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We have introduced the concept of interphase and revised classical micromechanics
to predict the effective elastic properties of heterogeneous materials containing nano-
inhomogeneities. An interphase is described as an additional phase between the matrix
and inhomogeneity whose constitutive properties are derived from atomistic simulations
and then incorporated in a micromechanics model to compute effective properties of
nanocomposites. This scale transition approach bridges the gap between discrete atomic
level interactions and continuum mechanics. An advantage of this approach is that it
combines atomistic with continuum models that consider inhomogeneity and interphase
morphology. It thereby enables us to account simultaneously for both the shape and the
anisotropy of a nano-inhomogeneity and interphase at the continuum level when we
compute material’s overall properties. In so doing, it frees us from making any assumptions
about the interface characteristics between matrix and the nano-inhomogeneity.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Much of the recent research devoted to nanoscale science and to the development of various nanomaterials e.g. nanocom-
posites and nano-scale multilayer laminates [1,2] have suggested that they exhibit unusual thermo-mechanical, electrical,
optical and magnetic properties as compared to conventional composites of similar constituents. The size-dependency of
such properties has been mostly investigated in terms of surface/interface energy [3–5]. Such effects, however, are negligi-
ble except when the size range is in tens of nanometers, and if there is significant surface/interface-to-volume ratio. Thus,
due to the large ratio of surface area to volume in nanosized objects, the behavior of surfaces and interfaces becomes a
prominent factor controlling the mechanical properties of nanomaterials. Therefore in the case of nanocomposites the elas-
tic properties of the interface-region (between the matrix and inhomogeneity), characterizing its stress–strain relationship,
become very important and should be given due consideration while formulating their overall properties. There are different
ways in which the properties of the interface can be defined. For example, if one considers an “interface” separating two
otherwise homogeneous phases, the interfacial property may be defined either in terms of an interphase, or by introducing
the concept of a dividing surface. While interface refers to the surface area between two phases, interphase corresponds to
the volume defined by the narrow region sandwiched between the two phases but with different properties.

Considering interface approach, where a single dividing surface is used to separate two homogeneous phases, the inter-
face contribution to the thermodynamic properties is defined as the excess over the values that would obtain if the bulk

* Corresponding author at: G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. Tel.: +1 (404) 385
7104, +33 3 87 20 39 36.

E-mail address: mcherkaoui@me.gatech.edu (M. Cherkaoui).
1631-0721/$ – see front matter © 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.
doi:10.1016/j.crme.2012.02.012

http://dx.doi.org/10.1016/j.crme.2012.02.012
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:mcherkaoui@me.gatech.edu
http://dx.doi.org/10.1016/j.crme.2012.02.012


B. Paliwal et al. / C. R. Mecanique 340 (2012) 296–306 297
phases retained their properties constant up to an imaginary surface (of zero thickness) separating the two phases [3].
Several attempts [4–10] to analyze nanocomposites have been based on this viewpoint. Dingreville in his PhD work [11]
developed the interfacial conditions for the displacement, strain and stress fields across the interface of bicrystalline mate-
rials. His work provided detailed computations of anisotropic interfacial elasticity which fully accounted for both in-plane
and transverse deformations. Earlier, Shenoy [12] provided detailed anisotropic surface elastic constants for several single
crystal fcc metals. More recently, Xia et al. [13] have explicitly incorporated surface elasticity in classical Euler–Bernoulli
and Timoshenko models to study effective elastic modulus and the critical stress of microstructural buckling in nanoporous
materials. Their results on gold nanoporous material reveal that both the elastic modulus and the critical buckling behavior
exhibit a distinct dependence on the characteristic sizes of microstructures e.g. the ligament width. Although Shenoy [12]
and Dingreville [14] formulated complete anisotropic surface/interface elasticity tensors, the solution of the full boundary
value problem incorporating these anisotropic interface effects remains very complex to solve, and could not be analyti-
cally tractable for inhomogeneity-shapes other than spherical (or cylindrical in 2D). However, we note that finite element
methods accounting for surface stress have been developed by various coworkers e.g. [15,16]. These computational meth-
ods with surface stress effect can be useful to analyze the elastic properties of nanostructured materials with complicated
structures. Nonetheless, as pointed out by Brisard et al. [17], in contrast to the 2D surface/interface stiffness derived from
the bulk elasticity tensor of the coated-phase of inhomogeneity, the surface/interface elastic tensor derived from atomistic
simulations [12,14] are not necessarily positive definite. This makes analysis of a problem including surface/interface effects
even more complex, and an inevitable assumption of positive definiteness of the 2D elasticity tensor is made as presented
in Refs. [17,18].

