) for 3 different ADBC (resp. UTBC) — e.g. ε̄ = i, ε̄ = eps and ε̄ = ess , thus providing the wanted
quantities by averaging the local stress (resp. the local strain) over the whole VE Bδ(ω) for each loading.
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3.4. Quantities under consideration

The random variables Zδ(ω) on which the statistical study relies are the following:

for ADBC: Zd
δ (ω) = K d

δ (ω), Gd
δ (ω)︸ ︷︷ ︸

isotropic part

,
μd

δ (ω) − λd
δ(ω)

2
,αd

δ (ω),βd
δ (ω),γ d

δ (ω)︸ ︷︷ ︸
deviation from isotropy

for UTBC: Zt
δ(ω) =

︷ ︸︸ ︷
1

K t
δ(ω)

,
1

Gt
δ(ω)

,

︷ ︸︸ ︷
1

2

(
1

μt
δ(ω)

− 1

λt
δ(ω)

)
,

1

αt
δ(ω)

,
1

βt
δ(ω)

,
1

γ t
δ (ω)

(13)

In relation (13), the moduli K d
δ (ω), K t

δ(ω), Gd
δ (ω), Gt

δ(ω) defined by

K d
δ (ω) = Cd

δ (ω) : J T

2
, Gd

δ(ω) = Cd
δ (ω) : KT

4
,

1

K t
δ(ω)

= St
δ(ω) : J T

2
,

1

Gt
δ(ω)

= St
δ(ω) : KT

4
(14)

are the 2D-isotropic projections of the apparent moduli Cd
δ (ω) and compliance St

δ(ω) tensors where KT = E ps + Ess is the
usual projector on the subspace of purely in-plane deviatoric second-order tensors. They satisfy the following relations:

K d
δ (ω) = kd

δ (ω), Gd
δ(ω) = λd

δ(ω) + μd
δ (ω)

2
, K t

δ(ω) = kt
δ(ω), Gt

δ(ω) = 2

(
1

μt
δ(ω)

+ 1

λt
δ(ω)

)−1

(15)

Accordingly, as seen in formula (13), the random variables Zδ(ω) can be classified into two parts. The first part consists
of random variables characterizing the isotropic part of the apparent moduli Cd

δ (ω) and compliance St
δ(ω), namely K d

δ (ω),
Gd

δ (ω), K t
δ(ω) and Gt

δ(ω). The second part is made of the components of the moduli or compliance tensors which character-
ize their deviation from isotropy, i.e. (μd

δ (ω) − λd
δ (ω))/2, αd

δ (ω), βd
δ (ω), γ d

δ (ω), (1/μt
δ(ω) − 1/λt

δ(ω))/2, 1/αt
δ(ω), 1/βt

δ(ω),
1/γ t

δ (ω).
It should be noted that the computation of the VOR bounds of the effective properties only makes use of the moduli

Zδ(ω) characterizing the isotropic part of the apparent behaviors. Indeed, as explained in Section 3.1, both the effective
behavior Ceff and Voronoï bounds CVOR+/−

δ are transversally isotropic due to the rotational invariance along the fiber axis.1

Accordingly, in plane strain framework, they are written

Ceff = 2K eff J T + 2Geff KT , CVOR+/−
δ = 2K VOR+/−

δ J T + 2GVOR+/−
δ KT (16)

where K and G denote the in-plane bulk and shear moduli. Applying Eq. (16) to inequalities (6) yields

K VOR−
δ � K eff � K VOR+

δ , GVOR−
δ � Geff � GVOR+

δ (17)

where the VOR bounds for transversally isotropic behaviors can be estimated by the following relations:

K VOR+
δ = E

(
K d

δ

)
, K VOR−

δ =
(

E

(
1

K t
δ

))−1

, GVOR+
δ = E

(
λd

δ

) = E
(
μd

δ

) = E
(
Gd

δ

)

GVOR−
δ =

(
E

(
1

λt
δ

))−1

=
(

E

(
1

μt
δ

))−1

=
(

E

(
1

Gt
δ

))−1

(18)

Formulae (18) are straightforwardly derived by making use of both the transverse isotropy and definitions (5) of the VOR
bounds.

