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We extend our modeling of smart structures to the second order piezoelectricity. We show
that three different models have to be taken into account, which broadens the scope of
the sensors and actuators field. The second order piezoelectricity being compatible with
isotropy, we also propose a systematic study of the impact of crystalline symmetries on
our models.
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r é s u m é

Nous étendons à la piézoélectricité avec gradient du champ électrique notre étude des
couplages électromécaniques dans les structures minces. Nous montrons en particulier
que trois modèles distincts apparaissent à la limite, ce qui enrichit substantiellement la
description du comportement des capteurs et actionneurs en fonction du chargement
électrique qui leur est imposé. La piézoélectricité du second gradient étant compatible avec
l’isotropie, nous proposons également une étude systématique de l’influence des symétries
cristallines sur les modèles obtenus.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the 1960’s the study of unexplained aspects of piezoelectricity led Mindlin [1] to extend the classical Voigt the-
ory [2] in Toupin’s formulation [3] by assuming that the stored energy function not only depends on the strain tensor and
polarization vector but also on the polarization gradient tensor. What motivated Mindlin to study the effects of the polar-
ization gradient was the capacitance of a very thin dielectric film. Experiments showed that the capacitance of a very thin
film is systematically smaller than the classical prediction. Moreover, performing experimental tests, Mead [4] showed that
piezoelectric effects can also appear in centrosymmetric crystals, which is in contradiction with classical Voigt theory. And,
indeed, the Mindlin’s theory of elastic dielectrics with polarization gradient accommodates the observed and experimentally
measured phenomena, such as electromechanical interactions in centrosymmetric materials, capacitance of thin dielectric
films, surface energy of polarization, deformation and optical activity in quartz (see for example [5,6] and references quoted
therein). In this paper we choose to adopt an alternative to the Mindlin formulation by introducing the electric field gra-
dient, as in [7] for example. Because such gradient theories can describe size effects that are important in small-scale
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problems, it seems unavoidable to use them to deepen our understanding of smart structures, the wide majority of them
being thin. In this paper we perform a mathematical modeling of the second order piezoelectric plate by regarding its thick-
ness as a small parameter denoted by ε. Then, we study the behavior of the solution of the electromechanical problem as
ε tends to 0. We show that depending on the type of electric loading, three different models indexed by p appear at the
limit. This result extends our previous study in [8] and shows that gradient theory broadens the understanding of sensors
and actuators. When p = 2 and p = 3 we are able to express the constitutive laws as a Schur complement of the second
order piezoelectric tensor (see (2) and (11)). It is important to emphasize that this expression is valid for any symmetry
class, which means that we do not make any simplifying assumptions dealing with the crystal symmetry of the material
constituting the plate. When p = 1, we are not able to explicitly derive the constitutive law of the limit model. Therefore, as
in the case of the first order piezoelectric rods treated in [9], it seems very likely to us that non-local terms appear in this
delicate situation. Finally, we study the influence of the crystal symmetries on our models for p = 2,3 and show that even
for the second order piezoelectricity, an electromechanical switch-off may appear in the structure if the plate is designed
with specific materials.

2. Setting the problem

We will denote displacement fields by the letters u, v and w while the electric potentials will be denoted by ϕ , ψ

and φ. Depending on the nature of our formulation, these letters may be indexed by ε which stands for the thickness of the
plate, regarded as a parameter. Classically, the tensor of small strains is written e(u) ∈ S3 where S N indicates the set of all
N × N real and symmetric matrices. Used as indexes, letters i and j take their values in {1,2,3} while α and β take their
values in {1,2}. We recall that 2ei j(u) = ∂iu + ∂ ju where the symbol ∂i refers to the partial derivative with respect to the
i-th coordinate. The gradient of an electric potential ϕ will be denoted by ∇ϕ ∈ R3 and its bigradient by ∇2ϕ ∈ S3 where
∇2

i jϕ = ∂2
i jϕ = ∂i∂ jϕ . Given an electromechanical state (u,ϕ) we therefore have (e(u),∇ϕ,∇2ϕ) ∈H, with

H = S3 ×R3 × S3 (1)

Often, an element of H will be represented by a triplet (e, g, G). For the sake of simplicity, the classical symbol · will
stand for the scalar product in H, S3 and R3. The set of all linear mappings from a space V into a space W is denoted by
L(V , W ) and, if V = W , we simply write L(V ). In the sequel, for all domain D of RN , H1

Γ (D) refers to the subset of the
Sobolev space H1(D) whose elements vanish on Γ , included in the boundary ∂ D of D , except H1

m(D) which is the set of
the elements of H1(D) with zero average on D .