Further, various micromechanical schemes have been proposed by several authors e.g. [19] and very recently Li et al. [1]
developed a multi-interphase model for composites that could be used to characterize nanocomposites for various inclusion
morphology, anisotropy, statistical distributions, etc. Marcadon et al. [20] also developed a model based on morphologically
representative pattern-based approach which explicitly accounts for the interphase between the matrix and inhomogeneities
of various morphologies and patterns. However these models need explicit properties characterizing the interphase volume
between matrix and inclusion which, as mentioned above, cannot be provided by the interface assumption alone in every
case. In models of nanocomposites, the type of interface is usually considered a priori to formulate their overall properties
with imperfect coherent interfaces [5]. In contrast, by separately characterizing the interfacial region as an interphase in
order to compute the effective properties of nanomaterials, we avoid making assumptions regarding the type of interface
between the two constituents (see e.g. [21]). Another advantage of this approach is that it considers inclusion shape at
the continuum level, thereby enabling both the nano-inhomogeneity and nano-interphase morphology to be simultaneously
accounted for in computing the overall composite properties. Nonetheless, as mentioned by Li et al. [1], the interphase
constitutes a main structural feature influencing the overall properties of composites (and particularly nanocomposites).
Its explicit characterization is much more important in multi-phase composites with various inclusion shapes, orientations
and spatial distributions. The nano-inhomogeneity shape is of importance when dealing with nano-platelet and nano-tube
reinforcements. Obviously, in view of the small nature of interphase thickness, the use of atomistic simulations is neces-
sary.

Considering the limitations of the coherent interface models used to characterize nanocomposites, we address the prob-
lems that arise using the interphase approach. In our previous study [22] we developed a scale transition framework
(illustrated in Fig. 1), in which continuum interphase properties were explicitly computed from atomistic simulations which
were then used to obtain the effective properties of the nanocomposite. These properties were obtained using the Eshelbian
micromechanical scheme within the generalized self-consistent method. The methodology makes no assumption regarding
the type of the interface (at continuum scale) between the matrix and the inhomogeneity. Previously, we used the frame-
work to predict the isotropic elastic properties of aluminum with spherically shaped nano-voids. In this work, we extend it
to obtain full anisotropic properties of single crystal aluminum with nano-voids. In this endeavor, the next section briefly
states the problem we address. In Section 3 we describe the approach to determine the effective properties of the associated
interphase from the atomistic simulations of the interfacial region by using Martin’s inner elastic constants method [23].
Section 4 describes the micromechanical framework, drawn from Lipinski et al. [19] to compute the effective properties of
the nanocomposite and finally, Section 5 presents numerical results to illustrate the effectiveness of the model.

2. Statement of the problem

Consider a representative volume element of a composite at the microscopic scale. The composite is considered to be
homogeneous and anisotropic at the macro-continuum level; however it consists of a spatially uniform distribution of
embedded inhomogeneities with nano-scale size distribution as shown in the schematic of Fig. 1. Clearly at the nano-
continuum level the material becomes heterogeneous, consisting of three phases – two bulk phases of the matrix and
inhomogeneity, and one of an interphase. The boundaries of the interphase are chosen to be at locations on either side of
two bulk phases at which the properties do not vary significantly with position. This transition of the properties from one
bulk value to the other may take place over a few layers of atoms [14]. In this article, this transition region is regarded as the
interphase of thickness t which is chosen such that beyond this region the material property resembles the bulk property
of the matrix on one side, and of the inhomogeneity on the other side of the interphase. We can consider the energy of
the atoms compared with the per atom lattice energy to obtain the thickness of the interphase. For example, consider one



298 B. Paliwal et al. / C. R. Mecanique 340 (2012) 296–306
Fig. 1. Schematic of the scale transition framework employed in the work to compute effective elastic properties of nanocomposite from atomistic simula-
tions.

