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The Bending-Gradient plate theory originally presented in Lebée and Sab (International
Journal of Solids and Structures 48 (2011) 2878–2888) is applied to cellular sandwich
panels. This theory is the extension of the Reissner–Mindlin theory to heterogeneous plates.
Its application clarifies common assumptions made in sandwich theory. It also enables to
define a direct homogenization scheme for deriving the shear forces stiffness of sandwich
panels. Finally, the conventional bounds used for estimating sandwich panels stiffnesses
are justified.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Sandwich panels are well known for their structural efficiency. They are made of a light and thick core which is glued
between two stiff skins. Usually the skins are quite dense and made of material with high mechanical properties whereas
the core is lighter and achieves a compromise between weight and mechanical properties. Many types of core are currently
used and the field is still innovative today. One can distinguish two main categories: homogeneous cores (including foams)
and cellular cores such as honeycomb, truss cores [1] and folded cores [2]. It is commonly accepted that mainly the skins
contribute to the flexural stiffness and that the core mostly affects the shear forces stiffness of the sandwich panel. This
is because the skins are put under traction and compression and the core is not really loaded when bending the sand-
wich panel. Conversely, the transverse shear related to shear forces is carried by the core since the skins are thin. In this
very simple analysis, two assumptions lie: a contrast assumption (the skins are “much stiffer” than the core) and a “thin
skins” assumption. It turns out that going further than this very intuitive description raised a certain amount of difficulties
especially regarding the transverse shear behavior of cellular sandwich panels. Though, the shear deflection cannot be ne-
glected in sandwich panel design because the core is rather soft and an accurate knowledge of the shear forces stiffness is
necessary.

Thorough reviews of the mechanical behavior of sandwich panels already exist [3–5]. A large variety of models was
suggested in order to provide satisfying description of their complex behavior. The simplest one is the Reissner–Mindlin
model [6,7] which simply takes into account deflection related to transverse shear. This model requires the derivation of the
shear forces stiffness tensor1 F∼ = (Fαβ) which links the shear forces Q− = (Q α) to the shear strain γ− = (γα) through the

constitutive equation: Q− = F∼ ·γ− . Because the derivation of the shear forces stiffness tensor in terms of the local constitutive

elastic properties is not fully consensual, the Reissner–Mindlin model applied to sandwich panels is not completely accepted.
Recently, Lebée and Sab [8,9] derived a new plate model, the Bending-Gradient plate model. It is the extension of the
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Fig. 1. Cellular sandwich panel unit-cell.

classical Reissner–Mindlin model to heterogeneous plates. In this paper, we apply the Bending-Gradient plate theory to a
sandwich panel in order to put into perspective previous works and provide efficient tools for estimating the shear forces
stiffness of cellular sandwich panels.

The article is organized as follows. First, a non-exhaustive bibliography is provided in order to point out several dif-
ficulties encountered when deriving sandwich panels shear forces stiffness (Section 2). Then, the Bending-Gradient plate
theory and its homogenization scheme are briefly summarized in Section 3. This scheme is separated in two steps. First the
Kirchhoff–Love stiffnesses are derived and then the transverse shear behavior of the plate is determined. Thus, in Section 4,
the in-plane behavior of sandwich panels is derived and the contrast assumption is introduced. Then, in Section 5, the
application of the transverse shear auxiliary problem reveals that the actual shear behavior of a sandwich panel under the
contrast assumption is a Reissner–Mindlin one. This enables the justification of already known bounds for the shear forces
stiffness. Finally, a discussion on the assumptions commonly made with sandwich panels is provided in Section 6.

2. Questions raised by sandwich panels shear forces stiffness

We consider sandwich panels made of two identical and homogeneous skins of thickness ts and a core of thickness tc

which can be either homogeneous or periodically heterogeneous (Fig. 1). The overall thickness of the sandwich panel is
h = tc + 2ts . The present analysis is done in the framework of linearized elasticity. The sandwich panel reference frame
is (ê−1, ê−2, ê−3) where ê−3 is the out-of-plane direction and ŷ− = (y1, y2, y3) denotes the local coordinates of the unit-cell.

The skins 3D elasticity stiffness tensor is Ĉ≈
s = (C s

i jkl) and the core stiffness is Ĉ≈
c( ŷ−). We assume also that the skins and

the core constitutive material (when the latter is homogeneous) follows a local symmetry with respect to (y1, y2) plane
(Cα333 = Cαβγ 3 = 0, monoclinic symmetry). The transverse shear stiffness tensor then is written as: G∼

s = (Gs
αβ) = (C s

α3β3)

and G∼
c = (Gc

αβ) = (Cc
α3β3).

Two additional assumptions are commonly made when considering sandwich panels. First, a contrast assumption enables
to neglect the contribution of the core to the bending stiffness. It is often formulated as: tc Gc � ts Es (E denotes Young’s
modulus) in the case of homogeneous core and isotropic materials (i.e. Gc

αβ = Gcδαβ where δαβ is Kronecker’s symbol). The
second assumption is that the thickness of the skins is very small with respect to the thickness of the core so that the
contribution of the skins to the overall shear forces stiffness can be neglected: ts � tc . Actually, this may be antagonistic
with the contrast assumption and many authors tried to relax this assumption as will be illustrated in the following.

2.1. The case of homogeneous cores

The concept of sandwich panel is rather old but most of the theoretical work started with the sandwich panel including
balsa core used in the De Havilland Mosquito. Several contributions emerged just after the second world war (see [3] for
details) but the simplest suggestion came from Reissner [10] for isotropic sandwich panel who assumed both tc Gc � ts Es

and ts � tc :

Fαβ = tc Gcδαβ

Later, Reissner [11] assumed uniform shear strain in the core and rigid skins. He also chose ad hoc bounds for integration
through the thickness and obtained:

F∼ = (tc + ts)G∼
c =

(
1 + ts

)
tc G∼

c

tc
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This formula is still used in practice today [12]. Allen [3] based on previous work used the same kinematic assumptions
without changing the integration through the thickness and suggested:

F∼ = (tc + ts)
2

tc
G∼

c ≈
(

1 + 2
ts

tc

)
tc G∼

c

Additionally, Kelsey et al. [13] suggested, with neither justification nor reference found by the authors, the following shear
forces stiffness:

F∼ = tc

k2
s

G∼
c ≈

(
1 + 2

ts

tc

)
tc G∼

c, where ks = 3

2

tc(h2 − t2
c )

h3 − t3
c

(1)

All these suggestions can be written as F∼ = A S G∼
c where A S is similar to the shear area for beams. When ts = 0, A S = tc

in all cases. It seems that when ts is not negligible the authors tried to take into account the larger “lever effect” of the
skins on the core (the centroids distance between skins is tc + ts). However, the formulas are not fully consistent at first
order.

Since only G∼
c is involved in these formulas, the denomination “transverse shear stiffness” for F∼ is rather common

with sandwich panels. Because sandwich panels are heterogeneous, this simplification is actually meaningless and even
sometimes misleading. In the present work, a clear distinction is made between the transverse shear stiffness G∼ which
refers to a local property of the constitutive material and the shear forces stiffness F∼ which refers to the structural stiffness:
Q− = F∼ ·γ− . This remark leads to the question of the contribution of the skins to the shear forces stiffness. Is it only the

geometrical effect of the centroid or should G∼
s be part of the definition of F∼ ?

Actually, sandwich panels with homogeneous core can be considered as a simpler case of laminated plates. These plates
are usually made of highly anisotropic layers and a large literature is dedicated to their complex transverse shear behavior
[14–17]. Consequently, some apply directly the simplest related theory (First-Order Shear Deformation Theory) and assume
uniform shear strain in both core and skins with a shear correction factor taken as 1. This leads to: F∼ = tc G∼

c +2ts G∼
s [18,19].