The statistical study aims at analyzing the fluctuations of the above-mentioned random variables Zδ(ω). They depend on
several parameters such as the considered mechanical property — namely the moduli Zδ(ω) itself, the BC, the fluctuations of
the microstructure which in the following will be referred to as the individual fluctuations, the size δ of the VE, the contrast
between the phases and lastly the inclusion volume fraction. In this work, the analysis of the fluctuations of any random
variable Zδ(ω) is performed by means of both its coefficient of variation CoV(Zδ) = σ(Zδ)/E(Zδ), which only provides partial
information about the statistic of Zδ(ω), and its probability density function pdf (Zδ) which contains the whole statistics of
Zδ(ω). Remember that the pdf of Zδ(ω) is computed by ascribing to each w-realization of Zδ(ω) its weight V δ(ω)/E(V δ). In
order to quantify the influence of the BC on the moduli fluctuations, we also compute the fluctuations �Z VOR

δ /Z VOR
δ referred

in the following to as the moduli BC-based fluctuations and defined as follows:

1 Rigorously speaking, the VOR bounds still depend on the geometry of the square domains Ω s
δ by which the Voronoï cells are selected to define the

VEs. Therefore, they may keep some kind of quadratic symmetry. But in practice, this anisotropy is so small that it can be neglected.
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Fig. 2. Graphical interpretation of the fluctuations �K VOR
δ /K VOR

δ (a) and CoV(K d
δ ) = σ(K d

δ )/E(K d
δ ) (b) of the apparent bulk modulus.

�Z VOR
δ

Z VOR
δ

= Z VOR+
δ − Z VOR−

δ

Z VOR+
δ + Z VOR−

δ

= E(Zd
δ ) − E(1/Zt

δ)
−1

E(Zd
δ ) + E(1/Zt

δ)
−1

(19)

for Zδ(ω) = K d,t
δ (ω), Gd,t

δ (ω). According to definition (19), the effects of the individual fluctuations of the microstructure are
not taken into account by the quantity �Z VOR

δ /Z VOR
δ . Indeed, by performing ensemble averaging on the random variables

the quantity �Z VOR
δ /Z VOR

δ only incorporates the BC effects on the moduli fluctuations unlike the CoV fluctuations which
do depend on the individual fluctuations of the microstructure as well as on the BC. As an illustration, Fig. 2 provides a
graphical interpretation of both fluctuations �K VOR

δ /K VOR
δ and CV(K d

δ ) of the apparent in-plane bulk moduli — note that
E(1/K t

δ)
−1 is not the mean value of K t

δ .
Lastly, we define and compute the following quantities:

�d
iso =

√
E

((
μd

δ − λd
δ

2

)2

+ (
αd

δ

)2 + (
βd

δ

)2 + (
γ d

δ

)2
)

�t
iso =

√
E

((
1

2

(
1

μt
δ

− 1

λt
δ

))2

+
(

1

αt
δ

)2

+
(

1

βt
δ

)2

+
(

1

γ t
δ

)2)
(20)

which can be interpreted as statistical measures of the deviation from isotropy of the apparent behavior. Such measures can
provide interesting information about the RVE size. Indeed, as seen in Section 3.1 the effective behavior of the considered
composite is transversally isotropic. Accordingly, the convergence with respect to δ of these measures towards zero — at a
given accuracy — can be used for instance as a necessary condition which should be satisfied for a minimum RVE size.

3.5. Results

All numerical applications of this work have been carried out for both a rigidly reinforced composite (c = 104) and a
porous material (c = 10−4) and for two inclusion volume fractions ( f I = 15%,30%). In a few cases, computations have also
been run for other contrasts ranging from 10−2 to 102. For all numerical applications, the number of realizations n is set to
n = 2000 for 2 � δ < 20 or n = 1000 for 20 � δ � 30.

3.5.1. Relative fluctuations induced by the variability of the microstructure and BC
Figs. 3 and 4 depict in logarithmic scales the variations with respect to δ of the CoV of the apparent in-plane bulk (a)

and shear (b) moduli for the reinforced composite and the porous material, respectively, and for both volume fractions
( f I = 15%,30%). First, it is noted that, as expected, the fluctuations of the apparent in-plane bulk and shear moduli of both
the reinforced composite and porous material regularly decrease and tend towards zero when δ is increasing. Qualitatively
speaking, the rate of this decrease is similar for both moduli and both composites. However, the fluctuation levels for a given
VE size δ are larger in the porous material than in the reinforced composite; this is especially true for the in-plane shear
modulus, which exhibits CoVs up to 5 times larger in the porous material. This suggests that the RVE size would be larger
for the porous material than for the rigidly reinforced composite, at least for the shear modulus. Second, it is also observed
that the fluctuations of both the apparent in-plane bulk and shear moduli have the same order of magnitude for the rigidly
reinforced composite while for the porous material the fluctuations of the in-plane shear modulus are larger than those of
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Fig. 3. Rigidly reinforced composite (c = 104): variations as a function of δ of the CoV and BC-based fluctuations for the apparent in-plane bulk (a) and shear
(b) moduli or compliances computed either with ADBC or UTBC. Continuous lines are relative to f I = 15% while dashed curves are related to f I = 30%.