The reference configuration of a linearly piezoelectric thin plate is the closure in R3 of the set Ωε = ω × (−ε, ε) whose
outward unit normal is nε . Here, ε is a small positive number and ω a bounded domain of R2 with a Lipschitz bound-
ary ∂ω. The lateral part of the plate ∂ω × (−ε, ε) is denoted Γ ε

lat , while Γ ε± = ω × {±ε} refers to the upper or lower face,
respectively. Let (Γ ε

mD ,Γ ε
mN ), (Γ ε

eD,i,Γ
ε

eN,i)i=1,2 be three suitable partitions of ∂Ωε with Γ ε
mD and Γ ε

eD,i of strictly positive
surface measures. The plate is, on one hand, clamped along Γ ε

mD and the electric potential ϕε satisfies ϕε = ϕε
0 on Γ ε

eD,1
and ∂nϕ

ε = ∂nϕ
ε
0 on Γ ε

eD,2, where the symbol ∂n refers to the normal derivative along the boundary of Ωε and ϕε
0 is a

smooth enough given field defined in Ωε . On the other hand, the plate is subjected to body forces f ε and electric loading
qε in Ωε . Actually, qε vanishes, the material being an insulator, anyway the following analysis stands with qε different
from 0. Moreover, the plate is subjected to surface forces F ε and electric loading qε

s on Γ ε
mN and Γ ε

eN,1 respectively. It is
also necessary to define ‘body’ and ‘surface’ electric dipoles densities, respectively denoted by dε , dε

s and defined in Ωε and
on Γ ε

eN,2. Finally, we assume that Γ ε
mD = γ0 × (−ε, ε), with γ0 ⊂ ∂ω.

We now define the operator

Mε =
⎛⎝ aε −bε −αε

bεT
cε βε

αεT
βεT

γ ε

⎞⎠ (2)

which describes the electromechanical coupling with electric field gradient effect. More precisely, aε , bε and cε are re-
spectively the elastic, piezoelectric and dielectric tensors while αε , βε and γ ε describe the second order couplings. Recall
that θ T denotes the transpose of any tensor θ . We have (aε,bε, cε,αε,βε,γ ε) ∈ L(S3) × L(R3, S3) × L(R3) × L(S3) ×
L(S3,R3) ×L(S3), so that Mε ∈L(H).

We are looking for the electromechanical state (uε,ϕε) living in the piezoelectric plate at equilibrium, where uε denotes
the displacement field. For this purpose, we first make the following regularity hypothesis on the exterior loading:

(H1):
{(

f ε,qε,dε, F ε,qε
s ,dε

s

) ∈ L2
(
Ωε

)3 × L2
(
Ωε

) × L2
(
Ωε

)3 × L2
(
Γ ε

mN

)3 × L2
(
Γ ε

eN,1

) × L2
(
Γ ε

eN,2

)
ϕε

0 ∈ H2
(
Ωε

)
and define

H2
ε

(
Ωε

) = {
ψ ∈ H2(Ωε

)
: ψ = 0 on Γ ε

eD,1, ∂nψ = 0 on Γ ε
eD,2

}
(3)
ΓeD
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Now, on the space of electromechanical states

V ε = H1
Γ ε

mD

(
Ωε

)3 × H2
Γ ε

eD

(
Ωε

)
(4)

we define a bilinear form mε:

mε(r, t) = mε
(
(v,ψ), (w, φ)

) =
∫

Ωε

Mε
(
e(v),∇ψ,∇2ψ

) · (e(w),∇φ,∇2φ
)

dxε (5)

and a linear form Lε:

Lε(r) = Lε
(
(v,ψ)