Here, the stiffness of the skins affects the shear forces stiffness. Clearly this suggestion is not satisfying because when G∼
c

becomes really small, one would expect the shear forces stiffness going to 0 since a sandwich panel without core is not
a structure. Rigorously, applying FOSDT necessitates the derivation of shear correction factors. However the derivation of
such factors seems still under question. For instance, Birman and Bert [20] compared several approaches which give almost
incompatible results especially when considering limit cases. Thus, if one wants to apply FOSDT, some clarifications are
needed.

We conclude that, the contribution of the skins to the shear forces stiffness is controversial in the case of homogeneous
cores.

2.2. The case of cellular cores

When dealing with cellular sandwich panels, the most common approach consists in finding a homogenized behavior for
the core and using it in the formulas discussed in the previous section. Forgetting about the difficulties already pointed out,
the question is now to find G∼

c,eff the effective transverse shear stiffness of the core. A first guess is to use classical results
from 3D homogenization of a periodic medium ([21] among others). This may be possible for honeycomb cores but more
complex geometries such as truss or folded cores are not periodic in Direction 3. Thus, alternative approaches are needed.

Based on the intuition that the skins put the core into transverse shear because of their relative in-plane displacement
Kelsey et al. [13] suggested to apply uniform displacement (resp. force) on the core replacing the action of the skins, in
order to derive an upper (resp. lower) bound of the transverse shear stiffness of the core. This effective stiffness for the
core, combined with Eq. (1) leads to the shear forces stiffness. Although it is not fully justified (or lacking references), this
method was broadly applied on honeycomb-like geometries ([22–24] among others). It was found rather efficient and even
enabled the derivation of exact solutions in some configurations. However, for other core geometries, this approach yields
loose bounds because it precludes any possible interaction between the skins and the core.

Two phenomena were identified and often mixed under the name of “skin effect”. First, there is a kinematic incompati-
bility between the rigid skins and the strain in the core. Second, the skins can be distorted by the core.

The kinematic incompatibility was first considered by Penzien and Didriksson [25]. Later, Grediac [26] derived the bounds
using finite elements releasing the assumption of piecewise uniform fields in the cellular core. It was also followed by sev-
eral authors who gave a more detailed analysis of the incompatibility [27–29]. However, these works are specifically tailored
for honeycomb geometries and assume fully rigid skins. Hence, they do not consider the out-of-plane skins distortion.

The skins distortion was pointed out in several works [30–33] and is the main cause of a poor estimation of shear forces
stiffness even when refining the bounds from Kelsey et al. [13]. In order to take into account this effect, two suggestions
were made.

First, comparison with the full 3D model of the sandwich panel under cylindrical bending were performed [31,34] and
shear force stiffness was chosen to fit the plate model to the full simulation. The merit of such an approach is that it takes
the sandwich panel as a whole and there is no surrogate for the core. However, it presents several limitations, the first
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being the high computational cost. There is also an arbitrary choice for the plate boundary problem to be solved (here a
cylindrical bending).

Second, homogenization approaches were suggested. First, Shi and Tong [30] suggested to apply a uniform transverse
shear strain on average in the core (as done in periodic homogenization schemes) to which are welded the skins. This
enabled them to bring out the skins own flexural stiffness influence on the actual shear forces stiffness of honeycombs.
Their approach was applied to several honeycomb geometries by Hohe [35] who calls it the direct homogenization method.
Even if this approach is based on an acute intuition of the influence of the skins on the core, it remains limited to sandwich
panel with thin skins and no theoretical justification was provided. Finally, Cecchi and Sab [36] suggested an extension
to periodic plates of the method from Whitney [37] for deriving transverse shear distribution for laminated plates. This
method is valid for any type of periodic plate (not only sandwich panels) and assumes that the plate is in cylindrical
bending configuration when identifying shear forces stiffness. In a recent work from Lebée and Sab [8], it was demonstrated
that this last assumption is too restrictive when dealing with heterogeneous plates such as laminated plates and that it is
necessary to use a new and more general plate model: the Bending-Gradient model.

The Bending-Gradient theory was applied to a sandwich panel including a folded core in Lebée and Sab [33]. It turned
out that the transverse shear behavior of the plate was mostly of Reissner–Mindlin type for a wide variety of configurations.
The Bending-Gradient theory is a rather complex homogenization scheme to implement (see next section). Hence, starting
from this theory, it is interesting to look for a simpler and direct homogenization scheme dedicated to sandwich panel
which leads to the classical Reissner–Mindlin model.

3. The Bending-Gradient model and its homogenization scheme

Full details about the Bending-Gradient plate theory are provided in [8,33,38]. In this section we recall the main features
of this plate theory and the related homogenization scheme.

3.1. Summary of the Bending-Gradient plate model

We consider a linear elastic plate which mid-plane is the 2D domain ω ⊂ R
2. Cartesian coordinates (x1, x2, x3) in the

reference frame (ê−1, ê−2, ê−3) are used to describe macroscopic fields. At this stage, the microstructure of the plate is not
specified.

The membrane stress Nαβ , the bending moment Mαβ , and shear forces Q α are the usual generalized stresses for plates.
Both N∼ and M∼ follow the classical symmetry of stress tensors: Nαβ = Nβα . Moreover, we introduce an additional static
unknown: the gradient of the bending moment Rαβγ = Mαβ,γ . The 2D third-order tensor R

�
complies with the following

symmetry: Rαβγ = Rβαγ . It is possible to derive shear forces Q− from R
�

with: Q α = Rαββ . This can be rewritten Q− = i≈ ∴ R
�

where the triple contraction product ∴ is defined as iαβγ δ Rδγ β and i≈ is the identity for in-plane elasticity tensors (iαβγ δ =
1
2 (δαγ δβδ + δαδδβγ )).

The main difference between Reissner–Mindlin and Bending-Gradient plate theories is that the Bending-Gradient plate
theory enables the distinction between each component of the gradient of the bending moment whereas they are mixed
into the shear forces with the Reissner–Mindlin theory. In the case of highly anisotropic laminated plates this distinction is
critical for deriving good estimate of the deflection and local transverse shear distribution through the thickness [38].

The full bending gradient R
�

has six components whereas Q− has two components. Thus, using the full bending gradient
as static unknown introduces four additional static unknowns. More precisely: R111 and R222 are respectively the cylindrical
bending part of shear forces Q 1 and Q 2, R121 and R122 are respectively the torsion part of these shear forces and R112 and
R221 are linked to strictly self-equilibrated stresses. Equilibrium equations and stress boundary conditions are detailed in
Appendix A.

Generalized stresses N∼ , M∼ , and R
�

work respectively with the associated strain variables: eαβ , the conventional membrane
strain, χαβ the curvature and Γαβγ the third-order tensor related to generalized shear strains. These strain fields must
comply with the compatibility conditions and boundary conditions detailed in Appendix A.

Finally, assuming uncoupling between (N∼ , M∼ ) and R
�

(see next section), the Bending-Gradient plate constitutive equations
are written as:⎧⎪⎪⎨

⎪⎪⎩
N∼ = A≈ : e∼ + B≈ : χ

∼

M∼ = t B≈ : e∼ + D≈ : χ
∼

Γ
�

= f
��

∴ R
�

(2a)

(2b)

(2c)

where (A≈ , B≈ , D≈ ) are conventional Kirchhoff–Love stiffness tensors. The transpose operation t• is applied to any order tensors

as follows: (t A)αβ···ψω = Aωψ ···βα . The generalized shear compliance tensor f
��

is a sixth-order tensor.2

2 fαβγ δεζ follows major symmetry: fαβγ δεζ = fζεδγ βα and minor symmetry fαβγ δεζ = fβαγ δεζ . Thus there are only 21 independent components.
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Fig. 2. The plate unit-cell.