Fig. 4. Porous material (c = 10−4): variations as a function of δ of the CoV and BC-based fluctuations for the apparent in-plane bulk (a) and shear (b)
moduli or compliances computed either with ADBC or UTBC. Continuous lines are relative to f I = 15% while dashed curves are related to f I = 30%.

the in-plane bulk modulus. This trend suggests that the RVE size associated with the shear modulus would be larger than
the one associated with the bulk modulus for the porous material. Third, the discrepancy between the CoV associated with
ADBC and UTBC converges more quickly to zero than the CoVs themselves, thus showing that the influence of the BC on
the moduli fluctuations is of shorter range than the individual fluctuations one. More precisely, this remark holds true for
all situations depicted in Figs. 3 and 4 except for the in-plane shear modulus of the porous material (Fig. 4(b)). This trend
is corroborated by the evolutions with respect to δ of the BC-based fluctuations �Z VOR

δ /Z VOR
δ of the apparent in-plane bulk

and shear moduli which are also reported in Figs. 3 and 4. Indeed, except again for Fig. 4(b), the BC-based fluctuations
are notably lower than the CoVs and are almost negligible from a value δ which approximatively corresponds to the value
for which both CoVs associated respectively with ADBC and UTBC tend to merge. This seems to confirm the fact that the
effect of individual fluctuations of the microstructure on the moduli fluctuations has a larger range than the one induced
by the BC, of course to the notable exception of the apparent shear moduli fluctuations for the porous material. Indeed,
in this case both effects are of similar intensity for low volume fraction and the influence of BC notably exceeds that of
the individual fluctuations of microstructure for higher volume fraction. Lastly, it is noted that the moduli fluctuations of a
rigidly reinforced composite for small δ are more pronounced when associated with ADBC than with UTBC. The converse is
observed for porous materials.

Concerning the influence of the inclusion or pore volume fraction, we first notice a pronounced increase of the BC-based
fluctuations for both moduli and both the rigidly reinforced composite and the porous material when f I is increased from
15 to 30%. This can easily be explained by the fact that the inclusions get on average closer to the boundaries of the
cells and are thus more sensitive to the boundary conditions. For very low volume fractions, inclusions would be far away
from each other and from cell boundaries so that most of them would behave as Eshelby’s [27] heterogeneous inclusion.
Both VOR bounds would then converge to the dilute estimate for cylindrical inclusions and the BC-based fluctuations are
expected to vanish. With increasing volume fraction, interaction terms get more and more important and the gap between
ADBC or UTBC bounds, for a given window size, is expected to grow, as observed. The second observed effect is a slight
decrease with volume fraction of the CoV for large δ and a small increase for small δ, for both moduli of the reinforced
composite. Similar trends are observed for both apparent moduli of the porous material associated with ADBC while a slight
decrease for all δ is observed for the apparent properties associated with UTBC. This more complex behavior is less easy
to explain. It is the consequence of the combination of several effects with potentially opposite tendencies. The first one is
linked to the variability of the local configurations of the microstructure, which can be higher for low and intermediate δ
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than for higher δ, near the packing limit of the RSA algorithm, for which the relative positions of the inclusions are much
more constrained by the non-overlapping condition. In particular, the volume fractions of the VOR windows are likely to
be closer to the prescribed overall volume fraction when the latter is high and when δ is large, while they are expected to
fluctuate much more for small overall volume fractions and small δ. The second effect is linked to the mechanical interac-
tions between inclusions and between inclusions and boundaries. They are clearly very limited for small volume fractions
for which most inclusions would behave as Eshelby’s isolated one, as already mentioned above. However a few of them
could still be close to boundaries and sensitive to the applied loads, and contribute to an increase of the CoV, even if their
contribution to the ensemble averages leading to the VOR bounds might be very small. The contributions of these marginal
configurations are likely to be larger for small δ. For higher volume fractions, interaction effects are clearly more important,
and may contribute to a larger variability of the apparent behavior. But for high volume fractions and sufficiently large win-
dows, the variability of these interaction effects will be limited because of the already mentioned limited variability of the
microstructure itself. The combination of these effects leads to complex evolutions of the CoVs with volume fractions, which
might be non-monotonous and exhibit local maxima for some critical volume fractions. Before this maximum, variability of
microstructure and increasing interaction effects tend to increase the fluctuations of the apparent behavior, while above it,
the reduction of the variability of the microstructure would overcome interaction effects. The detailed quantitative analysis
of such evolutions would however require more numerical simulations, which are left for further investigations.

Lastly, as can be seen in Figs. 3 and 4, the evolutions of the CoVs with respect to δ follow for large enough values of
δ a scaling function given by log(CoV(Zd,t

δ )) = a log δ + log(bd,t(Z)) where a � −1 and bd,t(Z) is a constant which depends
on both the applied BC and the considered material property Z . Numerical applications carried out for other contrasts
ranging from 10−2 to 102 show that this scaling function — which can be rewritten as CoV(Zd,t

δ )δ = bd,t(Z) — works not
only for infinite contrasts but also for every contrast. For lower δ, the slopes of the curves are lower. The critical δ above
which the −1 slope is observed seems to coincide again with the size at which the CoVs associated with ADBC and UTBC
tend to merge. Note that such an evolution of CoVs proportional to 1/δ would be observed if the computation of apparent
properties of a VE of size δ would be equivalent to four independent computations on VEs of size δ/2. See also Willot and
Jeulin [28] for the theoretical justification of such an asymptotic behavior based on the concept of integral range of the local
fields. This transition seems thus to coincide with some disappearance of the influence of BC on the apparent behavior. The
size δ at which that occurs depends on the contrast and, to some lower extend, the volume fraction. It is for instance close
to δ = 20 in Fig. 3(a).

