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A class of materials is considered that possesses local orthotropic symmetries. Constitutive
models with microstructural evolution are developed within a conventional elastic–plastic
multiplicative decomposition. In the current configuration, the orthotropic vectors evolve
with the microstructural spin, which is the difference between the material and plastic
spins. Representations for tensor-valued functions for orthotropic material behavior due to
Zheng (1994) are extended to develop constitutive equations for the plastic parts of the
rate of stretching and the spin. A key relation is established between components of the
plastic part of the rate of stretching and the plastic spin. Comparisons with experiments
are promising.
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1. Introduction

Large inelastic strains arising in deformation processing of metallic alloys, metal–matrix composites, polymers, or poly-
mer matrix composites as well as in mechanisms of ductile failure typically involve significant changes in microstructure.
Length scales involved range from submicron to millimeters as dislocation cell structures, grain shapes, particle or fiber dis-
tributions, polycrystalline texture, and/or molecular orientation, etc., evolve. In general, non-random microstructures impart
anisotropic macroscopic properties. For example, orthotropic yield functions have been used to predict forming limits in
textured polycrystalline metals when bi-axial strain states are aligned with principle axes of anisotropy, in which case the
symmetries of the microstructure are fixed during deformation. Comparable predictions based upon phenomenological mod-
els do not exist for off-axis forming limits. One prominent application of the latter is plastic forming of polycrystalline sheet
metal into a complex shape. For such problems involving non-uniform deformations at macroscopic scales, predictions that
account for microstructural evolution for the most part require elaborate micromechanical material models and extensive
computations. Indeed, simple but reasonably accurate phenomenological models are lacking that account for microstruc-
tural evolution at the same level of phenomenology as flow rules for plastic strains. The development of such models is the
subject of this paper, which builds upon work of Dafalias [1–3].

Over the last 30 years, there has been substantial progress in modeling large-strain plastic deformation, and no attempt is
made here to review that development. The reader is referred to two recent treatises [4,5], which include phenomenological
engineering plasticity theories and micromechanical models such as those that have been a hallmark of A. Zaoui’s many
contributions [6–8].

To characterize the overall effect of microstructural evolution at the continuum level, we assume that the anisotropy can
be characterized by three mutually orthogonal symmetry planes. Furthermore, orthotropic symmetry is assumed to persist
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at each material point throughout deformation, while the orientation of the orthotropic triad – director vectors in the sense
of Mandel [9,10] – in general varies spatially throughout a non-uniformly deformed sample. Elastic–plastic constitutive
equations are developed that include the spin of those axes (an anti-symmetric, second-order tensor) and specification
of material properties in those directions. Within a standard elastic–plastic multiplicative decomposition, the intermediate
configuration is assumed to be isoclinic in the sense that the director vectors retain the same orientation as in the reference
configuration. Furthermore, we define the microstructural spin to be the difference between the material and plastic spins.
Consequently, to fully characterize microstructural evolution, constitutive relations are required for the plastic parts of the
rate of stretching and the spin, which is the central topic in this paper. One proposal was to derive the plastic part of the
velocity gradient, which includes plastic spin, from potential functions (i.e., normality relations), but no explicit functions
were given [11,12]. Dafalias [1–3] and Loret [13] utilized representation theory for tensors to formulate equations for the
plastic part of spin in the current configuration. Those investigations had limited success in describing observed behaviors.

Indeed, experiments have established the fact that microstructural spin is generally distinct from the material spin, i.e.
plastic spin does not vanish. Nevertheless, from a thermodynamic perspective, Van der Giessen [14,15] noted that a consti-
tutive equation for plastic spin written in current configuration variables does not directly associate energy dissipation with
microstructural evolution. In this work, constitutive equations for plastic spin are derived in the intermediate configuration
and admit such energy dissipation. Representations for scalar-valued and tensor-valued functions [16] expressed in terms of
tensors in that configuration are utilized to develop a key relation between the plastic parts of deformation rate and spin
in the intermediate configuration. Predictions that follow are shown to agree well with available experimental studies that
measured the rotation of orthotropic axes (preferred directions) in textured polycrystals.

