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The Heat-Balance Integral Method (HBIM) of Goodman under classic prescribed temperature
boundary conditions has been studied towards it optimization. Because the parabolic
profile satisfies both the boundary conditions and the heat-balance integral at any value of
the exponent the calibration is of a primary importance in generation of the approximate
solution. The simple 1-D heat conduction problem, enabling one to demonstrate the HBIM
performance with the entropy generation minimization (EGM) concept in calibration of a
parabolic temperature profile with unspecified exponents, has been developed. The EGM
concept provides constraints that impose addition boundary conditions at the approximate
parabolic profile. Additionally, entire domain optimizations based on the mean-squared
error concept has been performed in two versions – the method Myers and through a
similarity transformed diffusion equation.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The heat balance integral method of Goodman [1] is an effective method for solving heat diffusion problems with strong
non-linearity either in the energy equation or at the boundaries. Analytical solutions are, however, quite cumbersome and
there cases where approximate simple analytical solutions are need. The Goodman method is one of the leading approaches
among the approximate methods in solving 1-D transient diffusion problem over 50 years and it is still being under de-
velopment [2–9]. The basic idea of the Heat-Balance Integral Method (HBIM) employs a physically-based formulation of
a thermal layer (this avoids the physical inadequacy of the Fourier equation) and a prescribed temperature profile. These
essential ideas allow transformation of strong non-linear 1-D heat conduction problems into ordinary differential equation
with respect to the thermal layer temperature evolution [1,10]. The common approach is to use polynomial temperature
approximations with respect to the space co-ordinate with up to 4 boundary conditions allowing defining the profile coef-
ficients as functions of the thermal layer depth δ(t) (see Eqs. (3), too), namely:

T (0, t) = Ts or −λ
∂T

∂x
= q̇s (1a)

T (δ, t) = T∞ (1b)

λ
∂T

∂x

∣∣∣∣
x=δ

= 0 (1c)

∂2T

∂x2

∣∣∣∣
x=δ

= 0 (1d)
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Nomenclature

a Term in the generalized parabolic profile
(Eq. (4))

b coefficient in the generalized parabolic profile
(Eq. (4))

c coefficient in the generalized parabolic profile
(Eq. (4))

En(n, t) mean-squared error of approximation defined
by Eq. (19a)

en(n, t) mean-squared error of approximation defined
by Eq. (19b)

n exponent of the parabolic profile
nT

M exponent defined by the Myers’ method
q heat flux density, W/m2

q′′
s surface heat flux (x = 0), W/m2

Ṡ entropy generation rate, W/K
T temperature, K
Ta approximate profile
T∞ temperature of the undisturbed medium, K
t time, s
x space co-ordinate, m

Greek letters

α thermal diffusivity, m2/s
δ thermal penetration depth, m
η = x/

√
αt similarity variable

λ thermal conductivity, W/m K
Θ dimensionless temperature

Subscripts

0 defined at the surface (x = 0)

a approximate
e exact
M Myers’ method
s surface (at x = 0)
η similarity method

Superscripts

T prescribed temperature problem
q prescribed flux problem

δ(t = 0) = 0 (2)

where δ(t) is the depth of the thermal penetration layer; the crux of the Goodman’s method [1,2].
The conditions (1a) and (1b) are classical for the prescribed temperature and prescribed flux problems, respectively. The

fourth condition (1d) is known as “smoothing condition” and works well when a polynomial approximation of 4th order is
used. Generally, the accuracy of the HBIM depends on the adequate choice of the approximating functions and the literature
provides many examples of successful solutions [11–15]. The present work addresses HBIM solution of heat–conduction
problems in a semi-infinite solid under various prescribed conditions at the boundary x = 0

∂T (x, t)

∂t
= α

∂2T (x, t)

∂x2
(3a)

0 � x � δ(t) (3b)

by a preliminarily defined parabolic profile Ta(x, t) with unspecified exponent, namely

Ta(x, t) = a + b(1 + cx)n (4)

The profile (3b) is very often used in the form (with Ta(0, t) = Ts)

Θ = T (x, t) − T∞
Ts − T∞

=
(

1 − x

δ

)n

(5)

Recently examples and analyses were provided by [13] where a clear algorithm defining the exponent n through additional
constraints based on existing exact solutions was developed. This algorithm [13] allowed results developed by other methods
[14] for solving (3a), (3b)–(5) to be obtained easily. Recently Myers [15] has suggested an improving mechanism of HBIM
with the profile (3c) through mean-squared error minimization developing the Langford criterion [16].