3.5.2. Probability density function

Fig. 5 reports the probability density functions of the apparent in-plane bulk moduli K d/t
δ (ω) of the rigidly reinforced

composite for two values of both the VE size (δ = 2, δ = 12) and the inclusion volume fraction ( f I = 15%, f I = 30%). For
comparison purposes, Gaussian distributions with mean E(K d

δ ) and standard deviation σ(K d
δ ) are also depicted in Fig. 5 for

the same values of δ and f I . The same curves are reported in Fig. 6 for the apparent in-plane shear moduli Gd/t
δ (ω) for the

porous material. In both Figs. 5 and 6, all apparent bulk or shear moduli are normalized by their corresponding effective
moduli which are estimated by

K eff = E(K d
δ=30) + E(K t

δ=30)

2
, Geff = E(Gd

δ=30) + E(Gt
δ=30)

2
(21)

As shown in Fig. 5(a), the pdfs of both apparent in-plane bulk moduli K d/t
δ (ω) are rather close to each other, even though,

as expected from the bounding properties (6), the pdf of K d
δ (ω) is slightly shifted to the right. Both pdfs are right-skewed

with a rather long upper tail and no lower tail. It is noted that the VEs Bδ(ω) at δ = 2 mainly consist of a single Voronoï
cell even though there is also in a sizeable quantity some VEs made of the concatenation of two Voronoï cells. For such
two-cell-type VEs, it is noted that their local inclusion volume fractions are usually larger than the global one, i.e. f I , thus
inducing stiffer apparent moduli for reinforced composites than their mean value E(K d/t

δ ). This explains the shape of the
K d

δ (ω) or K t
δ(ω) pdfs where the apparent moduli associated with these two-cell-type VEs contribute to the upper tail of

the distribution while the ones related to one-cell-type VEs compose the mass of the distribution. The shape of the K d/t
δ (ω)

distributions slightly evolves with respect to δ and attains a Gaussian shape from δ = 12, as can be seen in Fig. 5(b) where
both the Gaussian distribution (with mean E(K d

δ ) and standard deviation σ(K d
δ )) and the pdf of K d

δ (ω) nearly coincide.
From δ = 12, the pdfs keep their Gaussian shape when δ is increasing and as expected their mean values converge towards
the effective bulk modulus while their standard deviation tends to zero.

For a larger inclusion volume fraction f I = 30%, the evolutions of the K d/t
δ (ω) pdfs as functions of δ are the same as for

f I = 15% (see Fig. 5(d)) except for small values of δ. Indeed, as shown in Fig. 5(c), at δ = 2 the K d/t
δ (ω) pdfs are already

close to a Gaussian distribution albeit they are still a little right-skewed. The new shape of the distribution is due to the fact
that for f I = 30% most VEs are now composed of two Voronoï cells while a sizeable number of VEs are composed of one or
three even four Voronoï cells. For one-cell-type VEs, the local inclusion volume fractions are most of the time smaller than
f I thus inducing softer apparent moduli than the mean of the whole apparent behavior while the opposite trends occur
for three- or four-cell-type VEs. The one-cell-type VEs and the two-cell-type VEs provide the lower tail and the mass of the
distribution, respectively, while the three- or four-cell-type VEs yield the upper tail. This explains why, for small values of δ,



240 M. Salmi et al. / C. R. Mecanique 340 (2012) 230–246
Fig. 5. Rigidly reinforced composite (c = 104). Probability density functions of the normalized apparent in-plane bulk moduli K d
δ /K eff , K t

δ/K eff and of the
Gaussian distribution associated with K d

δ /K eff for various values of f I and δ.

Fig. 6. Porous material (c = 10−4). Probability density functions of the normalized apparent in-plane shear moduli Gd
δ /Geff , Gt

δ/Geff and of the Gaussian
distribution associated with Gd

δ /Geff for various values of f I and δ.

the K d/t
δ (ω) pdfs are more symmetric and close to a Gaussian distribution for higher volume fractions than for smaller ones.