It was demonstrated that if f
��

= i≈ · f
∼

· i≈ = (iαβγ η fηθ iθδεζ ), then the Bending-Gradient model is strictly turned into a

Reissner–Mindlin model. Then, Eq. (2c) reduces to Q− = f
∼

−1 ·γ− . This is exactly the case for homogeneous plates where f
��

=
i≈ · 6h

5 G∼
−1 · i≈ leads to Q− = 5/6hG∼ ·γ− . For this reason, the Bending-Gradient theory is seen as the extension to heterogeneous

plates of the Reissner–Mindlin theory for homogeneous plates.
When the plate is periodic, the constitutive tensors A≈ , B≈ , D≈ and f

��

are derived using the homogenization scheme which

will be discussed later on. However closed-form expressions exist when the plate is laminated (i.e.: the local constitutive
equation is only function of x3). Kirchhoff–Love stiffness is derived using the Classical Lamination Theory [39]:

(A≈ , B≈ , D≈ ) =
h
2∫

− h
2

(
1, x3, x2

3

)
c≈(x3)dx3 (3)

where c≈(x3) is the local plane-stress stiffness tensor (c≈ = S≈
−1 is the inverse of the plane part of the 3D compliance Ŝ≈ =

Ĉ≈
−1

). The generalized shear compliance tensor is then:

f
��

=
h
2∫

− h
2

( x3∫
− h

2

(t b≈ + z d≈
) : c≈(z)dz

)
· G∼

−1(x3) ·
( x3∫

− h
2

c≈(z) : (b≈ +z d≈)dz

)
dx3 (4)

where (a≈, b≈, d≈) are the Kirchhoff–Love compliance tensors expressing (e∼,χ
∼
) in terms of (N∼ , M∼ ) by inverting (2a) and (2b)

and G∼ is the local transverse shear stiffness [8].

3.2. Homogenization scheme

In this section, the derivation of A≈ , B≈ , D≈ and f
��

is detailed in the general case of a periodically heterogeneous plate.

Let us consider a plate generated by periodicity of a unit-cell Y (Fig. 2). The upper face ∂Y +
3 and the lower face ∂Y −

3
are traction free and the lateral faces ∂Yl must fulfill periodicity conditions. AY is the area of the unit-cell cross section
with the plate mid-plane. In the following, the plate is assumed invariant by π -angle rotation with respect to a vertical
axis so that uncoupling between N∼ , M∼ and R

�
is ensured [33]. This invariance is the generalization to periodic plates of the

monoclinic symmetry classically made with laminated plates and invoked in Section 2 for the skins and a homogeneous
core.

In order to derive a homogenized behavior of the heterogeneous plate, it is assumed that macroscopic fields (N∼ , M∼ , R
�
)

and their associated stress energy density vary slowly with respect to the size of the unit-cell. Then, using the Hill–Mandel
principle, the average of the local energy in the unit-cell (microscopic energy) is assumed equal to the plate energy (macro-
scopic energy). This is equivalent to setting:

1

2

(
N∼ : a≈ : N∼ + 2N∼ : b≈ : M∼ + M∼ : d≈ : M∼ + t R

�
∴ f

��

∴ R
�

) = 1

2

〈
σ̂∼

BG
( ŷ−) : Ŝ≈( ŷ−) : σ̂∼ BG

( ŷ−)
〉

(5)

where
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〈 f 〉 = 1

AY

∫
Y

f d ŷ−

is the normalized average (surface average) on the unit-cell and σ̂∼
BG is an approximation of the local stress field in the

unit-cell generated by the macroscopic static unknowns (N∼ , M∼ , R
�
). More precisely, the field localization σ̂∼

BG is a linear
application from (N∼ , M∼ , R

�
) to a 3D stress field in the unit-cell which is detailed as follows:

σ̂∼
BG = σ̂∼

(N)
( ŷ−) + σ̂∼

(M)
( ŷ−) + σ̂∼

(R)
( ŷ−)

where σ̂∼
(N) , σ̂∼

(M) , and σ̂∼
(R) are 3D stress fields generated respectively by N∼ , M∼ and R

�
:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ
(N)
i j = s(N)

i jαβ
( ŷ−)Nβα

σ
(M)
i j = s(M)

i jαβ
( ŷ−)Mβα

σ
(R)
i j = s(R)

i jαβγ ( ŷ−)Rγ βα

and s(N)
i jαβ

( ŷ−), s(M)
i jαβ

( ŷ−) and s(R)
i jαβγ ( ŷ−) are localization field tensors (unit load fields).

The determination of localization fields necessitates the resolution of auxiliary unit-cell problems. First, the Kirchhoff–
Love homogenization auxiliary problem was suggested by Caillerie [40] and enables the derivation of the effective Kirchhoff–
Love membrane and flexural moduli of the periodic plate A≈ , B≈ and D≈ , as well as the local 3D stresses ŝ≈

(e)
( ŷ−) and ŝ≈

(χ)
( ŷ−)

related to membrane strains and curvature. Then a generalized shear auxiliary problem is defined, using Kirchhoff–Love
localization fields as loading inputs, in order to derive the generalized shear compliance f

��

and ŝ∼�
(R)

( ŷ−).

3.2.1. Kirchhoff–Love auxiliary problem
Kirchhoff–Love homogenization of periodic plates was first proposed by Caillerie [40] and followed by Kohn and Vogelius

[41]. The auxiliary problem is stated as follows:

PLK

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̂∼
KL · ∇̂− = 0

σ̂∼
KL = Ĉ≈( ŷ−) : ε̂∼KL

ε̂∼
KL = ê∼ + y3χ̂∼

+ ∇̂− ⊗s û−
per

σ̂∼
KL · ê−3 = 0 on free faces ∂Y ±

3

σ̂∼
KL · n̂− skew-periodic on lateral boundaries ∂Yl

û−
per

(y1, y2, y3) (y1, y2)-periodic on lateral boundaries ∂Yl

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

Basically it enforces the membrane strains e∼ and the curvatures χ
∼

on average on the unit-cell while taking into account

periodicity in the (x1, x2)-plane and traction-free conditions on the upper and lower faces of the plate. In Eq. (6), ê∼ and χ̂
∼

denote the extension to 3D of the 2D tensors:

ê∼ =
⎛
⎝ e11 e12 0

e21 e22 0
0 0 0

⎞
⎠ and χ̂

∼
=

⎛
⎝ χ11 χ12 0

χ21 χ22 0
0 0 0

⎞
⎠

Furthermore, there is a Hill-lemma relation for plate [40,42] which gives the following definition for N∼ and M∼ as the average
of stress fields in the unit-cell:

Nαβ = 〈
σ KL

αβ

〉
and Mαβ = 〈

y3σ
KL
αβ

〉
Solving the problem for each individual component of e∼ and χ

∼
leads to the localization stress fields ŝ≈

(e) and ŝ≈
(χ) .