of the simplest cases of a bicrystal with a symmetric tilt GB interface, e.g. GB interface in a Cu bicrystal with [1 0 0] tilt
axis [24]. From the excess energy argument, it could be deduced that the interphase thickness is around 1 nm even for
such simple systems. Real GB structures are more complex than simplified symmetric tilt GBs, let alone other interphases
formed by different materials. Therefore in real materials the interphase thickness (and properties) are most likely more
(and different) than what is expected from these ideal systems. Previous studies to model the behavior of nanocrystalline
materials and nanocomposites that have to incorporate the volume fraction and thickness of the interphase considers this
thickness to be around 1 nm. For example, Benkassem et al. [25] considered the width of the grain boundaries used in
their modeling of nanocrystalline materials to be ∼ 1 nm, and Odegard et al. [26] in their continuum-based model of
Polymer/SiO2 nanocomposite have determined the interphase thickness between the SiO2/Polymer interface to be ∼ 1.2 nm
using molecular simulations. Field quantities in the continuum framework such as stress, strain and strain energy density
may all vary continuously across this region. It is quite apparent that as the size of the inhomogeneity reduces and its
volume fraction increases, the ratio of the interphase to the bulk material volume increases and the interphase, therefore,
exerts significant influence on the bulk macroscopic properties of the composite. Hence, an appropriate characterization of
the interphase is of paramount importance while computing effective properties of the material. We obtain elastic property
of the interphase from the atomistic simulation of the ensemble of atoms in equilibrium, where the ensemble is composed
of the matrix and inhomogeneity phase with the interfacial region in the middle (see the first inset on the top-left in
Fig. 1).

As the total energy of this discrete atomic structure can be written as the sum of energies associated with individual
atoms, the second order elastic constants or the modulus tensor (first order elastic constants are identified with internal
residual stress) can be written as the sum over all the atoms in the ensemble. It therefore enables the formulation of the
elastic modulus associated with individual atoms, the average of which over a volume in the ensemble gives the elastic
modulus of that region. This elastic modulus in general consists of two parts – the homogeneous part and the relaxation
part. The homogeneous part can be evaluated using the method of homogeneous deformations [27]; however, the latter
depends on the inner displacements of individual atoms as well. When a macroscopically uniform strain is applied to an
ensemble consisting of non-equivalent or non-centrosymmetric atoms in crystalline systems (which are present in the in-
terphase), the displacements of these atoms are different due to internal relaxation [14,23,27] compared to homogeneous
deformation of equivalent atoms. Therefore, the total energy of the ensemble is dependent not only on the macroscopic
strain, but also on the inner-relaxation of these atoms, which further affects the elastic modulus; the first order elastic con-
stants or internal stress, however, remains unaffected. Hence, to compute effective elastic modulus of the interphase from
atomistic simulations, we need to compute inner-relaxation associated with individual atoms under macroscopic uniform
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loading. In this paper, we have adopted the methodology proposed by Martin [23] to compute internal displacement of every
non-equivalent atom. These internal displacements are determined by using the usual equilibrium equations in which every
atom in the ensemble under external deformation must experience zero force. Details of the approach are provided in the
earlier work [22] which we briefly describe in the next section. This methodology was also adopted by Alber et al. [28] for
a bicrystalline grain boundary type interface. They demonstrated that atoms near the interface display significantly different
elastic properties compared to those in the bulk.

Note that if the composite contains nano-scale voids instead of nano-inhomogeneities, the region near the surface of the
void, where the average of properties over a few atomic layers may be different from the bulk properties, is termed the
transition phase; similar to surface/interphase, transition-phase/interphase are used interchangeably according to the type
of the composite referred to. Once the property of the interphase is computed, it is then used in the 4-phase generalized
self-consistent method by Lipinski et al. [19] to compute overall nanocomposite properties.

3. Interphase property

To evaluate the elastic properties of an interphase from a discrete medium viewpoint, we consider a given interface
between two materials A and B (see second insert on the top in the Fig. 1). Using the methodology described in [22],
the atomistic elastic constant for the interphase is obtained as:

Cijkl = 1

Ω

LN∑
p=1

(
Ω pC0p

i jkl −
LN∑

q=1

G pq
mn · D p

mij · Dq
nkl

)
(1)

here, LN is number of sublattices, Ω p is the volume of sublattice p (Ω = ∑LN
p=1 Ω p and Ω p = ∑pN

α=p1
Ω(α); here p1, . . . , pN

is the first and the last atom, all equivalent, associated with the sublattice p) and C0p
i jkl is the elastic constant of sub-

lattice p(α) without considering internal relaxation, such that C0
i jkl = 1

Ω

∑LN
p=1 Ω p C0p

i jkl and C0p
i jkl = 1

Ω p

∑pN
α=p1

Ω(α)C0α
i jkl .