(1) Regarding the profile (4), it was established [13], that if an additional boundary condition could be provided at x = 0,
then the exponent n can be directly defined. This implies, for instance, that in the case of prescribed temperature at
x = 0 (isothermal condition) the second condition needed is the flux, i.e. the derivative (∂T /∂x) has to be known and
whilst with a prescribed flux q′′(x = 0) = −λ(∂T /∂x)x=0 the missing condition is the surface temperature Ts(x = 0).
It was demonstrated by Hristov [13] that when either Ts or q′′(x = 0) are time-independent a possible step to find
the missing boundary condition is to use the exact solutions [17] at x = 0. To avoid this problem, in the context of
calibrating the profile (4), a general approach defining the missing boundary condition was conceived [18] through the
Entropy Generation Minimization (EGM) constraint. The method was simply tested with problems having exact solutions
[18]. The present work addresses the EGM method through definition of the missing boundary condition and providing
it through fractional half-time derivative (integral) at x = 0 of the prescribed temperature (flux) in the Riemann–Liouville
sense.
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2. Calibration of the profile at x = 0

2.1. EGM constraint and the fractional half-time derivative approach

If the temperature profile T (x) is known then the local thermal entropy generation (TEG) rate Ṡ , in absence of volumetric
heat generation [19] is

Ṡ = λ

T 2
(grad T )2, Tx = ∂T

∂x
(6)

The new thermodynamic constraint conceived [18] is that TEG calculated either by the exact or the approximate solution
should be equal, that requires � Ṡ = [ Ṡ(T , Tx)a − Ṡ(T , Tx)e] → min. The local approach at x = 0 with the strong condition
� Ṡ = 0 defines (∂T /∂x)a(x=0)/T 2

a(x=0) = (∂T /∂x)e(x=0)/T 2
e(x=0) .

Then, if the heat flux q′′
s (x = 0) = −λ(∂T /∂x) is prescribed at x = 0, then we need Ta(x=0) = Te(x=0) .

Otherwise, with isothermal surface condition Ta(x=0) = Te(x=0) , the condition � Ṡ = 0 provides (∂T /∂x)a(x=0) =
(∂T /∂x)e(x=0) . These conditions are general and valid for either independent or time-dependent boundary conditions.

Answering the principle question” How to define an almost exact solution providing the missing boundary condition?” we refer
to fractional solutions of the heat equation (3) (see [20]). More precisely we are interested in the derivation of the flux at
the boundary with prescribed temperature and vice versa by a Half-time Derivative Approach (HTA) if the local condition
has to be satisfied. The benchmark solutions developed next briefly exemplify the method. Following the results of Kulish
and Lage [21] we have the following solutions of the 1-D heat-conduction equation in a semi-infinite domain expressed
through half-time fractional derivatives

q′′
s (0, t) = λ√

α

[
∂1/2T (0, t)

∂t1/2
− T∞√

πt

]
, with T(x=0) = Ts (7)

T (0, t) =
√

α

λ

∂−1/2[q′′
s (0, t)]

∂t−1/2
+ T∞, with − λ

∂T

∂x

∣∣∣∣
x=0

= q′′
s (t) (8)

The relationships (7) and (8) are global and valid over the entire semi-infinite domain. Hence, the boundary values at x = 0,
following from (8) provides local relationships namely [22]:

q′′
s (t) = q′′

s (0, t) = λ√
α t

1√
π

(Ts − T∞) (9a)

Ts = T (0, t) = 2q′′
s (0, t)

√
αt

λ
√

π
+ T∞ (9b)

These results are exactly the same as those obtained by exact solutions [17] (see comments in [18], too). Hence, with (9a)
or (9b) the additional boundary condition needed to calibrate the approximate profile (at x = 0) is provided. The operators
∂1/2/t1/2 and ∂−1/2/t−1/2are half-time fractional derivative and integral in the Riemann–Liouville sense [20,22], namely

D1/2
t = ∂1/2T (x, t)

∂+t1/2
= 1


(1/2)

d

dt

t∫
0

T (x, u)√
t − u

du (10)

were u is a dummy variable.

2.2. Benchmark solutions

2.3. Example 1. Prescribed temperature problem (PT) at x = 0, T s(0, t)) = const

The HBIM solution of (3a) with T = Ts at x = 0 and T (x,0) = T∞ , is [13]

Ta(x, t) = T∞ + (Ts − T∞)

(
1 − x√

at
√

2n(n + 1)

)n

(11a)

δ = √
at

√
2n(n + 1) (11b)

The exact solution [17], for example, is

T (x, t) − T∞
(Ts − T∞)

= 1 − erf

(
x

2
√

αt

)
(12)

The boundary fractional boundary flux (∂T /∂x) f r(x=0) defined by (9a) is
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−
(

∂T

∂x

)
f r(x=0)

= 1√
at

1√
π

(Ts − T∞) (13)

Then, with the condition (7) we have

−
(

∂T

∂x

)
f r(x=0)

= −
(

∂T

∂x

)
a(x=0)

⇒ 1√
at

1√
π

(Ts − T∞) = n√
at

√
2n(n + 1)

(Ts − T∞) (14)

That yields

1√
π

= n√
2n(n + 1)

⇒ n = 2

π − 2
≈ 1.75 (15)

This result exactly matches that obtained by help of the exact solution (14) in [18] using EGM, as well as that developed by
two integral constraints in [13]. It will be denoted hereafter as nT

0 ≈ 1.75 to be distinguished from the exponents derived
by other methods.