Standard notation is used throughout. Boldface symbols are tensors, tr A is the trace of the second-order tensor A,
superscript T denotes transpose, subscripts s and a denote symmetric and anti-symmetric parts of a tensor, respectively,
superscripts e and p denote the elastic and plastic parts, respectively, subscript I denotes the intermediate configuration, and
a superposed dot denotes the material time derivative. Tensor components are written with respect to Cartesian coordinate
systems and products are defined in as: (a⊗b)i j = aib j , (AB)i j = Aik Bkj , and A : B = Aij Bi j . The symmetric unit second-order
tensor I has components δi j , the Kronecker delta.

2. Framework for the phenomenological model

The evolution of microstructure, e.g. polycrystalline texture, particle distributions, or molecular orientation, affects
anisotropic macroscopic response. For example, initially random (isotropic) textures evolve through large-strain processes
to impart continuously-varying preferred orientations. As a result, wire drawing leads to transversely isotropic properties
and sheet rolling leads to orthotropic properties. As a sheet is deformed into a complex shape, texture continues to evolve
but inevitably will be non-uniform throughout the part. For deformation-induced anisotropy, it is plausible to assume that
the local anisotropy possesses three mutually orthogonal symmetry planes at each material point. This approximation, which we
refer to as persistent orthotropic symmetry, is adopted. The principle axes of anisotropy (director vectors) are orthotropic
unit vectors, denoted êi , i = 1,3, that rotate as the material deforms and characterize the effective symmetries of the mi-
crostructure, which spatially vary throughout a non-uniformly deformed sample.

The intermediate configuration is taken to be isoclinic within a multiplicative elastic–plastic decomposition of the defor-
mation gradient (a standard assumption in the finite-strain theory of crystal plasticity [4,5]). Rotation of the orthotropic
triad is determined by the microstructural spin, which is an anti-symmetric tensor that is taken to be the difference between
the material and plastic spins [9–12]. Consequently, to fully characterize microstructural evolution, constitutive relations are
required for the plastic parts of the rate of stretching and the spin. Dafalias [1–3] and Loret [13] utilized representation
theory for tensors to formulate equations for the plastic part of spin in the current configuration. In what follows, we de-
velop constitutive equations for plastic spin in the intermediate configuration, which is associated with plastic dissipation.
Those equations are based upon representations for scalar-valued and tensor-valued functions [16–18]. The latter imply key
relations between the plastic parts of the deformation rate and the spin in the intermediate configuration which are exact and lead
to a relatively simple characterization of microstructural evolution.

2.1. Kinematics of microstructural evolution

The deformation gradient, F, maps the neighborhood of a material point in the initial (reference) configuration (Bo) to
a point in the current configuration (B). Let êoi and êi (i = 1,3) denote orthonormal vectors at each material point that
characterize the orthotropic material symmetries in the configurations Bo and B, respectively. In the setting of finite elastic–
plastic deformations, the multiplicative decomposition F = FeFp is adopted [4,5]. The intermediate “configuration” (BI) is
the mapping of the initial configuration by the plastic part of the deformation gradient, Fp, and the director vectors have

orientation êoi in that isoclinic configuration. The velocity gradient, L = ḞF
−1

is partitioned into elastic and plastic parts as
are its symmetric and anti-symmetric parts, i.e. the rate of stretching (D) and spin (W) tensors:

L = Le + Lp (1)

where
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Fig. 1. The orientation of the orthonormal director vectors in the current configuration determines the partition of rigid rotation associated with Fe and Fp,
which in turn specifies the intermediate configuration.