) =
∫

Ωε

(
f ε · v + qεψ + dε · ∇ψ

)
dxε +

∫
Γ ε

mN

F ε · v dsε +
∫

Γ ε
eN,1

qε
s ψ dsε +

∫
Γ ε

eN,2

dε
s ∂nψ dsε (6)

The electromechanical problem then takes the form

P
(
Ωε

): Find sε = (
uε,ϕε

) ∈ (
0,ϕε

0

) + V ε such that mε
(
sε, r

) = Lε(r), ∀r ∈ V ε

Thus, with the additional and realistic assumptions of boundedness of aε , bε , cε , αε , βε , γ ε and of uniform ellipticity of aε ,
cε and γ ε :

(H2): Mε ∈ L∞(
Ωε,L(H)

)
, ∃κε > 0: Mε

(
xε

)
h · h � κε|h|2H, ∀h ∈ H, a.e. xε ∈ Ωε

the Stampacchia’s theorem (cf. [10]) implies the

Theorem 2.1. Under assumptions (H1)–(H2), the problem P(Ωε) has a unique solution.

To derive a simplified and accurate model, the true question is to study the behavior of sε when ε, regarded as a parameter,
tends to zero.

3. The three different models

Here we will show that three different limit behaviors, indexed by p = 1,2 or 3, appear according to both the type of
electric boundary conditions and the magnitude of the electric external loading. In the sequel, any h = (e, g, G) ∈H will be
represented as (ê, e⊥, e33, ĝ, g3, Ĝ, G⊥, G33) where the symbol ˆ denotes both elements of L(R3,R2) and L(S3, S2) defined
by ξ̂ = (ξ1, ξ2) if ξ ∈ R3, (ξ̂ )αβ = ξαβ if ξ ∈ S3 while ⊥ stands for the element of L(S3,R2) such that (ξ⊥)α = ξα3. For the
sake of simplicity, we straightforwardly extend to differential operators the definitions of ˆ and ⊥ .

Classically (see [11]) we come down to a fixed open set Ω = ω × (−1,1) through the mapping πε:

x = (x̂, x3) ∈ Ω 
→ πεx = (x̂, εx3) ∈ Ωε (7)

Also, we drop the index ε for the images by (πε)−1 of the geometric sets defined in the preceding section. To get physically
meaningful results, we have to make various kinds of assumptions. They deal with

(i) the electromechanical coefficients:

(H3): Mε
(
πεx

) = M(x) with M ∈ L∞(
Ω,L(H)

)
, ∃κ > 0: M(x)h · h � κ |h|2H, ∀h ∈ H, a.e. x ∈ Ω

(ii) the electromechanical loading:

(H4):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃( f , F ,q,d,qs,ds) ∈ L2(Ω)3 × L2(ΓmN)3 × L2(Ω) × L2(Ω)3 × L2(ΓeN,1) × L2(ΓeN,2)

f̂ ε
(
πεx

) = ε f̂ (x), f ε
3

(
πεx

) = ε2 f3(x), qε
(
πεx

) = ε2−pq(x), ∀x ∈ Ω

F̂ ε
(
πεx

) = ε2 F̂ (x), F ε
3

(
πεx

) = ε3 F3(x), ∀x ∈ ΓmN ∩ Γ±
F̂ ε

(
πεx

) = ε F̂ (x), F ε
3

(
πεx

) = ε2 F3(x), ∀x ∈ ΓmN ∩ Γlat

d̂ε
(
πεx

) = ε2−pd̂(x), dε
3

(
πεx

) = ε3−pd(x), ∀x ∈ Ω

qε
s

(
πεx

) = ε3−pqs(x), ∀x ∈ ΓeN,1 ∩ Γ±, qε
s

(
πεx

) = ε2−pqs(x), ∀x ∈ ΓeN,1 ∩ Γlat

d̂ε
s

(
πεx

) = ε3−pd̂s(x), dε
s3

(
πεx

) = ε4−pds3(x), ∀x ∈ ΓeN,2 ∩ Γ±
d̂ε

s

(
πεx

) = ε2−pd̂s(x), dε
s3

(
πεx

) = ε3−pds3(x), ∀x ∈ ΓeN,2 ∩ Γlat

ϕε
0

(
πεx

) = εpϕ0(x), ∀x ∈ Ω
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(iii) the boundedness of the “work of the exterior loading”:

(H5):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p = 1: the extension of ϕ0 into Ω does not depend on x3

p = 2: – the closure δα of the projection of ΓeD,α on ω coincides with ω

– either qs = 0 on ΓeN,1 ∩ Γlat or ΓeN,1 ∩ Γlat = ∅
– either ds = 0 on ΓeN,2 ∩ Γlat or ΓeN,2 ∩ Γlat = ∅
– ϕ0 is x3-affine

p = 3: – the closure δα of the projection of ΓeD,α on ω coincides with ω

– either qs = 0 on ΓeN,1 ∩ Γlat or ΓeN,1 ∩ Γlat = ∅
– either ds = 0 on ΓeN,2 ∩ Γlat or ΓeN,2 ∩ Γlat = ∅

Also, with the true physical electromechanical state sε = (uε,ϕε) defined on Ωε , we associate a scaled electromechanical
state sp(ε) = (up(ε),ϕp(ε)) defined on Ω by:

ûε
(
xε

) = ε
(

ûp(ε)
)
(x), uε

3

(
xε

) = (
up(ε)

)
3(x), ϕε

(
xε

) = εpϕp(ε)(x), ∀xε = πεx ∈ Ωε (8)

so that sp(ε) is the unique solution of the following mathematical problem:

P(ε,Ω)p : Find sp(ε) ∈ (0,ϕ0) + V such that mp(ε)
(
sp(ε), r

) = L(r), ∀r ∈ V = H1
ΓmD

(Ω)3 × H1
ΓeD

(Ω)

equivalent to the genuine physical one, with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mp(ε)(s, r) =
∫
Ω

M(x)kp(ε, s) · kp(ε, r)dx, kp(ε, r) = kp
(
ε, (v,ψ)

) = (
e(ε, v),∇p(ε,ψ),∇2

p(ε,ψ)
)

ê(ε, v) = ê(v), e⊥(ε, v) = ε−1e⊥(v), e33(ε, v) = ε−2e33(v)

2eij(v) = ∂i v j + ∂ j vi, ∇̂p(ε,ψ) = εp−1∇̂ψ, ∇p(ε,ψ)3 = εp−2∂3ψ

∇̂2
p(ε,ψ) = εp−1(∇̂2ψ

)
, ∇2⊥

p (ε,ψ) = εp−2(∇2⊥
ψ

)
, ∇2

p(ε,ψ)33 = εp−3(∇2ψ
)

33

L(r) = L(v,ψ) =
∫
Ω

( f · v + qψ + d · ∇ψ)dx +
∫

ΓmN

F · v ds +
∫

ΓeN,1

qsψ ds +
∫

ΓeN,2

ds∂nψ ds

(9)

Finding the limit problems is more difficult than in the situation of the first order piezoelectricity because the case p = 1
involves a greater number of state variables: s̃1 = (v, w,ψ,φ) needs to be added to the initial state variable s = (u,ϕ) and
we set s1 = (s, s̃1). Let:

V KL = {
u ∈ H1

ΓmD
(Ω)3; ei3(u) = 0

}
V = {

v ∈ L2(ω, H1
m(−1,1)

)2 × {0}}, W = {
w ∈ {0}2 × L2(ω, H1

m(−1,1)
)}

H1
∂3

= {
ϕ ∈ L2(Ω); ∂3ϕ ∈ L2(Ω)

}
, H2

∂3
= {

ψ ∈ H1
∂3

; ∂3ψ ∈ H1
∂3

}
, H2

∇2⊥ = {
φ ∈ H2

∂3
; ∇2⊥

φ ∈ L2(Ω)
}

E1 = {
ϕ ∈ H2

ΓeD
(Ω); φ x3-affine function

}
E2 = {

ψ ∈ H2
∇2⊥ , ψ x3-affine function, ψ = 0 on ΓeD,1 ∩ Γ lat, ∂3ψ = 0 on ΓeD,2 ∩ Γ lat}