Kirchhoff–Love plate moduli are then evaluated as follows:

A≈ = 〈t ŝ≈
(e) : Ŝ≈ : ŝ≈

(e)〉
, B≈ = 〈t ŝ≈

(e) : Ŝ≈ : ŝ≈
(χ)〉

, D≈ = 〈t ŝ≈
(χ) : Ŝ≈ : ŝ≈

(χ)〉
In addition one can derive the following variational principle related to problem PLK :
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– Static approach: The set of statically compatible fields SCLK is the set of stress fields σ̂∼ which fulfill equilibrium equa-
tion (6a), boundary conditions (6d) and periodicity conditions (6e).
The stress solution σ̂∼

LK is the one that minimizes the complementary energy per unit surface P∗LK :

P∗LK(
σ̂∼

LK) = min
σ̂∼ ∈SCLK

{
1

2

〈t σ̂∼ : Ŝ≈ : σ̂∼
〉 − 〈t σ̂∼ : (ê∼ + y3χ̂∼

)
〉}

(7)

– Kinematic approach: The set of kinematically compatible fields KCLK is the set of strain fields ε̂∼ which fulfill compatibility
conditions (6c) and periodicity conditions (6f).
The strain solution ε̂∼

LK is the one that minimizes the potential energy per unit surface P LK :

P LK(
ε̂∼

LK) = min
ε̂∼∈KCLK

{
1

2

〈t ε̂∼ : Ĉ≈ : ε̂∼
〉}

(8)

– Clapeyron’s formula: The following relation holds for the solution:

P LK(
ε̂∼

LK) = −P∗LK(
σ̂∼

LK) = 1

2
(e∼ : A≈ : e∼ + 2 e∼ : B≈ : χ

∼
+χ

∼
: D≈ : χ

∼
)

3.2.2. The generalized shear auxiliary problem
The generalized shear auxiliary problem on the unit-cell is defined as:

PBG

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̂∼
(R) · ∇̂− + f̂−

(R)
( ŷ−) = 0

σ̂∼
(R) = Ĉ≈( ŷ−) : (∇̂− ⊗s û−

(R)
)

σ̂∼
(R) · ê−3 = 0 on free faces ∂Y ±

3

σ̂∼
(R) · n̂− skew-periodic on lateral boundaries ∂Yl

û−
(R)

(y1, y2, y3) (y1, y2)-periodic on lateral boundaries ∂Yl

(9a)

(9b)

(9c)

(9d)

(9e)

where

f (R)
i = (

s(e)
iγ δεbεδβα + s(χ)

iγ δεdεδβα

)
Rαβγ (10)

is the body force generated by linear variations of M∼ , namely its gradient: R
�

. More precisely, it is derived taking the

3D divergence of the local stress σ̂∼
(M) , where the bending moment is M∼ = R

�
·y− . Since f̂−

(R)
involves localization fields

previously derived in the Kirchhoff–Love auxiliary problem, one must perform this computation first. Solving PBG for each
component of R

�
leads to the localization stress field s(R)

i jαβγ related to R
�

. It is then possible to identify the Bending-Gradient
compliance tensor as:

f
��

= 〈t(ŝ∼�
(R)) : Ŝ≈ : ŝ∼�

(R)〉
Whereas it was possible to define N∼ and M∼ as resultants of local stress fields, there is no such direct relation for the

gradient of the bending moment R
�

. However, it is possible to demonstrate:

〈
σ

(R)
α3

〉 = iαβγ δ Rδγ β = Q α and
〈
σ

(R)
33

〉 = 0

In addition one can derive the following variational principle related to problem PBG:

– Static approach: The set of statically compatible fields SCBG is the set of stress fields σ̂∼ which fulfill equilibrium equa-
tion (9a), boundary conditions (9c) and periodicity conditions (9d).
The stress solution σ̂∼

(R) is the one that minimizes the complementary energy P∗BG:

P∗BG(
σ̂∼

(R)) = min
σ̂∼ ∈SCBG

{
1

2

〈t σ̂∼ : Ŝ≈ : σ̂∼
〉}

– Kinematic approach: The set of kinematically compatible fields KCBG is the set of strain fields ε̂∼ which derive from a
displacement field which fulfills periodicity conditions (9e).
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The strain solution ε̂∼
(R) is the one that minimizes the potential energy P BG:

P BG(
ε̂∼

(R)) = min
ε̂∼∈KCBG

{
1

2

〈t ε̂∼ : Ĉ≈ : ε̂∼
〉 − 〈

f̂−
(R) · û−(ε̂∼)

〉}
(11)

– Clapeyron’s formula: The following relation holds for the solution:

−P BG(
ε̂∼

(R)) = P∗BG(
σ̂∼

(R)) = 1

2
t R

�
∴ f

��

∴ R
�

4. The in-plane behavior of sandwich panels

The Kirchhoff–Love behavior of sandwich panels is well known, especially with homogeneous cores. In this section, we
recall these results and derive bounds when the sandwich panel is cellular.

4.1. The case of homogeneous cores

Let us consider first a sandwich panel with a homogeneous core. Direct application of the Classical Lamination Theory
(Eq. (3)) leads to the following Kirchhoff–Love stiffness tensors:

A≈ = 2ts c≈
s + tc c≈

c, B≈ = 0≈, D≈ = h3 − t3
c

12
c≈

s + t3
c

12
c≈

c

Then the contrast assumption consists in neglecting the contribution of the core to these stiffness tensors. In the present
case, it is equivalent to assuming:

∀ e∼, e∼ : tc c≈
c : e∼ � e∼ : 2ts c≈

s : e∼ (12)

where eαβ is any symmetric second-order tensor in 2D. The stiffness tensors become then:

A≈ = 2ts c≈
s, B≈ = 0≈, D≈ = h3 − t3

c

12
c≈

s

Additionally one can assume also thin skins. The flexural stiffness is simplified into the well known formula:

D≈ = ts

2
(tc + ts)

2 c≈
s

These very basic results will be extended to the case of cellular sandwich panel in the following.

4.2. The case of cellular cores

The homogenization scheme provided in Section 3.2.1 is designed for any periodic plate. Now we specify its application
to a cellular sandwich panel. The unit-cell Y was detailed in Fig. 1. It is separated in three parts, the upper skin Y s+ ,
the lower skin Y s− and the core Y c (Y = Y s+ ∪ Y c ∪ Y s−). We apply variational principles for the Kirchhoff–Love auxiliary
problem to this unit-cell in order to derive bounds. Finally, this enables us to formulate the contrast assumption for cellular
sandwich panels.

4.2.1. Bounds for Kirchhoff–Love stiffnesses of cellular sandwich panels
The derivation of bounds is done in two steps. First, compatible trial fields are defined in each part of the unit-cell. Then,

the related energies are derived and compared to the exact solution.

4.2.1.1. Lower bound The derivation of the lower bound is based on the conventional assumption that only the skins are
put under traction and compression when bending the sandwich panel. We choose a statically compatible stress σ∼

− ∈ SCLK

which is null in the core and plane-stress in the skins:

σ∼
− =

{
c≈

s : (e∼ +x3 χ
∼
) on Y s±

0∼ on Y c
and σ−

i3 = 0 on Y (13)

The complementary energy (7) related to σ̂∼
− involves only the skins and is written as:

P∗LK(
σ̂∼

−) = −1

2

〈t(e∼ +y3 χ
∼
) : c≈

s : (e∼ +y3 χ
∼
)
〉
s

where 〈 f 〉s is the normalized average restricted to the skins:
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〈 f 〉s = 1

AY

∫
Y s+∪Y s−

f d ŷ−

Application of the static approach of variational principles leads to:

wLK,s <
1

2
(e∼ : A≈ : e∼ + 2 e∼ : B≈ : χ

∼
+χ

∼
: D≈ : χ

∼
)

where we defined the contribution of the skins to the energy as:

wLK,s = 1

2

〈t(e∼ +y3 χ
∼
) : c≈

s : (e∼ +y3 χ
∼
)
〉
s

from which the lower bound for Kirchhoff–Love stiffness tensors is extracted:

A≈
− = 2ts c≈

s, B≈
− = 0≈, D≈

− = h3 − t3
c

12
c≈

s

4.2.1.2. Upper bound For the upper bound, we choose the kinematically compatible strain field ε̂∼
+ ∈ KCLK which is plane-

strain in the core and plane-stress in the skins:

ε̂∼
+ =

{
ê∼ + x3χ̂∼

+ (P∼
s : (e∼ +x3 χ

∼
))ê−3 ⊗ ê−3 on Y s±

ê∼ + x3χ̂∼
on Y c

where P s
αβ = − C s

33αβ

C s
3333

is the correction which takes into account the out-of-plane Poisson’s effect in the skins. Assuming

plane-stress also in the core would lead to incompatibility of strain fields at the skin/core interface in the general case. The
potential energy (8) related to ε̂∼

+ is written as:

P LK(
ε̂∼

+) = wLK,s + 1

2

〈t(ê∼ + y3χ̂∼
) : Ĉ≈

c : (ê∼ + y3χ̂∼
)
〉
c

where 〈 f 〉c is the normalized average restricted to the core:

〈 f 〉c = 1

AY

∫
Y c

f d ŷ−

Only the plane part of C≈
c is involved in the second term of P LK since ei3 = χi3 = 0:

P LK(
ε̂∼

+) = wLK,s + 1

2

〈t(e∼ +y3 χ
∼
) : C≈

c : (e∼ +y3 χ
∼
)
〉
c

Application of the kinematic approach of variational principles leads to:

1

2
(e∼ : A≈ : e∼ + 2 e∼ : B≈ : χ

∼
+χ

∼
: D≈ : χ

∼
) < w LK ,s + wLK,c

where we defined the contribution of the core to the energy as:

wLK,c = 1

2

〈t(e∼ +y3 χ
∼
) : C≈

c : (e∼ +y3 χ
∼
)
〉
c

We have the following Kirchhoff–Love stiffness tensors for the upper bound:

A≈
+ = 2ts c≈

s + 〈
C≈

c 〉
c, B≈

+ = 〈
y3C≈

c 〉
c and D≈

+ = h3 − t3
c

12
c≈

s + 〈
y2

3C≈
c 〉

c

Here, the core contribution is the upper bound for periodic plates from Kolpakov and Sheremet [43] applied directly to the
core alone.

4.2.2. Definition of the contrast assumption
The derivation of bounds led to the following range for the energy:

wLK,s <
1

2
(e∼ : A≈ : e∼ + 2 e∼ : B≈ : χ

∼
+χ

∼
: D≈ : χ

∼
) < wLK,s + wLK,c

The contrast assumption consists in neglecting the contribution of the core:

∀(e,χ ), wLK,c(e,χ ) � wLK,s(e,χ )
∼ ∼ ∼ ∼ ∼ ∼
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which is equivalent to:

∀ e∼, e∼ : 〈C≈c 〉
c : e∼ � 2ts e∼ : c≈

s : e∼ (14)

This result is slightly different from the case of homogeneous core because it was not possible to assume plane-stress in
the core. This is further discussed in Section 6.

Finally, under the contrast assumption the actual Kirchhoff–Love stiffness of the sandwich panel is equated to the lower
bound and the related local stress field is considered as a good approximation at first order of the actual stress distribution.

5. The transverse shear behavior of sandwich panels

Knowing the in-plane behavior of the sandwich panel enables us now to derive its transverse shear behavior.

5.1. The case of homogeneous cores

In general, for 3-layer plates the Bending-Gradient model does not reduce to the Reissner–Mindlin model. However, it is
possible to demonstrate that it is the case under the contrast assumption.

Direct application of Eq. (4) and assumption (12) for a sandwich panel with homogeneous core leads to:

f
��

= k2
s

t2
c

i≈ ·(tc g∼
c + lsts g∼

s) · i≈ , where ks = 3

2

tc(h2 − t2
c )

h3 − t3
c

and ls = 10t2
c + 25tcts + 16t2

s

15(tc + ts)2

where g
∼

c = (G∼
c)−1 and g

∼
s = (G∼

s)−1 are the transverse shear compliances. The factorization of f
��

indicates that the consti-

tutive equation is turned into a Reissner–Mindlin model. The corresponding shear forces stiffness is written as:

F∼ = t2
c

k2
s

(
tc g∼

c + lsts g∼
s)−1

(15)

There is no a priori reason for neglecting the skins contribution since the contrast hypothesis involves only the plane part
of 3D stiffnesses (Eq. (12)). For instance with carbon fiber reinforced composite skins, the transverse shear stiffness of the
skins is quite low (about 1/25 of the longitudinal stiffness).

With this result, when the thickness of the core goes to 0 we have F∼ = 5h
6 G∼

s and when g
∼

c goes to the infinity, the shear
forces stiffness goes to zero which is much more satisfying than FOSDT and classical approaches. Finally, if the skins are
thin and their constitutive material is isotropic, their contribution is negligible. In this case, Eq. (15) simplifies into:

F∼ = tc

k2
s

G∼
c

and we get the original result from Kelsey et al. [13].

5.2. A direct homogenization scheme for cellular sandwich panel shear forces stiffness

When dealing with cellular sandwich panels, stress distributions related to the in-plane behavior were derived in
Section 4.2.1. Once the Kirchhoff–Love stress is defined, it is possible to apply the second step of the Bending-Gradient
homogenization scheme (Problem 9).

Under the contrast assumption, the stress derived for the lower bound (Eq. (13)) makes a good approximation for the
actual stress in the sandwich panel. The body load definition (Eq. (10)) applied to this stress distribution becomes:

f−
(R) =

{
12y3

h3−t3
c

i≈ ∴ R
�

on Y s±

0 on Y c
and f (R)

3 = 0 on Y

where we identify directly shear forces: Q− = i≈ ∴ R
�

. Thus, with cellular sandwich panels under contrast assumption the
Bending-Gradient model is also turned into a Reissner–Mindlin model.

Accordingly, we define the body force related to shear forces as:

f−
(Q ) =

{
12y3

h3−t3
c

Q− on Y s±

0 on Y c
and f (Q )

3 = 0 on Y

Basically, it enforces volume forces in the skins so that the core is put into shearing exactly as suggested in sandwich theory
(Fig. 3).

Exactly as for R
�

, the 3D stress field σ̂∼
(Q ) related to shear forces is the stress field which equilibrates f̂−

(Q )
and the shear

force auxiliary problem on the unit-cell is defined as:
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Fig. 3. Shear force loading f (Q ) for a sandwich panel under contrast assumption.

PRM

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̂∼
(Q ) · ∇̂− + f̂−

(Q )
( ŷ−) = 0

σ̂∼
(Q ) = Ĉ≈( ŷ−) : (∇̂− ⊗s û−

(Q )
)

σ̂∼
(Q ) · ê−3 = 0 on free faces ∂Y ±

3

σ̂∼
(Q ) · n̂− skew-periodic on lateral boundaries ∂Yl

û−
(Q )

(y1, y2, y3) (y1, y2)-periodic on lateral boundaries ∂Yl

(16a)

(16b)

(16c)

(16d)

(16e)

This problem is Cecchi and Sab [36] auxiliary problem for deriving shear forces stiffness applied to a sandwich panel under
contrast assumption without assuming a priori cylindrical bending. Again, solving PRM leads to the localization stress field
s(Q )

i jα ( ŷ−) associated to shear forces, obtained by linear combination:

σ̂∼
(Q ) = ŝ∼−

(Q )
( ŷ−) · Q−

It is then possible to identify the shear forces compliance tensor with:

f∼ = 〈t ŝ∼−
(Q ) : Ŝ≈ : ŝ∼−

(Q )〉
The variational principles related to PRM are strictly identical to those introduced in Section 3.2.2 replacing “R” by “Q ”.