Le ≡ ḞeFe−1 and Lp ≡ FeḞpFp−1Fe−1 ≡ FeLp
I Fe−1 (2)

and

D = (L)s = De + Dp and W = (L)a = We + Wp (3)

The plastic part of the velocity gradient in the intermediate configuration is denoted Lp
I , and

Dp
I = (

ḞpFp−1)
s and Wp

I = (
ḞpFp−1)

a (4)

Since the microstructural vectors are assumed to remain orthonormal at every stage of deformation (i.e., in the current
configuration), their evolution can be expressed in rate form in terms of the anti-symmetric tensor ω that governs the spin
of the microstructure:

˙̂ei = ω êi, i = 1,3, where ω = We = (
ḞeFe−1)

a (5)

Since We = W − Wp, with W given, a constitutive relation for plastic spin determines the evolution of the vectors that
characterize the local anisotropy at each material point. Among many possibilities, this choice for the evolution of the
director vectors is simple in the sense that it preserves orthotropic symmetries and, as we shall see, leads to accurate
predictions of macroscopic observations that also assume persistent orthotropy. Nevertheless, other choices can readily be
considered if experimental data dictates the need (see [19] for a related discussion of the evolution of slip vectors in the
context of single crystals).

Since spin is an anti-symmetric second-order tensor, there are 3 constitutive functions to be prescribed. That the in-
termediate configuration is only determined to within an arbitrary rotation can be seen from the following argument. Let
F = VeRUp, where R is a rotation (proper orthogonal tensor) and Ve and Up are stretch tensors associated with polar decom-
positions of Fe and Fp. The decomposition R = ReRp is not unique, since F = FeFp = F̃eF̃p where F̃p= QRpUp and F̃e= VeReQT

with Q denoting an arbitrary rotation, which is depicted in the diagram of Fig. 1. This illustrates the facts that: i) the in-
termediate configuration is not uniquely determined by the multiplicative decomposition, while ii) the orientation of the
director vectors in the current configuration serves to uniquely determine the plastic part of the rotation, Rp and, therefore,
also Re.

In simulations of texture evolution under shear deformation, Tugcu and Neale [20] assumed that the orthotropic axes
rotate with the orthogonal tensor associated with rigid-body motion. That simple model, as well as the constitutive mod-
els for plastic spin in the work of Dafalias [1–3,21], cannot adequately describe experiments such as those cited below.
In contrast, predictions based upon (5) with the constitutive equations for plastic spin outlined below do rather well in
accounting for measured rotation of the orthotropic axes in textured sheet materials, even when only using Hill’s quadratic
yield function [22] for orthotropic materials as presented in Section 3.

2.2. Stress measures

In principle, constitutive relations can be defined in any one of the three configurations and appropriately transformed
to another as needed. In this work, plastic behavior is assumed to possess persistent orthotropic symmetry, and the isoclinic
intermediate configuration BI is most convenient.
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Various work-conjugate variables are defined in the intermediate (isoclinic) configuration from the rate of stress working
per unit reference volume:

Ẇ = τ : D = Se : Ėe + �I : Lp
I = Ẇ e + Ẇ p (6)

where τ = τ T is the Kirchhoff stress, Se = Fe−1τFe−T, Ėe = 1
2 (FeTFe − I), and the generally non-symmetric intermediate

configuration stress [9,12,14]:

�I = FeTτFe−T = �Is + �Ia (7)

From (6) with (4) and (7), the rate of energy dissipation can be written as:

Ẇ p = τ : Dp = �I : Lp
I = �Is : Dp

I +�Ia : Wp
I (8)

i.e., �Is and �Ia are conjugate to Dp
I and Wp

I , respectively. Even if �Ia is zero or very small, plastic spin will implicitly
contribute to dissipation since it affects Dp and Dp

I through evolution of the orthotropic material axes. Furthermore, an
explicit contribution to Ẇ p is not necessary to establish a constitutive equation for Wp

I . If the material is elastically isotropic,
then �Ia = 0 [10]. More generally, if the elastic strain is small, i.e., Ve= I + εV̄ with |ε| � 1, then �Is = ReTτRe + O(ε2τ )

and �Ia = O(ε�Is). Therefore, even for anisotropic elasticity, �Ia is small compared with �Is if elastic strain is small.