For more details regarding the definition of G pq
mn , D p

mij , LN , etc. refer to [22].
Note that it is highly unlikely that the interphase between the matrix and the inhomogeneity would exhibit centrosym-

metry that is similar to that of the bulk. As a consequence, its elasticity tensor, computed from the stated methodology,
is not only different but could also display general anisotropy with 21 independent constants. Duan et al. [29], in their for-
mulation of stress/strain concentration tensors for nanocomposites incorporating interface effects, have used elastic isotropic
constitutive surface/interface description. Similar to Sharma et al. [4] they have noted that the interface elastic constants
(similarly interphase constants for the present case) are functions of the complete set of crystallographic parameters of the
surface/interface. However, computing stresses using full anisotropic elastic description of the interface is very complicated
and certainly outweigh its usefulness. Sharma et al. [4] and Duan et al. [29] in their analysis of the effective properties of
aluminum crystal with nano-voids have used two sets of isotropic surface properties of aluminum. Treatment of the prob-
lem taking general surface elastic properties, which are anisotropic can be very complicated and therefore, has not been
explored in their analysis. We also note that in most nanocomposites, it is highly improbable if not impossible to have in-
terphases (either naturally occurring additional phase near the interfacial region of matrix and inhomogeneities, or as a thin
coating designed in composites with coated inhomogeneities) present in a particular crystallographic orientations. They gen-
erally tend to be randomly oriented. Although, studying randomly oriented anisotropic interphase is not strictly equivalent
to studying equivalent isotropic interphase, orientation study (random or in specific distribution) adds to high degree of
complexity which outweighs the usefulness.

In the present work, we have utilized the simplest possible Voigt–Reuss–Hill (VRH) approximation [30] to obtain isotropic
interphase properties from general anisotropic properties. Obviously, one can use other averaging schemes or even one of
several homogenization methods, e.g. self-consistent techniques to obtain average isotropic properties of the aggregates.
But again one has to choose among various approximations, and it will not change the qualitative features of the predictions.
Bhattachariya et al. [31], for example, have used the VRH approximation in their analysis of compressive brittle failure of
several polycrystalline brittle ceramics and rocks, and the results of their model displayed excellent agreement with the
experimental data. The average shear and bulk modulus of the interphase obtained using VRH approximation are used in
the micromechanical framework described in the next section.

4. Effective properties of nanocomposites

Within the generalised self-consistent framework described in [22], the effective properties of the composite are given by

Ceff = c(3) + φ1
(
c(1) − c(3)

) : A(1) + φ2
(
c(2) − c(3)

) : A(2) (2)

where phases 1, 2, 3, 4 are the inhomogeneity, interphase, matrix and equivalent homogenized medium, respectively. The in-
homogeneity, interphase and matrix are characterized by equatorial radii (a1 � a2 � a3) by (a(1)

1 ,a(1)
2 ,a(1)

3 ), (a(2)
1 ,a(2)

2 ,a(2)
3 )

and (a(3)
,a(3)

,a(3)
), respectively and elastic tensors by c(1) , c(2) , and c(3) . The unknown effective elastic constant tensor
1 2 3
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of equivalent medium is represented by Ceff . The volume fraction of inhomogeneity, interphase and matrix are given as
φ1 = a(1)

1 a(1)
2 a(1)

3 /a(3)
1 a(3)

2 a(3)
3 , φ2 = (a(2)

1 a(2)
2 a(2)

3 − a(1)
1 a(1)

2 a(1)
3 )/a(3)

1 a(3)
2 a(3)

3 , and φ3 = 1 − φ1 − φ2, respectively, utilizing the
framework from Lipinski et al. [19], where A(1) and A(2) are strain concentration tensors relating average strains of the
inhomogeneity and the interphase, respectively, to the applied macroscopic strain. If we denote Seff

i jkl , S(2)

i jkl , and S(3)

i jkl , as Es-
helby’s tensor for ellipsoidal inclusion for effective medium, interphase and matrix, respectively, we can write these tensors
in the component form as

A(1)

i jkl =
[
φ1

(
Ii jkl + Seff

i jmn · [Ceff −1]
mnpq · (c(1)

pqkl − Ceff
pqkl

))
+ φ2

(
Ii jkl + Seff

i jmn · [Ceff −1]
mnpq

) · (c(2)
pqrs − Ceff

pqrs
) · ω(2/1)

rskl

+ φ3
(

Ii jkl + Seff
i jmn · [Ceff −1]

mnpq

) · (c(3)
pqrs − Ceff

pqrs
)

×
(

φ1

φ1 + φ2
ω

(3/1)

rskl + φ2

φ1 + φ2
ω

(3/2)
rsv w · ω(2/1)

v wkl

)]−1

and

A(2)

i jkl = ω
(2/1)

i jmn · A(1)

mnkl (3)

Here Ii jkl is the 4th order unit tensor 1
2 (δik · δ jl + δil · δ jk).