The same trends as the ones observed in Fig. 5 are found again for the shear moduli pdf of rigidly reinforced materials.
For porous materials, as illustrated in Fig. 6 for the shear modulus, the trends are also similar to the ones observed in

Fig. 5 except that now the shift between the pdfs respectively associated with ADBC or UTBC is much more pronounced
than the one observed for rigidly reinforced composites, consistently with results of Fig. 4.
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Fig. 7. Variations of the statistical measures of the deviation from isotropy �
d/t
iso as functions of δ for a rigidly reinforced composite (a) and a porous

material (b). Continuous lines are relative to f I = 15% while dashed curves are related to f I = 30%.

3.5.3. Deviation from isotropy

The evolutions with respect to δ of the statistical measures �
d/t
iso — defined in Eq. (20) — of the deviation from isotropy

of the apparent behavior are reported for the rigidly reinforced composite and the porous material in Figs. 7(a) and 7(b),
respectively. They are computed for two inclusion or pore volume fractions ( f I = 15%, f I = 30%). For the reinforced com-
posite, as shown in Fig. 7(a), both global measures of the deviation from isotropy quickly converge to zero for both volume
fractions. This implies that almost all individual ω-realizations of the apparent moduli Cd/t

δ (ω) are isotropic for a relatively
small value of the VE size. The same trends are observed for the porous material in Fig. 7(b) albeit the anisotropy of the
individual realization is significantly more pronounced than for the rigidly reinforced composite — i.e. �

d/t
iso are larger for

porous materials than for rigidly reinforced ones. Accordingly, in agreement with the whole results obtained in the previous
sections, the influences of both the BC and individual fluctuations of the microstructure as well as the anisotropy of the
VEs Bδ(ω) on the apparent behavior are stronger for the porous material than for the rigidly reinforced composites. It is
also observed that the apparent behaviors of both the rigidly reinforced composite and the porous material are closer to
an isotropic behavior for f = 15% than for f = 30%. This can be explained by the fact that anisotropy is only induced by
the interaction effects between fibers or pores, which are more pronounced at higher volume fractions. Lastly, note that the
apparent behaviors based on UTBC are significantly more anisotropic than those based on ADBC for porous materials while
the converse holds true for reinforced composites.

4. RVE size

In this section, we present some proposals of RVE criteria based both on the numerical approach introduced in Section 2
and on the fluctuations of the apparent moduli which have been studied in Section 3. For that, we consider two different
ways to define an RVE from a qualitative viewpoint. Inside each of both these RVE categories we then propose RVE criteria
providing quantitative definitions of the RVE size. For the first RVE type, the RVE size is defined as the minimum size
required to evaluate at some accuracy the effective property from apparent properties of VEs of size δ. In the following, this
type of RVE will be referred to as “computational RVE” since all the criteria mentioned in the introduction and belonging
to this type of RVE [19,11,3,10,13,17] make use of computational schemes to determine the effective behavior, and are
focused on the development of methodologies to compute effective properties, without considerations on the conditions
which allow to describe heterogeneous materials with equivalent homogeneous ones. The second viewpoint defines the
RVE as the smallest VE inside which the heterogeneous material can be replaced by a homogeneous equivalent one having
the effective properties in a given structural mechanics problem, without considering statistical expectations over possible
realization of the material microstructure. Implicitly, this second RVE type requires that nearly all realizations of an RVE
BδRVE (ω) should provide an accurate estimate of the effective behavior, and is thus more demanding than the first one for
which only ensemble averages are expected to be close to the effective behavior. In the sequel, the second type of RVE will
be referred to as “equivalent medium-based RVE”.

4.1. Computational RVE based on the independence w.r.t. BC

Recalling the bound status of Z VOR+/−
δ for a modulus Z corresponding either to the in-plane bulk K or shear G modulus,

a very simple RVE criterion can be obtained by considering that the RVE size related to a property Z is reached for a given
accuracy ε when the BC-based fluctuations �Z VOR

δ /Z VOR
δ defined by Eq. (19) satisfy �Z VOR

δ /Z VOR
δ � ε. As already noticed

in Section 3.4, �Z VOR
δ /Z VOR

δ and therefore the RVE criterion are only based on the independence of the effective behavior
with respect to the BC since the effects of the individual fluctuations of the microstructure are removed when performing
ensemble weighted averages of the apparent properties Zd/t

δ (ω) on which relies the definition of �Z VOR
δ /Z VOR

δ . However,
such a definition of the RVE size is too approximative since it gives no information about the accuracy used to compute the
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required ensemble averages and therefore should be slightly modified by making use of the confidence interval (CI) notion.
For a scalar random variable X(ω), the (1 −α)-confidence interval of its ensemble average E(X) derived from n realizations
of X , is given by

CIn1−α

(
E(X)

) =
[

Xn − t(α,n)
Sn√

n
, Xn + t(α,n)

Sn√
n

]
(22)

with Xn = 1
n

∑n
i=1

V δ(ωi)

V δ
X(ωi), S2

n = 1
n−1

∑n
i=1

V δ(ωi)