E3 = {
φ ∈ H2

∂3
, φ = 0 on Γ ±

eD,1, ∂3φ = 0 on Γ ±
eD,2

}
X1 = H1

ΓmD
(Ω)3 × H1

∂3
× V ×W × H2

∂3
× H2

∇2⊥ , X2 = H1
ΓmD

(Ω)3 × H2
∂3

, X3 = H1
ΓmD

(Ω)3 × H2
∇2⊥

V 1 = V KL × E1 × V ×W × E2 × E3, V 2 = V KL × E2, V 3 = V KL × E3

If s10 = (0,ϕ0,0,0,0) the limit problem for p = 1 reads as

P(Ω)1: Find s1 ∈ s10 + V 1 such that
∫
Ω

M(x)k1(s1) · k1(r1)dx = L(r), ∀r1 = (r, r̃1) ∈ V 1

where k1(r1) ∈ L2(Ω,H) is represented by (ê(u′), e⊥(v ′), e33(w ′), ∇̂ϕ′, ∂3ψ
′, ∇̂2ϕ′,∇2⊥

ψ ′,∇2
33φ

′) when r = (u′,ϕ′) and r̃1 =
(v ′, w ′,ψ ′, φ′).

If p = 2,3 it is possible to generalize the method described in [8]. The key point of this method is to observe that
some components of kp(ε, sp(ε)) and of Mkp(ε, sp(ε)) have vanishing limits when ε goes to 0 so that it suggests a suitable
orthogonal decomposition of H in the following subspaces:
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H−
1 = {

h = (e, g, G): ê = 0, ĝ = 0, Ĝ = 0
}
, H0

1 = {
h = (e, g, G): ei3 = 0, g3 = 0, Gi3 = 0

}
H−

2 = {
h = (e, g, G): ê = 0, gi = 0, Gαi = 0

}
, H−

3 = {
h = (e, g, G): ê = 0, gi = 0, Gij = 0

}
H0

2 = {
h = (e, g, G): ei3 = 0, ĝ = 0, Ĝ = G33 = 0

}
, H0

3 = {
h = (e, g, G): ei3 = 0, gi = 0, Gi3 = 0

}
H+

2 = {
h = (e, g, G): eij = 0, g3 = 0, Gi3 = 0

}
, H+

3 = {
h = (e, g, G): eij = 0, G33 = 0

}
(10)

For a given p ∈ {2,3}, M can then be decomposed in nine elements M��
p ∈L(H�

p,H�
p) with �,� ∈ {−,0,+}. Hypothesis (H3)

on the electromechanical coefficients implies that M00
p and M−−

p are positive operators on H0
p and H−

p . Therefore, the Schur
complement

M̃p = M00
p − M0−

p

(
M−−

p

)−1
M−0

p (11)

is an element of L(H0
p). It is important to note that neither M00

p nor M̃ p are necessarily symmetric, but nevertheless

κ
∣∣h0

p

∣∣2
H � M̃p(x)h0

p · h0
p, ∀h0

p ∈ H0
p, a.e. x ∈ Ω (12)

This is implied by the coercivity of M (see (H3)) and by the fundamental relation:

(M h)−p = h+
p = 0 ⇒ M̃ph0

p = (Mh)0
p and M̃ph0

p · h0
p = M h · h (13)

The key point of the asymptotic study is to show that if kp is the limit (in a suitable topology) of kp(ε, sp(ε)), then
(M kp)−p = (kp)+p = 0 which exhibits M̃ p as the operator governing the two limit problems for p = 2,3:

P(Ω)p : Find sp ∈ (0,ϕ0) + V p such that
∫
Ω

M̃p(x)k(sp)0
p · k(r)0

p dx = L(r), ∀r ∈ V p

where k(r) stands for (e(v),∇ψ), while k(r)0
p denotes the projection of k(r) on the space H0

p , for all r = (v,ψ) ∈ V p .
Under assumptions (H1)–(H5), we have the following convergence result:

Theorem 3.1.

(i) When ε tends to 0, the family (s1(ε))ε>0 of the unique solutions of P(ε,Ω)1 is such that (s1(ε),k1(ε, s1(ε))) converges strongly
in H1

ΓmD
(Ω)3 × H1

∂3
× L2(Ω,H) to (s1,k1(s1)), where s1 = (s1, s̃1) is the unique solution of P(Ω)1 .