Finally, the contrast assumption enables a direct derivation of shear forces stiffness with f̂−
(Q )

loading and does not

require the derivation of Kirchhoff–Love localization fields. Thus PRM defines a direct homogenization scheme for sandwich
panels under contrast assumption.

5.3. Bounds for sandwich panels shear forces stiffness

Now it is possible to provide justification for the bounds commonly used in sandwich theory. Since the actual shear
forces loading is known for a sandwich panel, we apply variational principles to the shear forces auxiliary problem PRM .

5.3.1. Voigt and Reuss bounds
Assuming rigid displacement in the skins and uniform shear strain in the core enables the derivation of a Voigt type

upper bound for sandwich panels shear forces stiffness. Computation details are given in Appendix B. It leads to:

∀γ− , tγ− · F∼ · γ− < tγ− · 〈G∼
c〉c

k2
s

· γ−
where F∼ is the actual shear forces stiffness tensor.

Here the effective transverse shear stiffness tensor of the core appears as: Gc,eff
αβ = 〈G∼

c〉c/tc . It is the Voigt upper bound

of transverse shear stiffness in 3D elasticity. Thus, we define the Voigt upper bound for shear forces stiffness as: F∼
V = 〈G∼

c〉c
2 .
ks
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It is also possible to derive the Reuss lower bound, assuming ad hoc compatible stress distribution in the skins and a
uniform shear stress in the core. Computation details are given in Appendix B. This leads to the following Reuss bound:

∀γ− , tγ− · t2
c

k2
s

(〈
g∼

c 〉
c + lsts g∼

s)−1 · γ− < tγ− · F∼ ·γ− (17)

Again, the contribution of the skins does not vanish and the effective transverse shear stiffness of the core appears as:
Gc,eff

αβ = (〈g
∼

c〉c/tc)
−1. It is the Reuss lower bound for transverse shear stiffness in 3D elasticity. When the contribution of the

skins is negligible, we define the Reuss lower bound for shear forces stiffness as: F∼
R = t2

c

k2
s
〈g

∼
c〉−1

c .

Since most of cores used in applications are porous, this bound is often null. In order to overcome this difficulty, Kelsey
et al. [13] suggested improved bounds for sandwich panels.

5.3.2. The bounds from Kelsey et al. [13]
The approach from Kelsey et al. [13] is also detailed in [44] and [32]. Let us recall that for the upper bound, a unit

displacement is enforced only on the core, replacing the skins action on it (the unit displacement method). For the lower
bound, it is an arbitrary stress distribution which is applied on the core (unit force method). It is possible to give partial
justification to these bounds while separating the shear forces auxiliary problem PRM in three parts, a part dedicated to the
core and two parts dedicated to the skins. Then, the trial field in the skins is taken similar to the one used for Voigt and
Reuss bounds in the previous section and the problem for the core is exactly the one suggested by Kelsey et al. [13].

For the upper bound, we still assume a uniform displacement in the skins: û−
K+ = tc

2 γ̂− . Enforcing displacements conti-

nuity at the skin/core interface ∂Y ±
int (Fig. 1) leads to the following auxiliary problem in the core:

PK+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̂∼
K+ · ∇̂− = 0

σ̂∼
K+ = Ĉ≈( ŷ−) : (∇̂− ⊗s û−

K+
)

û−
K+ = ± tc

2 γ̂− on interface faces ∂Y ±
int

σ̂∼
K+ · n̂− skew-periodic on ∂Y c

l

û−
K+

(y1, y2, y3) (y1, y2)-periodic on ∂Y c
l

which is exactly the unit displacement method suggested by Kelsey et al. [13]. Solving this problem for each components of
γ− leads to the following localization of the strain field in the core: εK+

i j = eK+
i jα γα . The application of variational principles

for the shear forces auxiliary problem PRM , detailed in Appendix B, leads to the following upper bound:

∀γ− , tγ− · F∼ · γ− < tγ− · F∼
K+ · γ−

where F∼
K+ = 1

k2
s
〈t ê∼−

K+ : Ĉ≈ : ê∼−
K+〉c is the original upper bound for shear forces stiffness from Kelsey et al. [13].

The lower bound raises more difficulties. Separating the shear forces auxiliary problem (Problem 16) into three parts
brings out the interface stress σ̂∼

(Q )
(y1, y2,±tc/2) · (±ê−3) located on ∂Y ±

int . This interfacial stress must respect macroscopic
equilibrium for each part. Its resultant on each interface is:

1

AY

∫
∂Y ±

int

σ̂∼
(Q )

(y1, y2,±tc/2) · ±ê−3 dy1 dy2 = 1

AY

∫
Y s±

f̂−
(Q )

dy1 dy2 dy3 = ±ks

tc
Q̂− , where Q 3 = 0

The derivation of the lower bound consists in choosing a priori this interfacial stress distribution. Let us introduce such

arbitrary surface traction T̂−
d
(y1, y2) fulfilling:

1

AY

∫
∂Y +

int

T̂−
d

d y− = ks

tc
Q̂−

Given T̂−
d
(y1, y2), the problem in the core is stated as:
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PK−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̂∼
K− · ∇̂− = 0

σ̂∼
K− = Ĉ≈( ŷ−) : (∇̂− ⊗s û−

K−
)

σ̂∼
K− · ±ê−3 = ±T̂−

d
on interfaces ∂Y ±

int

σ̂∼
K− · n̂− skew-periodic on lateral boundaries ∂Y c

l

û−
K−

(y1, y2, y3) (y1, y2)-periodic on lateral boundaries ∂Y c
l

(18a)

(18b)

(18c)

(18d)

(18e)

When ks = 1, this problem is exactly the one suggested by Kelsey et al. [13] for deriving the lower bound.
Then, the problems in the skins are stated as:

PK−,s±

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̂∼
K− · ∇̂− + 12y3

h3−t3
c

Q− = 0

σ̂∼
K− = Ĉ≈( ŷ−) : (∇̂− ⊗s û−

K−
)

σ̂∼
K− · ∓ê−3 = ∓T̂−

d
on interface ∂Y ±

int

σ̂∼
K− · ê−3 = 0̂− on free face ∂Y ±

3

σ̂∼
K− · n̂− skew-periodic on lateral boundaries ∂Y s

l

û−
K−

(y1, y2, y3) (y1, y2)-periodic on lateral boundaries ∂Y s
l

(19a)

(19b)

(19c)

(19d)

(19e)

(19f)

The combination of variational principles related to the three problems is detailed in Appendix B. This leads to the following
lower bound for shear forces stiffness:

∀γ− , tγ− · ( f∼
K− + f∼

K−,s+ + f∼
K−,s−)−1 · γ− < tγ− · F∼ · γ−

where f
∼

K− is the lower bound from Kelsey et al. [13] for the shear forces stiffness, and f
∼

K−,s± are the contribution of the
skins.

The fact that the stress energy in the skins is negligible (even with thin skins) might be wrong in the general case. Yet
this seems to be a very common implicit assumption. At best, one can hope that the skins contribution is of the same mag-
nitude as the one in the case of the Reuss lower bound (Eq. (17)). In [33] a comparison between the full Bending-Gradient
homogenization scheme and the bounds from Kelsey et al. [13] shows that the lower bound is not strictly respected.

6. Discussion

In Section 2, several questions were raised about the shear forces stiffness of sandwich panels. The assumptions usually
made seemed antagonistic and the contribution of the skins was controversial. Additionally, there was a lack of well defined
methods for deriving the shear forces stiffness when the sandwich panel is cellular. The application of the Bending-Gradient
theory to sandwich panels enables us now to clarify these points.