Note that Eshelby’s tensor is a function of the elastic properties of the solid (in this case they are effective medium,
interphase and matrix for Seff

i jkl , S(2)

i jkl , and S(3)

i jkl , respectively) and the shape of the inhomogeneity. In the GSCM model,
the inhomogeneity, interphase and the effective medium are considered to be homothetic, and therefore their shape, i.e. the
ratio of semi-axes, remains the same. The effect of the shape of the inhomogeneity on the overall properties is reflected by
virtue of Eshelby’s tensor in the formulation.

For an anisotropic solid, Eshelby’s tensor has to be computed numerically. From [32], Eshelby’s tensor S is given by the
following surface integral, parameterized on the surface of the unit sphere

Sijkl = 1

8π
Cmnkl

1∫
−1

dχ3

2π∫
0

[
Gimjn(ξ) + G jmin(ξ)

]
dω

where

Gijkl(ξ) = ξkξl Ni j(ξ)/D(ξ) = ξkξl
(

Kkl(ξ)
)−1

ξi = χi/ai; χ1 =
√(

1 − χ2
3

)
cosω; χ2 =

√(
1 − χ2

3

)
sinω;

D(ξ) = εmnl Km1 Kn2 Kl3; Nij(ξ) − 1

2
εiklε jmn Kkm Kln; Kik = Sijklξ jξl (4)

with εi jk being the permutation tensor and Cijkl the components of stiffness tensor. In some special cases e.g. for isotropic
and transversely isotropic materials and for different values of ai these equations can be obtained in closed form, and
review of these results can be found in [32]. For the case of fully anisotropic material, Sijkl is evaluated using the following
Gaussian quadrature formula

Sijkl = 1

8π

M∑
p=1

M∑
q=1

Cmnkl
[
Gimjn(ωq,χ3p) + G jmin(ωq,χ3p)

]
W pq (5)

where M refer to the Gaussian points used for integration (which is chosen to be 48 in this study) over χ3 and ω, and W pq

are the Gaussian weights.
Finally, tensors ω(2/1) , ω(3/1) and ω(3/2) are given as follows,

ω
(2/1)

i jkl = Ii jkl − S(2)
i jmn · [c(2)−1]

mnpq · (c(2)

pqkl − c(1)

pqkl

)
ω

(3/1)

i jkl = Ii jkl − S(3)
i jmn · [c(3)−1]

mnpq · (c(3)

pqkl − c(1)

pqkl

)
ω

(3/2)

i jkl = Ii jkl − S(3)
i jmn · [c(3)−1]

mnpq · (c(3)

pqkl − c(2)

pqkl

)
(6)

Eqs. (2)–(6) present the complete sets of equations required to compute the effective elastic properties of nanocomposites
for the anisotropic case of matrix, interphase and inclusion (and for their various morphologies as well). In the next section
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Table 1
Properties of the constituents used in the 4-phase GSCM model.

Inhomogeneity (void) κ = 0.0 μ = 0.0

Matrix C11 = 111.4 GPa C12 = 60.7 GPa C44 = 31.8 GPa

Interphase Surface A (111) Surface B (100)