V δ
(X(ωi) − Xn)2 and where (X(ωi),ωi ∈ Θ,1 � i � n) are the n indepen-

dent realizations of X(ω). The parameter t(α,n) is a positive real number provided by the Student distribution tables. For
a detailed definition of the CI, see [29]. Since, by definition, the probability that E(X) belongs to this CI is equal to 1 − α,
the length t(α,n)Sn√

n
is a probabilistic characterization of the relative accuracy of the estimated expectation value Xn . Starting

from Eq. (17), the definition of the confidence interval implies

P
(

Z−
δ,est � Z eff � Z+

δ,est

)
� 1 − α (23)

where

Z+
δ,est = Zd

δ + �CI(E
(

Zd
δ

))
, Z−

δ,est = (
1/Zt

δ + �CI(1/Zt
δ

))−1
(24)

for Z = K or G . In Eq. (24), �CI(E(X)) denotes the half length of the (1 − α)-confidence interval of E(X), i.e. �CI(E(X)) =
t(α,n)Sn√

n
. To simplify the notations in Eq. (24), the dependence on n of X and on n and α of both �CI(E(X)) and Z±

δ,est are

omitted.
From Eq. (23), a more relevant definition of the RVE size δBC(Z) for a property Z , e.g. the in-plane bulk or shear modulus,

at an accuracy ε is given by

δBC(Z) = min
δ

{
δ,

�Z eff
δ

Z eff
δ

< ε

}
where Z eff

δ = Z+
δ,est + Z−

δ,est

2
, �Z eff

δ = Z+
δ,est − Z−

δ,est

2
(25)

In terms of probabilistic interpretation, due to relations (23) and (25), the probability for the relative error �Z eff
δ /Z eff

δ of the
effective property to be smaller than ε is greater than (1 −α) for δ � δBC . It should be noted that δBC does not only depend
on the considered property Z but also on both accuracies (ε,α), on the number of realizations n as well as on f I and c.

In what follows, for all numerical applications, a 0.99-confidence interval (i.e. α = 0.01) is used. For such an in-
terval, recalling that n = 2000 for 2 � δ < 20 or n = 1000 for 20 � δ � 30, the Student parameter t(α,n) is given
by t(0.01,n) = 2.56 for all n � 100. Numerical applications have been carried out for 8 values of the contrast (c =
10−4,10−2,10−1,0.2,5,10,102,104) and two different inclusion volume fractions ( f I = 15%,30%). Fig. 8 reports the evo-
lutions of the RVE size δBC associated with either the bulk effective modulus (Fig. 8(a)) or the shear effective modulus
(Fig. 8(b)) as functions of the contrast for 3 different values of the accuracy (ε = 1%,2%,5%). In what follows, for the case
where the RVE size is still not reached at δ = 30 for a given contrast and accuracy, δBC is not reported on the plots. Fur-
thermore, when the RVE size is already attained at δ = 2, the value of δBC which is reported on the plot is set to 2. As can
be seen, for a given accuracy ε and inclusion volume fraction f I , the RVE size associated with the effective shear modulus
is always larger than the one associated with the bulk modulus. Furthermore, as expected the maximal values of the RVE
size are obtained for infinite contrasts, i.e. for the rigidly reinforced composite (c = 104) and the porous material (c = 10−4).
However, the RVE size of the porous material is always larger than the one of the rigidly reinforced composite. Lastly, an
increase of the inclusion volume fraction provides an increase of the RVE size which seems to be more significant for fiber-
softened composites (c < 1) than for reinforced ones (c > 1). Similar arguments as those presented in Section 3.5.1 for the
moduli fluctuations can be used to provide more insight about the influence of the inclusion volume fraction on the RVE
size.

Note finally that the results used to generate plots in Fig. 8 could also be used to specify for a given δ the number n of
realizations required to reduce the confidence interval to an expected width, as in [13]. Such a point of view is not detailed
for brevity.

4.2. Equivalent medium-based RVE

This section aims at defining a minimum RVE size from which the heterogeneous material can be replaced by a fictitious
homogeneous one in structural calculations. Such an operation requires to make use of an RVE for which individual fluctu-
ations of the apparent properties remain small. Two variants of this approach are considered. In the simpler first one, only
the individual fluctuations of the apparent properties for both ADBC and UTBC are considered, assuming that the discrep-
ancies between the expectations of these two estimates can be neglected as suggested by results in Figs. 3 and 4(a). For the
second one both individual fluctuations and influence of BC are taken into account, in a more rigorous approach taking into
account to whole pdfs.
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Fig. 8. Variations of the RVE size δBC associated with the bulk effective modulus (a) or the shear effective modulus (b) with respect to the contrast c
for different values of the accuracy ε and the inclusion volume fraction f I . Continuous lines are relative to f I = 15% while dashed curves are related to
f I = 30%.

Fig. 9. Variations of the RVE size δCoV associated with the bulk (a) or shear (b) effective modulus with respect to the contrast c for different values of the
accuracy ε and inclusion volume fraction f I . Continuous lines are relative to f I = 15% while dashed curves are related to f I = 30%.