2.3. Representations for orthotropic plastic behavior

Representation theory for tensor-valued functions of tensors, which was introduced in continuum mechanics by Rivlin
and Ericksen [23] (followed by many others over a 40 year period; see, e.g., [24–27]), is utilized to construct constitutive
equations for plastic spin in the intermediate configuration. Here, we build on the more recent results of Zheng in [16],
which includes an extensive bibliography to the earlier works. For orthotropic behavior, one generally thinks of employing
two symmetric rank-one orientation tensors, Âo1 = êo1 ⊗ êo1 and Âo2 = êo2 ⊗ êo2, with the third derived from orthogonality,
but in fact as Zheng [16] has shown that only one orientation tensor is required:

M̂o = Âo1 − Âo2 with M̂2
o = Âo1 + Âo2 (9)

Therefore, we will investigate constitutive representations for Dp
I and Wp

I in terms of �I and M̂o.
Representations for invariants and generators of orthotropic tensor functions are given in Zheng [16]. From the expres-

sions for invariants in terms of components of tensors in the êoi bases, Pan and Bassani [28] have shown rigorously that
further reductions, so-called syzygies, are possible. They show that complete functional set of 13 invariants of �I and M̂o
are:

{Iκ , κ = 1,13} = {
tr(�Is), tr(M̂o�Is), tr

(
M̂2

o�Is
)
, tr

(
�2

Is

)
, tr

(
M̂o�

2
Is

)
, tr

(
M̂2

o�
2
Is

)
,

tr
(
�2

Ia

)
, tr

(
M̂o�

2
Ia

)
, tr

(
M̂2

o�
2
Ia

)
, tr(M̂o�Is�Ia), tr

(
M̂2

o�Is�Ia
)
, tr

(
�3

Is

)
, tr

(
M̂2

o�
2
IaM̂o�Ia

)}
(10)

For example, for orthotropic behavior, the yield function F expressed in the intermediate configuration can depend only on
the invariants given in (10), i.e., F = F ({Iκ }).

Pan and Bassani [28] also have derived reduced sets of orthotropic generators for second-order tensors. The symmetric,
second-order tensor-valued function Dp

I is composed from 6 symmetric generators:

Dp
I = α1I + α2M̂o + α3M̂2

o + α4�Is + α5(M̂o�Is + �IsM̂o) + α6
(
M̂2

o�Is + �IsM̂2
o

)
(11)

where I is the second-order identity tensor and αμ ’s are scalar-valued functions of the invariants {Iκ }. The anti-symmetric,
second-order tensor-valued function Wp

I is composed of 3 anti-symmetric generators:

Wp
I = β1(M̂o�s − �sM̂o) + β2

(
M̂2

o�s − �sM̂2
o

) + β3
(
M̂o�sM̂2

o − M̂2
o�sM̂o

)
(12)

where the coefficients βν ’s depend on the invariants {Iκ }. Note that �Ia only enters Dp
I and Wp

I through the coefficients αμ

in (11) and βν in (12), respectively. For isotropic response, plastic spin (12) vanishes, which is consistent with the fact that
random microstructures lack preferred directions. The results above for generators that depend linearly on �Is encompass
most, if not all, classical flow theories for orthotropic plastic behavior.