t1 t2 t1 t2

κ = 82.1 GPa κ = 80.4 GPa κ = 75.5 GPa κ = 76.4 GPa

μ = 29.4 GPa μ = 29.3 GPa μ = 23.9 GPa μ = 26.1 GPa

we present results for single crystal aluminum matrix containing nano-voids. We note that there are various theoretical
frameworks developed for composites (with nano- and micron-scaled inhomogeneities) as mentioned in the previous sec-
tion; however, there are few numerical results on nanocomposites other than for the case of an isotropic material with
spherical nano-voids, and most simulations are conducted on aluminum with isotropic bulk and surface properties (see e.g.
Duan et al. [29,33] and more recently Mogilevskaya et al. [9]). Chen et al. [34] and very recently, Mogilevskaya et al. [35]
considered the case of transversely isotropic composites with reinforced periodic arrays of fibers extended to infinity in
the transverse direction (2D plane strain case). They presented results for effective properties of composites with cylindri-
cal cavities including the surface effects [34,35] and cylindrical fibres [35] (in 2D formalism, with isotropic properties of
the constituents). Quang et al. [10] developed a framework for isotropic thermoelastic properties of nanocomposites with
spherical inhomogeneities. In their model, the matrix and inhomogeneities are considered spherically transversely isotropic,
and their formalism particularly catered to nanoparticles (spherically shaped) in semi-crystalline polymer matrix. They also
considered the case of spherical nano-voids in polymer matrix to demonstrate the predictive capability of their model. How-
ever, due to the lack of appropriate surface properties needed for their computations, they used aluminum surface elastic
properties in their analysis of polymer matrix with nano-voids without providing sound justifications. In the present work,
we demonstrate the anisotropic elastic properties results on single crystal aluminum matrix with nano-voids. Most of the
previously published work is conducted on nanoporous composites with isotropic matrix and interface elastic properties e.g.
on nanoporous Al [5]. Here, we present results on effective elastic properties of similar nanoporous Al but by considering
the Al matrix to be anisotropic.

Using the framework developed in [22], elastic properties of the transition phase required for predicting the effective
properties of aluminum with nano-voids are given as

C ijkl = 1

V 0

∂2U

∂εi j∂εkl

∣∣∣
εi j=0

= Cijkl + 1

t
Q ijkl (7)

where the non-zero values of Q ijkl are given as

Q ijkl = Γ
(1)
αβκλ (i, j,k, l = 1,2) (8)

Here Γ represents surface elastic properties. Eqs. (7) and (8) indicate that for a bulk crystal with a planar surface, the ef-
fective properties of the transition region depend both on the surface elastic properties and the thickness of the region.

5. Results and discussions

In this section, we present numerical results on single crystal aluminum matrix with nano-voids. The bulk elastic con-
stants of aluminum are obtained from atomistic simulation using LAMMPS molecular dynamics code with EAM interatomic
potential provided by Mishin et al. [36]. Using the Voight notation in 〈1 0 0〉 crystallographic orientation, c11, c12, and c44
are 111.4 GPa, 60.7 GPa, and 31.8 GPa, respectively. The surface properties of the {1 0 0} and {1 1 1} aluminum surfaces are
obtained from Miller et al. [37] and Sharma et al. [38] data from atomistic simulations.

• Surface A – {1 1 1} orientation: κs = 6.466 N/m, μs = −0.3755 N/m
• Surface B – {1 0 0} orientation: κs = −2.7285 N/m, μs = −6.2178 N/m

As stated previously, these surfaces are isotropic, so the surface stiffness tensor can be written in terms of κs and μs as
follows [3]:

Γ
(1)
αβκλ = κsδαβδκλ + μs(δακδβλ + δαλδβκ − δαβδκλ) (9)

Therefore, using Eq. (9) for two surfaces – A and B – along with the bulk Al elastic properties in their respective crystallo-
graphic orientations, and putting them in Eqs. (2)–(3), we obtain the elastic constants of the transition phase surrounding
the void as a function of its thickness t . For parametric evaluation, we will present results for two values of t: t1 = 3(a/2),
and t2 = 5(a/2); here a is the lattice constant of Al which is 4.05 Å. This results in the thickness of transition phase to be
t1 = 0.6075 nm and t2 = 1.0125 nm, which are within the typical range [5]. An atom lying beyond this distance into the
bulk from the surface typically does not experience the surface effect. We then follow the VRH averaging scheme to obtain
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Fig. 2. Schematic of the multilayer metallic nanocomposite displaying interfacial regions at the atomic scale. Every non-equivalent atom is associated with
a sublattice – 1 through 15; collection of sublattices near an interface forms the interphase as shown in the figure.