4.2.1. RVE criterion based on the coefficient of variation
The second proposed RVE criterion has already been used in the literature (e.g. [30]) in combination with other pro-

cedures to compute apparent properties. It consists in determining the minimum VE size from which the CoV of a given
apparent property Zd,t

δ (ω) is smaller than the wanted accuracy ε, namely

δ
d,t
CoV(Z) = min

δ

{
δ,CoV

(
Zd,t

δ

) = σ
(

Zd,t
δ

)
/E

(
Zd,t

δ

)
< ε

}
(26)

To define from δ
d/t
CoV (Z) an RVE criterion which as expected does not depend on the BC, we simply take the supremum on

both BC, i.e. δCoV (Z) = sup{δd
CoV(Z), δt

CoV (Z)}. It should be noted that δCoV (Z) mainly relies on the evolution with respect to
δ of the standard deviation σ(Zδ) even though the definition of the CoV makes use of both first and second moments of the
property Zδ . Indeed, when δ increases the first moment E(Zδ) tends to the effective property which is non-zero. Therefore
its evolution has a small influence on the CoV in comparison to the one of the standard deviation which tends toward
zero. Accordingly, this second criterion can be interpreted as a minimal VE size for which the individual fluctuations of
the apparent properties are small enough. However the individual fluctuations of the apparent properties are only partially
taken into account in this criterion since standard deviations alone are considered.

Fig. 9 reports the evolution with respect to the contrast c of the RVE size δCoV associated either with the in-plane bulk
or shear modulus for different accuracies (ε = 2%,5%) and inclusion volume fractions ( f I = 15%,30%). The same trends as
those found for the evolution of δBC are observed. However, the numerical values of δCoV are larger than those observed
for δBC . These trends show that CoV-based RVE criterion which account for the individual fluctuations of the apparent
properties is more demanding than the BC-based RVE criterion which only includes the BC-based fluctuations. Thus, the
trends already observed in Section 3.5 for rigidly reinforced composites and porous materials hold for any contrast c. Lastly,
it is observed that the RVE size δCoV is less sensitive to the variations of the inclusion volume fraction than the BC-based
RVE criterion δBC , consistently with results in Figs. 3 and 4.

4.2.2. RVE criterion based on all fluctuation sources
The results established by Hazanov and Huet [31] provide a useful framework to design an RVE criterion taking into

account all types of fluctuations. They showed that the apparent moduli tensor Capp
(ω) of a VE Bδ(ω) submitted to any
δ
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Fig. 10. Graphical illustration of the RVE criterion δIF(K ).

Fig. 11. Variations of the RVE size δIF associated with the bulk effective modulus (a) or the shear effective modulus (b) with respect to the contrast c for
different values of the accuracy ε and probability α. Continuous lines are relative to α = 5% while dashed curves are related to α = 10%. f I = 15%.

BC satisfying Hill’s macrohomogeneity condition, is bounded by the apparent moduli tensors Cd
δ (ω) and Ĉ t

δ(ω) = (St
δ(ω))−1

associated with the same VE but submitted to ADBC and UTBC respectively, i.e.

Ĉ t
δ(ω) = (

St
δ(ω)

)−1 � Capp
δ (ω) � Cd

δ (ω) (27)

The projection2 of order relation (27) on J T and KT yields

Ẑ t
δ(ω) � Z app

δ (ω) � Zd
δ (ω) with

{
Z app

δ (ω) = 1
2 J T : Capp

δ (ω), Ẑ t
δ(ω) = 1

2 J T : Ĉ t
δ(ω) for Z = K

Z app
δ (ω) = 1

4 KT : Capp
δ (ω), Ẑ t

δ(ω) = 1
4 KT : Ĉ t

δ(ω) for Z = G
(28)

The moduli Zd
δ (ω) for Z = K or G in Eq. (28) are already defined in Eq. (14). From Eq. (28), the individual fluctuations of

the apparent in-plane moduli Z app
δ (ω) might be bounded by making use of the statistical distribution of its lower Ẑ t

δ(ω)

and upper Zd
δ (ω) bounds which both converge towards the same Dirac distribution at Z eff when δ tends to infinity. Relying

on this remark, a third RVE criterion which ensures small individual fluctuations of the apparent moduli may be obtained
in the following way. As illustrated in Fig. 10, for a given probability α and VE size δ, both values Za(δ,α) and Zb(δ,α) are
defined as follows:

P
(

Ẑ t
δ(ω) � Za(δ,α)

) = 1 − α/2, P
(

Zd
δ (ω) � Zb(δ,α)

) = 1 − α/2 (29)

From the definition (29) of Za(δ,α) and Zb(δ,α), an individual fluctuations (IF) type RVE size δIF(Z) for an accuracy ε might
be defined as

δIF(Z) = min
δ

{
δ,

Zb(δ,α) − Za(δ,α)

Zb(δ,α) + Za(δ,α)
� ε

}
(30)

It is worth noting that the RVE criterion (30) guarantees that at least a proportion (1 −α) of the values of Z app
δ (ω) are such

that |Z app
δ (ω) − Za(δ,α)+Zb(δ,α)

2 | � ε Za(δ,α)+Zb(δ,α)
2 for δ > δIF(Z) thus ensuring small individual fluctuations of the apparent

modulus Z app
δ (ω).