2.4. Constitutive equations for plastic spin

From (11) and (12), one can show that Wp
I is directly related to the shear components of Dp

I expressed in terms of
components with respect to the bases êoi which define the orthotropic symmetry [28]:

Ŵ p = η3 D̂p
, Ŵ p = η2 D̂p

, Ŵ p = η1 D̂p (13)
I12 I12 I13 I13 I23 I23
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where ηi({Iκ }) are scalar-valued functions depending on the invariants and the overstrike ˆ denotes components with re-
spect to the orthotropic bases êoi . Therefore, the plastic part of spin in the intermediate configuration BI depends upon
the non-coaxiality between Dp

I and the initial orthotropic axes êoi , which intuitively makes sense. Furthermore, if the shear

components of D̂p
Ii j vanish, then Wp

I = 0 and, from (2)–(5), ω = W.
The key relations (13), which imply persistent orthotropic material symmetry, are exact (since they have been derived from

representation theory) and reflect the non-coaxiality in the intermediate configuration of the plastic part of the rate of stretching
and the orthonormal director vectors. These relations form the basis of constitutive equations for microstructural evolution, i.e.
the evolution of material symmetries. The ηi are functions of the invariants (10) of �I and M̂o, must be homogeneous
of degree zero in stress, and will depend upon the material and its initial texture. We could construct forms for ηi from
polynomials in ratios of the Iκ ’s that are homogeneous of degree zero. An alternative strategy, which is pursued below,
begins from the notion of non-coaxiality; cf. discussion following (13). We note that Σ̂Is11, Σ̂Is22 and Σ̂Is33 can be expressed
in terms of I1, I2 and I3 from the set of invariants (10). Therefore, from (11), we readily see that D̂p

I11, D̂p
I22 and D̂p

I33 are
also scalar-valued functions of those invariants. In general, only the squares of the shear components of Dp

I , and not the
shear components themselves, are functions of the invariants.

Our attempts to correlate certain observations of textured evolution for polycrystalline metals have guided forms for ηi

proposed below. Consider tensile loading in the plane e1–e2 of an orthotropic sheet; that plane coincides with the ê1–ê2
orthotropic symmetry plane, where β is the angle between e1 and ê1 (see Fig. 1). A common observation is that the sense
of rotation of ê1 towards or away from the tensile axis (e1) depends upon the initial orientation of the tensile axis [29–34].
In particular, the sense of rotation depends upon whether the initial angle βo is greater or less than a critical angle, which
approximately equals 45◦ . That fact implies that ηi cannot be constant. The microstructural spin is zero at that critical angle,
where D̂p

I12 reaches an extreme value, and D̂p
I11 − D̂p

I22 is zero. Initially, we will consider ηi ’s to depend only on diagonal

components of Dp
I with, for example, η3 reducing to a constant if D̂p

I11 = D̂p
I22 in planar loading. In simple shear loading,

Nesterova et al. [31] observed that in the rigid-plastic limit, i.e. without elastic straining, microstructural evolution returns
to its initial state when the applied shear deformation is removed. The latter suggests that the ηi ’s are even functions of
the components D̂p

Ii j . This leads to the following proposal:

η1 = ηo1 + ξ1

ε̇
p2
e

D̂p
I11

(
D̂p

I33 − D̂p
I22

)

η2 = ηo2 + ξ2

ε̇
p2
e

D̂p
I22

(
D̂p

I11 − D̂p
I33

)

η3 = ηo3 + ξ3

ε̇
p2
e

D̂p
I33

(
D̂p

I22 − D̂p
I11

)
(14)

where the six parameters ηoi and ξi are material constants and ε̇
p
e is the equivalent plastic strain rate. For example, under

loading in the ê1–ê2 plane (considered below), from (13) and (14), the non-zero component of Wp
I can be expressed in

terms of on two material parameters, ηo3 and ξ3, as:

Ŵ p
I12 =

[
ηo3 + ξ3

ε̇
p2
e

D̂p
I33

(
D̂p

I22 − D̂p
I11

)]
D̂p

I12 =
[
ηo3 + ξ3

ε̇
p2
e

(
D̂p2

I11 − D̂p2
I22

)]
D̂p

I12 (15)

where plastic incompressibility, D̂p
Iii = 0, leads to the second of (15).