Fig. 3. Plots of normalized elastic properties as a function of void radius for A type transition phase.

the effective orientation-average isotropic properties (bulk and shear modulus) of the transition phase. Table 1 shows the
elastic properties of the constituents used to compute the overall properties of the heterogeneous material within the GSCM
framework. Note that the transition phase thickness is an intrinsic length scale in the system apart from the nano scale
voids. As mentioned by Duan et al. [5], a material response containing nano-inhomogeneities is governed by the ratios of
such intrinsic lengths to the characteristic length of the nano-size feature in the material, e.g., the radius of the nano-voids
in the present case. In the present case changing the thickness of the transition phase around these nano-voids would alter
its volume fraction, which is a function of the ratio of its thickness to void radius for a given void volume fraction. This in
turn could influence the effective properties. This is relevant not only for the present case of heterogeneous materials with
nano-voids, but also for nanocomposites with inhomogeneities of various morphologies. However, for the case of nano-voids
note that the properties of the phase depend on its thickness as well.
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Fig. 4. Plots of normalized elastic properties as a function of void radius for B type transition phase.

(a) (b)

Fig. 5. Plots of normalized elastic properties with the void radius in which the properties of the transition phase are not allowed to vary with its thickness.
Note the stronger effect of thicker transition phases (thickness t2) on the variation of bulk modulus with the void size compared with those shown in
Figs. 3 and 4.

Figs. 3 to 5 present results obtained for spherical nano-voids in aluminum matrix for surfaces A and B, and for transition
phase thickness t1 and t2. Elastic constants shown in every plot are normalized by their respective elastic constants of
nanoporous composites without surface effects. As the nano-voids are spherically shaped, their random distribution does
not alter the anisotropy (which is cubic) of the single crystal. Figs. 2 and 3 show the variation of normalized C11, C12
and C44 as a function of void radius for 30% void volume fraction with transition phases corresponding to A and B type
surfaces, respectively. It is apparent from both plots that elastic constants C11, C12 and C44 are profoundly influenced by
the surface effect (C11 and C44 more than C12) and are dependent on the void radius r1 for up to about 50 nm (normalized
C11 = C12 = C44 = 1 represent classical results without the surface effect and are independent of the radius r1). We note
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(a)

(b)

Fig. 6. Bar-plots of normalized elastic constants of single crystal Al with (a) spheroidal shaped nano-voids, and (b) ellipsoidal shaped nano-voids. The voids
volume fraction is 0.3 with 1.0125 nm of surface type A interphase thickness.

that the thickness of the interphase (parameterized as t1 and t2) governs its volume fraction for a given void size, and this
in turn governs the properties of the nanocomposite. However, for the case of heterogeneous materials with nano-voids,
the properties of the transition phase are affected by its thickness as well for a given surface orientation; the difference
in the bulk and the transition phase properties becomes less as its thickness increases. Therefore, change in the properties
tends to suppress the effect due to increase in the thickness of the transition phase. Hence, the effect of change of transition
phase thickness is not as profound as expected in these cases. This is clearly observed in Fig. 5(a) and (b) which show the
plot of normalized elastic constants of the material for A and B type transition phase whose properties are kept fixed i.e.
independent of the thickness. Increasing the thickness affects the response of the material for both A and B type transition
phase (much more profound for B type than for A type transition phase), compared with what is observed in Figs. 3 and 4.
Finally, Fig. 6 shows a bar-plot of normalized elastic constants of single crystal Al containing spheroidal-shaped nano-
voids with A1 = A2 �= A3 (Fig. 6(a)) and ellipsoidal-shaped nano-voids with A1 �= A2 �= A3 (Fig. 6(b)). Volume fraction for
both cases is 0.3, and normalization is with respect to their respective elastic constants of nanoporous composites without
surface effects.

6. Conclusion

An interphase model for nanocomposites has been developed that bridges the gap between discrete systems (atomic level
interactions) and continuum mechanics. Results from the atomistic simulations to obtain the continuum elastic properties
of the interphase, are used in the Eshelbian micromechanical scheme within the generalized self-consistent method to
obtain effective properties of nanocomposite. Contrary to the previous modeling schemes that utilize interface approach, the
present methodology deals with a more general case of anisotropic elastic behavior with ellipsoidal inhomogeneities without
making any assumptions regarding the type of interface between the two constituents. Simulations were conducted on single
crystal Al with spherical nano-voids for two surfaces with different crystallographic orientations, and two transition phase
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thickness, and also on a spheroidal and on an ellipsoidal shaped nano-voids in single crystal Al. Results clearly display
the effect of the two types of surfaces on the effective bulk elastic property of the material particularly as the void size
decreases as has been observed before [5,22]. To the best of authors’ knowledge, such anisotropic elastic constants of nano-
porous single crystal materials (or any other nanocomposites) by considering the anisotropic properties of the constituents
have not been published before.
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