Fig. 11 (resp. Fig. 12) reports the evolutions of the RVE size δIF for both the in-plane bulk and shear moduli as functions of
the contrast at f I = 15% (resp. f I = 30%). Different values of the probability (α = 5%,10%) and accuracy (ε = 5%,7.5%,10%)

2 It can easily be shown that inequalities are conserved after projection.
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Fig. 12. Variations of the RVE size δIF associated with the bulk effective modulus (a) or the shear effective modulus (b) with respect to the contrast c for
different values of the accuracy ε and probability α. Continuous lines are relative to α = 5% while dashed curves are related to α = 10%. f I = 30%.

are considered. It should be noted that the minimum value of the accuracy — namely ε = 5% — has been chosen in order
that RVE sizes lesser than δ = 30 might be attained when the δIF RVE criterion is applied to the rigidly reinforced composite
and porous material. As shown in these figures, the same trends as the ones found for both former RVE criteria δBC , δCoV
are observed (see Sections 4.1 and 4.2.1). However, the values of δIF when compared to the ones found for δBC , δCoV — for
both the same and only shared accuracy (ε = 5%) and the same contrasts and inclusion volume fractions — are significantly
larger. Therefore, the δIF criterion is as expected the most demanding criterion among the three RVE criteria presented in
this paper. Ratios between δIF and δCoV for similar conditions and for ε = 5% are of the order of 2.

5. Conclusion

A statistical study of the apparent properties of random fiber–matrix composites with infinite contrasts has been per-
formed by means of a new numerical procedure established by Salmi et al. in [18]. Relying on the quantities considered
in this study — i.e. CoV(Z),pdf (Z), �Z VOR/Z — and their evolutions with respect to the VE size, three proposals of RVE
size criteria have been presented. The first one, which aims at determining a “computational RVE” size, only allows for the
BC-based fluctuations. A rigorous probabilistic interpretation might be ascribed to this criterion by the incorporation into its
definition of a statistical confidence interval linked to the statistical fluctuations of the apparent behavior and the number
of realizations. The second and third RVE size criteria are more explicitly based on the fluctuations of apparent properties.
The second one only takes into account the individual fluctuations of the microstructure through the coefficient of varia-
tions of the apparent behaviors. The last RVE criterion, designed with the point of view of substituting a heterogeneous
material by a homogeneous equivalent one in structural calculations, accounts for both the whole statistics of the individual
fluctuations through the pdfs of the apparent properties and the BC-based fluctuations since discrepancies between ADBC
and UTBC are considered in its definition (30). Numerical applications of these criteria to random fiber–matrix composites
for two values of the fiber volume fraction ( f I = 15%,30%) and contrasts ranging from c = 10−4 to c = 104 show that the
equivalent medium-based criterion is the most demanding criterion while the BC-based criterion is the less demanding one.
Ratios between RVE sizes defined according to these three definitions for similar composites and accuracy levels can be of
the order of five or even more.

Lastly, although the statistics of the apparent behavior are of primal use to evaluate RVE sizes, they can also be employed
in situations where there is no RVE — e.g. when the material microstructure is not stationary — or when the separation of
scale assumption is not fulfilled. For instance, to illustrate such a point of view, it has been seen in Section 3.5.2 that the
pdfs of the apparent moduli quickly converge towards Gaussian distributions. Such a result may be very interesting when
the convergence towards the effective property occurs for a value of δ, say δRVE , larger than the one, say δpdf , associated with
the convergence of the pdfs of the apparent moduli towards a Gaussian-shaped distribution. Indeed, for such situations, if
the separation of scale assumption is not satisfied for a given structural mechanics problem — in the sense that the RVE
size is too large in comparison with the size of the structure and the characteristic fluctuation lengths of the macroscopic
fields generated in it — it may be possible to solve this problem — e.g., by means of stochastic numerical schemes such
as the Stochastic Finite Elements Method [32] — by making use of VEs of size δpdf for which the distributions of their
apparent properties are Gaussian. Of course, the size δpdf , which is smaller than the RVE size, should also be small enough
in comparison with the size of the structure to enable structural calculations. The values of the expectation and standard
deviation of the apparent moduli distributions, which fully characterize the Gaussian distributions, can be obtained by
performing a statistical study of the apparent properties at δ = δpdf .
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