To specify the plastic rate of stretching, we consider a normality flow rule in the intermediate configuration, i.e.,

Dp
I = ε̇

p
e

∂ F

∂�Is
= ε̇

p
e Np

I (16)

For a particular choice of yield/flow function, (16) can be rewritten in terms of components of stress, and an example fol-
lows. Towards that end, consider a material in which �Ia is small compared to �Is, e.g. for finite elastic–plastic deformations
of metal polycrystals as discussed above. In this case, it is reasonable to assume the yield function and flow potential for Dp

I
only depends on �Is. This includes Hill’s quadratic orthotropic yield function [22] as well as the yield functions developed
by Hill [22,35,36], Bassani [37], Barlat and Lian [38], Ferron et al. [39], and many others. All of these can be written in the
form:

F ≡ F
(
Σ̂Is11, Σ̂Is22, Σ̂Is33, Σ̂

2
Is23, Σ̂

2
Is13, Σ̂

2
Is12, Σ̂Is23Σ̂Is13Σ̂Is12

)
(17)

Furthermore, the yield/flow function (17) also can be expressed in terms of the seven invariants that only depend on �Is, i.e.,
Iκ , κ = 1–6 and 12.

For Hill’s quadratic yield function [22], which is adopted for comparisons with experimental observations of texture
evolution presented below,
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Fig. 2. Angle β between loading axes (e1–e2) and principle axes of anisotropy (ê1–ê2).

σe = 1√
2

[
c1(Σ̂Is22 − Σ̂Is33)

2 + c2(Σ̂Is33 − Σ̂Is11)
2 + c3(Σ̂Is11 − Σ̂Is22)

2 + 6c4Σ̂
2
Is23

+ 6c5Σ̂
2
Is13 + 6c6Σ̂

2
Is12

]1/2
(18)

where σe ≡ F denotes the effective stress and ci ’s are parameters defining the yield anisotropy. Yield corresponds to σe =
σY = constant. Since F is homogeneous of degree one in stress, the N̂p

Ii j ’s are degree zero and, from (14), (16) and (18), for
example,

η3 = ηo3 + ξ3

σ 2
e

(c1 + c2 + c3)(Σ̂Is22 − Σ̂Is11)
[
(c1 + c2)Σ̂Is33 − c1Σ̂Is11 − c2Σ̂Is22

]
(19)

With the flow rule relations (16), plastic spin is determined from (13) and the microstructural spin from (5). In addition to
the parameters entering the yield function, e.g. the ci ’s in (18), the phenomenological relations for plastic spin involve six
parameters in 3D. For in-plane loading, only 2 parameters, ηo3, ξ3, in addition to the 3 yield parameters, c1, c2, c3, need
to be specified. In the next section, predictions for the rotation of the anisotropic axes relative to loading axes are shown
to accurately reproduce experimental observations for textured polycrystals. This methodology is readily adopted for other
yield functions.

3. Comparisons with experiments

The constitutive parameters defining orthotropic yield, flow and microstructural evolution can be fit to experimental
data for texture evolution in polycrystalline metals. Consider a rolled sheet with orthonormal vectors {êoi} characterizing
the initially anisotropic symmetries, and consider planar loading in the ê1–ê2 plane with in-plane stressing defined with
respect to the e1 and e2 loading axes, where e3 = ê3. Therefore, for materials with orthotropic symmetry, τ13 = τ23 = 0,
D13 = D23 = 0, and also W23 = −W32 = W13 = −W31 = 0, where here the components with respect to the loading axes
ei . The rotation of the ê1–ê2 axes is about the e3 (= êo3) axis is characterized by the angle β = cos−1(e1 · ê1) (see Fig. 2).
For brevity, in what follows we neglect elastic strains, which tend to be much smaller than the total strains arising in all
the experiments to be considered; that is, Fe = Re.