(ii) For p = 2,3 and when ε tends to 0 the family (sp(ε))ε>0 of the unique solutions of P(ε,Ω)p converges strongly in X p to the
unique solution sp of P(Ω)p .

Sketch of proof. As usual, C denotes various constants which can differ from one line to another. Taking into account Korn
and traces inequalities in H1(Ω)3 for the displacements and Poincaré-like and traces inequalities in H1

∂3
(Ω) for the elec-

tric potential and its derivatives, (H4)–(H5) suffice to show that |kp(ε, (0,ϕ0)) |L2(Ω,H) � C and |L(r)| � C |kp(ε, r)|L2(Ω,H) .

Assumption (H3) then implies |kp(ε, sp(ε))|L2(Ω,H) � C . Thus there exist a non-relabeled subsequence and (sp,kp) in
V p × L2(Ω,H) such that(

sp(ε),kp(ε)
)
⇀ (sp,kp) in Xp × L2(Ω,H), k(sp) = (kp)0

p, (kp)+p = 0 (14)

For p � 2, using suitable test functions in P(ε,Ω)p as in [8], we get (Mkp)−p = 0. Taking test functions such that kp(ε, r) =
k(r)0

p we conclude that sp is the unique solution of P(Ω)p so that the whole sequence sp(ε) converges. To get the strong
convergence it suffices to choose h = kp(ε, sp(ε)) − kp in (H3), integrate in Ω and go to the limit in the right hand side of
the inequality obtained through (13)–(14).

If p = 1 the test function methods do not make it possible to show that (Mk1)
−
1 = 0. We therefore proceed as in [12]

and [9] by introducing the additional state variables v1(ε) = (û1(ε)/ε,0), w1(ε) = (0,0, u13 (ε)/ε2), ψ1(ε) = ϕ(ε)/ε and
φ1(ε) = ϕ1(ε)/ε2 so that k1(s1(ε)) = k1(ε, s1(ε)). Moreover, for all r1 ∈ V 1 there exists r(ε) in V such that k1(ε, r(ε))

converges strongly in L2(Ω,H) toward k1(r1) and L(r(ε)) tends to L(r). Hence, we deduce the weak convergence in X1 of
s1(ε) to the unique (see (H3)) solution s1 of P(Ω)1. The strong convergence is proved as for p � 2. �
4. Some properties of ˜M p

It is interesting to give some properties of the operators M̃ p which supply the constitutive relations of the electrome-
chanical plate with electric field gradient. We recall that these operators are defined for p = 2,3. In the case p = 2, the limit
model involves a coupling between the displacement field, the electric field and the electric field gradient while in the case
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p = 3, the coupling involves the displacement field and the electric field gradient only (see the definitions of the spaces V 2
and V 3 given supra). Because of the explicit expression (11) of M̃ p as a Schur complement, it is possible to show that

M̃2 =
⎛⎝ ã2 −b̃2 −α̃2

b̃T
2 c̃2 β̃2

α̃T
2 β̃T

2 γ̃2

⎞⎠ , M̃3 =
(

ã3 −α̃3

α̃T
3 γ̃3

)

where (ã2, b̃2, c̃2, α̃2, β̃2, γ̃2) ∈L(S2)×L(R, S2)×L(R)×L(R2, S2)×L(R2,R)×L(R2) and (ã3, α̃3, γ̃3) ∈L(S2)×L(R, S2)×
L(R). Considering the influence of crystallographic classes, it can be shown that in the case of a polarization normal to the
plate we have the following properties:

– ã3 involves mechanical terms only,
– α̃3 never vanishes,
– b̃2 vanishes for the crystalline classes m, 32, 422, 6, 622 and 6m2, as in the first order piezoelectricity (see [8]),
– α̃2 always vanishes except for the classes 3, 32 and 3m,
– β̃2 always vanishes except for the class m,
– when p = 2, there is a complete electromechanical decoupling (b̃2 = α̃2 = β̃2 = 0) for the classes 422, 6, 622 and 6m2,

nevertheless the operators ã2, c̃2 and γ̃2 involve a mixture of elastic, dielectric and coupling coefficients. In these cases,
M̃ε

2 is symmetric which involves a quadratic convex energy. For plates made of these piezoelectric monocrystals, the first and
second order coupling effects disappear at the structural level!
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