First, the contrast assumption between the skins and the core was stated without explicit assumption about the skins
thickness. When the core is homogeneous, Eq. (12) is simply the generalization of the suggestion from Reissner [10] and
compares plane-stress stiffnesses of the skins and the core, weighted by their respective thicknesses. With cellular cores, it
is the plane part of the 3D elasticity stiffness of the core which must be compared to the plane-stress stiffness of the skins
(Eq. (14)). If the constitutive materials of the skins and the core are isotropic and provided that Poisson’s ratios are not close
to 0.5 or −1, the cellular case is almost identical to the homogeneous case.

Because the skins stiffness is weighted by their thickness in the contrast assumption, the latter might be rather restric-
tive. Actually its validity range can be enlarged in some cases. For example, this assumption applied to a cellular sandwich
panel fully made of the same constitutive material leads to ρtc � 2ts where ρ is the volume fraction of material in the
core. An approximate value for ρ is ρ ≈ t f /tc where t f is the facets thickness of the walls constituting the core. This leads
to t f � ts which might seem very restrictive. However, depending on the actual contribution of the core to the flexural
stiffness of the sandwich panel, this condition can be relaxed. For instance, folded cores contribution is almost negligible
and t f can be almost comparable to ts without much violation of the contrast assumption [33]. This is not the case of
honeycomb cores where the walls are vertical and contribute significantly to the flexural stiffness [28].

Furthermore, the contrast assumption does not state anything about the transverse shear stiffness of the skins. Hence
G∼

c/tc � G∼
s/ts (Eq. (15)) is usually valid but not necessary true a priori as illustrated with carbon fiber reinforced laminates.

This remark leads us to the question of the contribution of the skins to the shear forces stiffness.
In order to avoid the difficulties regarding the contribution of the skins to the shear forces stiffness, it is commonly

assumed that they are thin. In the present work, we did not invoke the thinness of the skins to derive the shear forces
stiffness of any sandwich panel. It is possible to neglect the skins contribution afterward in order to retrieve classical
results. As already pointed out this assumption goes against the contrast assumption and in many practical cases is not
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valid. This is especially the case with cellular cores where the skins are not fully glued to the core. One must keep the skins
thick enough to prevent wrinkling.

Two contributions of the skins where identified. The first one, already included in the work from Kelsey et al. [13], is a
pure geometric effect: the thicker the skins are, the further from the midplane the resultant of f−

(Q ) in the skins is. Thus

the lever effect of the resultant of f−
(Q ) in the skins is greater (Fig. 3). Taking the skins centroid as application point of f−

(Q )

– as done in [3] – is only true at first order in ts/tc . This contribution is often not negligible and proportional to 1 + 2ts/tc .
The second contribution of the skins was widely ignored. It involves directly the skins transverse shear stiffness. Even if, in
the case of homogeneous core (Eq. (15)), it is rather easy to check that the effect is negligible, when the core is cellular this
is much more difficult and uncertain.

In order to close discussion about the assumptions usually made with sandwich panels, let us explain why FOSDT is
misleading and raised many questions [20]. When the shear correction factor is 1, we have F∼ = tc G∼

c + ts G∼
s . Assuming

simultaneously G∼
c � G∼

s and ts � tc leads to an undetermined limit. It is then not surprising that deriving shear correction
factors following different methods leads to contradictions. Depending on the scaling between G∼

c � G∼
s and ts � tc and the

order in which the assumptions are made, the correction might be completely different at limit cases. The sensitivity to
limit case is illustrated on an isotropic sandwich panel in Appendix C where an exact formula is derived for shear forces
stiffness. This situation illustrates clearly that it is much easier to use the concept of shear forces stiffness as a whole than
to split it into uniform transverse shear and shear correction factor.

Finally, the main outcome of this work is the derivation and the justification of a direct homogenization scheme for
sandwich panels shear forces stiffness. The contrast assumption enables not only to completely separate Kirchhoff–Love
and shear force auxiliary problems, but also ensures that the constitutive equation is turned into a Reissner–Mindlin model
whereas this is not the case for periodic plates in general.3 The justification of already known bounds in the present
work is a first validation of this new homogenization scheme. The shift from the Bending-Gradient to Reissner–Mindlin
models under contrast assumption presented in [33] is another validation and clearly illustrates the need of this new
homogenization scheme when classical bounds are loose.

In the present work, we assumed uncoupling between (N∼ , M∼ ) and R
�

. Relaxing this assumption for the core does not
change the results regarding bounds and the direct homogenization scheme. However, the coupling will remain when de-
riving the constitutive equation (5) and it is not clear that one could neglect it in order to get a classical Reissner–Mindlin
constitutive equation.

7. Conclusion

The application of the Bending-Gradient plate theory to a sandwich panel enabled us to give some justification of com-
mon results in sandwich theory. First, the application of the Kirchhoff–Love auxiliary problem brought out bounds for
Kirchhoff–Love stiffnesses and a quantified contrast assumption. Then, we demonstrated that under this assumption, the
shear constitutive equation for a sandwich panel is turned into a Reissner–Mindlin model as it is the case with homoge-
neous plates. Moreover, we identified the loading related to shear forces as a volume force distributed in the skins. This
loading confirms the common intuition that the core is put into shear by the skins and enables the direct derivation of shear
forces stiffness for a sandwich panel. Finally, we provided justification for bounds which are commonly used in sandwich
panel design, taking into account the contribution of the skins.

Appendix A. Compatible fields for the Bending-Gradient theory

Equilibrium equations and boundary conditions involving stress fields are gathered in the set of statically compatible
fields: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∼ ·∇− = 0− on ω

M∼ ⊗∇− − R
�

= 0
�

on ω

( i≈ ∴ R
�
) · ∇− = −p3 on ω

N∼ ·n− = V−
d on ∂ωs

M∼ = M∼
d on ∂ωs

( i≈ ∴ R
�
) · n− = V d

3 on ∂ωs

where the derivation operator ∇− is also formally represented as a vector: a∼ ·∇− = aαβ∇β = aαβ,β is the divergence and
a∼ ⊗∇− = aαβ∇γ = aαβ,γ is the gradient. ∂ωs is the portion of edge on which static boundary conditions apply and n− the

related outer normal: V̂−
d = (V d

i ) is the force per unit length and M∼
d the full bending moment enforced on the edge. The

3 For instance, it is demonstrated that the transverse shear behavior is dominated by warping effects with very common patterns in [45].
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plate is loaded exclusively with the out-of-plane distributed force p̂− = p3ê−3. This set of equations is almost identical to the
Reissner–Mindlin equations where shear forces have been replaced by the bending gradient R

�
.

The compatibility conditions and boundary conditions for strain fields are gathered in the set of kinematically compatible
fields: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e∼ = i≈ : (∇− ⊗ U− ) on ω

χ
∼

= Φ
�

·∇− on ω

Γ
�

= Φ
�

+ i≈ ·∇− U3 on ω

Φ
�

·n− = H∼
d on ∂ωk

Û− = Û−
d

on ∂ωk

(20a)

(20b)

(20c)

(20d)

(20e)

where Û− = (Ui) is the average through the thickness of the plate 3D displacement and Φ
�

= (Φαβγ ) is the generalized
rotation. Γ

�
and Φ

�
are 2D third-order tensors with the following symmetry: Φαβγ = Φβαγ . Moreover, ∂ωk is the portion of

edge on which kinematic boundary conditions apply: Û−
d = (U d

i ) is a given displacement and H∼
d = (Hd

αβ) is a symmetric
second-order tensor related to a forced rotation on the edge. These fields are almost identical to the Reissner–Mindlin
kinematically compatible fields where the rotation vector is replaced by the generalized rotation Φ

�
. Assuming Φ

�
= i≈ ·ϕ− in

(20), where ϕ− is a vector representing rotations leads to Reissner–Mindlin-like kinematics: Γ
�

= i≈ · (ϕ− +∇− U3) = i≈ ·γ− and

χ
∼

= i≈ : (ϕ− ⊗∇− ). Thus in the general case, the Reissner–Mindlin kinematics can be interpreted as a restriction of Φ
�

to i≈ ·ϕ− .