Let ê1 = cosβe1 + sin βe2. From (5), ˙̂e1 = ω ê1, and it follows that the rate of rotation the loading axes with respect to
the current orientation of the principle axis of anisotropy, ê1, is

β̇ = −ω12 = W p
12 − W12 (20)

For small elastic strains, W p
12 ≈ W p

I12 and (20) can be approximated as β̇ ≈ Ŵ p
I12 − W12. Therefore, given a constitutive

equation for Dp
I , from (13) with (14), only two constants ηo3 and ξ3 need to be specified to describe the microstructural

evolution under planar loading. Note, if Ŵ p
I12 = 0, then the orthotropic axes spin with the material, i.e., β̇ = −W12.

The degree of anisotropy for in-plane loading requires the specification of three material parameters for two-dimensional
states of stress. These are conveniently expressed in terms of:

s1 = Σ̂2/Σ̂1, s2 = Σ̂b/Σ̂1, s3 = Σ̂y12/Σ̂1 (21)

where Σ̂1 and Σ̂2 are the uniaxial yield stresses in the êo1 and êo2 directions, respectively, Σ̂b = −Σ̂Is11 = −Σ̂Is22 is the
equal bi-axial yield stress, Σ̂y12 is the yield stress in shear. For isotropic behavior, s1 = s2 = 1 and, from the von Mises
criterion, s3 = 0.577. Representative values of ηo3, ξ3, s1, s2, s3 for three materials from fits to experiments discussed below
are given in Table 1.

For off-axis tensile and shear loading in the plane of anisotropic sheet materials, the orientation of the loading axes (ei)

relative to the principle axes of anisotropy (êi) tends to continuously change due to microstructural evolution (Fig. 2). Under
uniaxial tensile loading, Boehler and Koss [29] and Losilla et al. [30] tested a cold-rolled steel sheet (material A) at initial
angles of the tensile axes relative to the principle planes of anisotropy of βo = 30◦,45◦,60◦ . The measured change in that
angle as a function of the tensile strain is plotted in Fig. 3. Clearly, significant changes are seen with strains only on the order
of 0.1. The tensile axes tend to rotate towards the rolling direction in the first two cases and towards the transverse direction
in the third case. The solid curves in Fig. 3 are predictions based upon the phenomenological relations (15). Neglecting
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Table 1
Parameters entering the equation for plastic spin (15) and the yield function (18) with (21) for three materials fit to experimental data.

Material ηo3 ξ3 s1 s2 s3

A 1.5 30.0 1.06 1.06 0.59
B −1.0 80.0 1.03 0.98 0.80
C −2.0 80.0 0.96 1.01 0.67

Fig. 3. Rotation of the uniaxial tensile axis relative to the principle axis of anisotropy in a steel sheet as a function of strain for initial orientations
βo = 30◦,45◦ , and 60◦ . Data (squares) are from Boehler and co-workers [29,30] and curves are our predictions for material A.

Fig. 4. Rotation of the axes of shear loading relative to the principle axes of anisotropy in a steel sheet following shear strains of γ = −0.3 (red) and −0.6
(black). Data (dots) are from Nesterova et al. [31]. Predictions from the proposed phenomenological model for material B are solid curves and those for
vanishing plastic spin are dashed lines.

microstructural evolution, i.e. in this case assuming that plastic spin vanishes, leads to β = βo = constant, which clearly is
not observed. Nesterova et al. [31] considered simple shear loading of cold-rolled steel sheets (material B) at various angles
to the rolling direction. They also observed significant rotation of the loading axes with respect to the axes of symmetry
(using X-ray texture measurements) as seen in Fig. 4; the solid curves are predictions based upon the constitutive model for
microstructural evolution and the dashed curves correspond to the vanishing of plastic spin. Other experimental studies of
off-axis texture evolution [32–34] all established the fact that the microstructure does not rotate with the material. Similar
effects are known for composites [40,41] and polymers [42–44].