Appendix B. Justification of bounds for the shear forces stiffness of sandwich panels

In Section 5.3, is provided justification of bounds for the transverse shear stiffness of sandwich panels. Here the compu-
tation details are given.

B.1. Upper bounds for sandwich panels shear forces stiffness

B.1.1. Voigt upper bound
We choose the following kinematically compatible strain field:

ε+
α3 =

{
0 on Y s±
γ
2 on Y c and ε+

αβ = ε+
33 = 0

ε∼
+ enforces a uniform transverse shear strain in the core. ε∼

+ is related to the following displacement field:

u−
+ =

{± tc
2 γ− on Y s±

γ− y3 on Y c and u+
3 = 0

With this trial strain field ε∼
+ the potential energy (11) of the Reissner–Mindlin shear auxiliary problem PRM becomes:

P RM(
ε̂∼

+) = 1

2
γα

〈
Cc

α3β3

〉
cγβ − 3

2

tc(h2 − t2
c )

h3 − t3
c

γα Q α

Minimizing P RM(ε̂∼
+
) with respect to γ− leads to:

γ− = ks
〈
G∼

c 〉−1
c · Q−

Finally the potential energy for the Reissner–Mindlin auxiliary problem is:

P RM(
ε̂∼

+) = −1

2
t Q− · k2

s

〈
G∼

c 〉−1
c · Q−

which leads to the Voigt upper bound:

∀ Q− , t Q− · k2
s

〈
G∼

c 〉−1
c · Q− < t Q− · f∼ · Q−
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B.1.2. The upper bound from Kelsey et al. [13]
It is possible to give a sharper bound. We still assume a uniform displacement û−

K+ = tc
2 γ̂− in the skins and suggest the

following auxiliary problem in the core:

PK+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̂∼
K+ · ∇̂− = 0

σ̂∼
K+ = Ĉ≈( ŷ−) : (∇̂− ⊗s û−

K+
)

û−
K+ = ± tc

2 γ− on interface faces ∂Y ±
int

σ̂∼
K+ · n̂− skew-periodic on ∂Y c

l

û−
K+

(y1, y2, y3) (y1, y2)-periodic on ∂Y c
l

This auxiliary problem is exactly the one suggested by Kelsey et al. [13] for deriving upper bounds of sandwich panels shear
forces stiffness. The potential energy of this problem is:

P K+(
ε̂∼

K+) = 1

2
tγ− · 〈t ê∼−

K+ : Ĉ≈ : ê∼−
K+〉

c · γ−
Then the potential energy of the core and the skins becomes:

P RM(
ε̂∼

K+) = 1

2
tγ− · 〈t ê∼−

K+ : Ĉ≈ : ê∼−
K+〉

c · γ− − ks γ− · Q−

and the minimization over γ− leads to:

P RM(
ε̂∼

K+) = −1

2
t Q− · k2

s

〈t ê∼−
K+ : Ĉ≈ : ê∼−

K+〉−1
c · Q−

Then the related shear forces stiffness is: F∼
K+ = 1

k2
s
〈t ê∼−

K+ : Ĉ≈ : ê∼−
K+〉c which is the upper bound for shear forces stiffness

from Kelsey et al. [13].

B.2. Lower bound for sandwich panels shear forces stiffness

B.2.1. Reuss lower bound
We choose a statically compatible stress field of the form:

σ−
α3 =

⎧⎨
⎩

3
2

h2

h3−t3
c

(
1 − ( 2y3

h

)2)
Q α on Y s±

3
2

h2−t2
c

h3−t3
c

Q α on Y c
and σ−

αβ = σ−
33 = 0

σ∼
− is uniform in the core and fulfills traction free boundary conditions on the upper and lower faces. With this definition

of σ∼
− , the complementary energy becomes:

P∗RM(
σ̂∼

−) = 1

2
t Q− ·

(
k2

s

t2
c

〈
g∼

c 〉
c + 10t2

c + 25tcts + 16t2
s

15(tc + ts)2
tsk

2
s g∼

s
)

· Q−

B.2.2. The lower bound from Kelsey et al. [13]
The complementary energy in the core derived with P K− problem (Problem 18) is:

P∗K−(
σ̂∼

K−) = 1

2

〈t σ̂∼ K− : Ŝ≈
c
( ŷ−) : σ̂∼ K−〉

c

it is a quadratic form of Q− which can be written as:

P∗K−(
σ̂∼

K−) = 1

2
t Q− · k2

s

tc
g∼

K− · Q−

Again, the complementary energy of problems in each skin P K−,s± (Problem 19) is:

P∗K−,s±(
σ̂∼

K−) = 1

2

〈t σ̂∼ K− : Ŝ≈
c
( ŷ−) : σ̂∼ K−〉

s±

it is a quadratic form of Q where it is possible to bring out the correction for thick skins:
−
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P∗K−,s±(
σ̂∼

K−) = 1

2
t Q− · f∼

K−,s± · Q−

Then the complementary energy of the whole unit-cell becomes:

P∗RM(
σ̂∼

K−) = 1

2
t Q− · ( f∼

K− + f∼
K−,s+ + f∼

K−,s−) · Q−

where f
∼

K− = k2
s

tc
g
∼

K− is the lower bound for shear forces stiffness from Kelsey et al. [13].

Appendix C. An exact shear forces stiffness for isotropic sandwich panels

We consider a sandwich panel made of isotropic materials having same Poisson’s coefficient: C≈
c = εC≈

s . Direct application
of Eq. (4) without any contrast assumption, reveals that in this specific case the transverse shear constitutive equation
reduces to a Reissner–Mindlin model. Because the Bending-Gradient theory is closely related to the approach from Whitney
[37] for deriving transverse shear stress distribution, similar results where derived in [46] and [20] but not interpreted this
way. The corresponding Reissner–Mindlin shear forces stiffness is written as:

F∼ = (2η(4η2 + 6η + 3) + ε)2

ε2 + 2εη(5 + 5η + 10η2 + 25η3 + 16η4) + 30η2(1 + η)2

5tc

6
G∼

c

where η = ts/tc . It turns out that this formula is sensitive to the scaling between ε and η when going to the limit. More
precisely, assuming η = 0 as well as η = ∞ leads to the shear forces stiffness of a homogeneous plate (F∼ = 5/6h G∼ ).
Assuming only stiffness contrast between skins and core (ε = 0) leads to the formula from Kelsey et al. [13]. Furthermore
assuming η = 0 after ε = 0 leads to F∼ = hG∼

c which is different from the limit when only η = 0.
More generally, setting a specific scaling between stiffness ratio and thickness ratio: ε = ηα lead to different limit cases

when η goes to 0. If α > 1 the skins stiffness increases fast enough to compensate thickness reduction and the limit case is
F∼ = hG∼

c . Whereas, if α < 1 the limit case is F∼ = 5/6hG∼
c . Finally, α = 1 leads to F∼ = 245/246hG∼

c . Beyond the game with
limit cases, this observation illustrates the sensitivity to the order in which the assumptions are made by the authors, when
deriving shear forces stiffness for sandwich panels and explains some contradictions already pointed out in the literature.
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