4. Estimates of strain maxima under tensile loadings

Under tensile loading, a specimen tends to reach a load maximum at the onset of necking. For off-axis loading, rotation
of the tensile axis relative to material symmetry planes also plays an important role. A relatively simple, Considere criterion,
can be applied to investigate the effects of microstructural evolution on limits to ductility. Consider uniaxial stressing, with

σ = σY
(
ε

p
e , β

) = C(β)σe
(
ε

p
e
)

(22)

As depicted in Fig. 2, β characterizes the orientation of the loading axes relative to the principle axes of anisotropy, which
in general varies with deformation. From (22), the condition for load maximum is:

dP = d(σ A) =
(

∂σ

∂ε
p
e

dε
p
e + ∂σ

∂β
dβ

)
· A + σ · dA = 0 (23)

where the first term represents material hardening, the second microstructural hardening or softening and the third geometric
softening. As an example, consider material C of Table 1 which is fit to the data of Kim and Yin [33] and displays trends
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Fig. 5. Normalized uniaxial yield stress versus orientation of the tensile axis β for material C (Kim and Yin [33] data).

Fig. 6. Nominal uniaxial stress versus strain for βo = 30◦ (red), 45◦ (green), 60◦ (black) for material C. Load maxima indicated by filled circles. Dashed
curves without effects of microstructural evolution, i.e. for vanishing plastic spin.

similar to the results shown in Fig. 3. Power-law hardening is assumed: σ/σo = (ε/εo)
N with N = 0.1 and εo = 0.001.

For that material, the variation of the uniaxial yield stress in the plane of the sheet as predicted by the Hill yield criterion
(18) is plotted in Fig. 5, which depicts a moderate degree of anisotropy. Load versus plastic strain curves are plotted in
Fig. 6 for three initial orientations of the tensile axes relative to the rolling direction. The solid curves are predictions with
microstructural evolution, while the dashed curves correspond to β fixed. For all three cases, microstructural evolution
significantly lowers the maximum load, and a significant reduction in ductility also is predicted for βo = 30◦ .

5. Conclusions

A continuum-level theory for microstructural evolution has been developed for anisotropic materials with locally or-
thotropic properties. Based upon the conventional elastic–plastic decomposition, constitutive equations for plastic response
are expressed in the intermediate configuration where the director vectors (orthotropic axes) have the same orientation
as in the initial configuration. The rotation of orthotropic axes is governed by the microstructural spin, which depends on
the elastic part of the deformation gradient and, in turn, the partition of the total rotation into elastic and plastic parts.
Given that there is freedom in specifying the intermediate configuration, there also is freedom in specifying rotation of
the microstructure relative to the material rotation. Constitutive equations for microstructural spin, which is the difference
between the material and plastic spins, are defined in terms of the variables in the intermediate configuration, including a
generally non-symmetric stress measure that is work-conjugate to the plastic part of deformation gradient. In the case of
small elastic strains, that anti-symmetric stress is shown to be relatively small compared with the symmetric stress, but it
does contribute to the plastic response.

Representations are developed for scalar- and tensor-valued functions depending on variables in the intermediate con-
figuration, which include a rank-two symmetric tensor associated with orthonormal director vectors and the generally
non-symmetric stress. A reduced set of invariants and generators are derived from the components of tensors in the in-
termediate configuration with respect to the orthotropic symmetry axes. Based on these representations, a key connection
is derived between the components of the plastic parts of the rate of stretching and the spin. Plastic spin is shown to
be associated with the non-coaxiality between the plastic rate of stretching and the orthotropic axes in the intermediate
configuration.

Relations that determine the plastic spin in terms of the plastic part of the rate of stretching have been proposed in terms
of six parameters, which for certain symmetries reduce to two. Comparisons with experimental results demonstrate that
the constitutive model can represent macroscopic aspects of microstructural evolution of textured polycrystals under simple
shear and uniaxial tension, including reverse plastic loading. A significant effect on the maximum load and corresponding
strain under uniaxial tensile loading is predicted.
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