2.3.1. Example 2. Prescribed Flux Boundary condition at x = 0, q′′
s (0, t) = q0 = const

The HBIM approximate solution is [13]

Ta = T∞ + q′′
s (0, t)δ

λn

(
1 − x

δ

)n

(16a)

δ = √
at

√
n(n + 1) (16b)

and the exact solution [17] expressed as

Te(x, t) − T∞
q0
λ

√
αt

= 2

[
i erfc

(
x

2
√

αt

)]
(17)

The local temperature T f r(x=0) provided by (8) with the condition (7) yields

T f r(x=0) = Ta(x=0) ⇒ 2q′′
s (0, t)

√
α t

λ
√

π
+ T∞ = T∞ + q′′

s (0, t)δ

λn
(18a)

Then, the results is

2√
π

=
√

n(n + 1)

n
⇒ n = π

(4 − π)
≈ 3.65 (18b)

The result (18b) is exactly the same as those developed in [18] by the EGM approach and in [13] by using the exact
solutions [17]. It will be denoted hereafter as nq

0 ≈ 3.65 to be distinguished from the exponents derived by other methods.
The common complain [15] against the calibrating the profile at x = 0 is the value of the exponent is use further over
the entire thermal layer. However, we have clearly to distinguish two situations: (1) Problems requiring solutions near the
point x = 0 such as establishing the surface flux when the temperature is prescribed or those related to pre-heating or pre-
ablation problems, i.e. the solutions of Braga [14] correspond to this group. (2) Problems related to correct determination of
temperature profile across thermal layer and its front propagation – mainly defined as Stefan problems [15].

3. Mean-squared error approach in the exponent calibration

3.1. Myer’s approach

Recently, Myers [15] has developed a procedure based on the Langford criterion [16]. The Myers’ method looks for
minimum of a function obtained after substitution of the profile (5) in the Langford criterion and expressed as

En(n, t) ≡
δ(t)∫
0

[
∂Ta(x, t)

∂x2
− 1

α

∂Ta(x, t)

∂t

]2

dx � 0 (19a)

En(n, t) =
√

α

t
√

t
en(n, t) (19b)

If Ta(x, t) matches the exact solution Te(x, t), then function En(n, t) would be identically zero. In contrast to the original
work [16], where the minimum of en(n, t) was looked for integer values of n, the Myers approach leads to no-integer values,
after setting t = 0. The main assumption [15] is that the time-dependent terms of en(n, t) vanish as the time goes on. The
exponents obtained by this method are: nT = 2.235 and nq = 3.854 for the fixed temperature and fixed flux, respectively.
M M
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Table 1
Optimal exponents derived by the methods used.

Condition at x = 0 Calculated at x = 0 Exact solution HBIM solutions

nT
0

= 1.75 nT
M = 2.235 nT

η = 1.5047

Prescribed temperature problem Calculated flux
n√

at
√

2n(n+1)
(Ts − T∞))

⇒ 0.564 �T√
at

0.564 �T√
at

0.587 �T√
at

0.548 �T√
at

Error (%) 0 0 +4.07 −2.082

nq
0
= 3.65 nq

M = 3.854 nq
η = 3.314

Prescribed flux problem Calculated temperature
�T = Ts − T∞ = q0

λn δ

⇒ 1.128 q0
λ

√
at 1.128 q0

λ

√
at 1.122 q0

λ

√
at 1.140 q0

λ

√
at

Error (%) 0 0 −0.53 +1.14

The first exponents differs significantly from 1.75 defined by calibrating of the profile at x = 0, either by the exact solution
[13,18] or through fractional boundary flux (see Eq. (15)). For the prescribed flux problem nq

M = 3.854 is almost the same
as nq

0 = 3.65 defined at x = 0.

3.2. Self-similarity transform approach

With η = x/2
√

αt the approximate profile can be expressed as Θ = (1−η/F )n , where the term F is: a) F T = √
2n(n + 1)

with is a prescribed temperature and b) Fq = √
n(n + 1) with a prescribed flux, respectively. With the similarity variable η

the basic Eq. (1) becomes [17]

∂2Θ

∂η2
+ 2η

∂Θ

∂η
= 0 (20)

The integration of (20) over the thermal penetration depth transforms the integration boundaries from 0 � x � δ into
0 � η � δ/

√
αt (at δ/

√
αt = F ⇒ Θ = 0), and the integration over the penetration depth (0 � η � F ) yields

En (n) = n2

F 3

(n − 1)2

(2n − 3)
+ 4nF 2

n(2n − 1)(2n + 1)
+ 4

n2

F

(n − 1)

(2n − 2)(2n − 1)
= 0 (21)

The final equation relating the similarity variable and the parameters of the approximate profile is

4n6 − 8n5 + 3n4 + 2n3 − n2 + F 5(8n − 12) + F 2(8n4 − 8n3 − 6n2) = 0 (22)

This approach, therefore, takes into account all terms of En(n), unlike the method of Myers. With the specific form of F
defined above we have (calculations performed with Maple 13):

• Prescribed temperature at x = 0 and F = F T the derivative dET (n)/dn = 0 at n 	 1.194 with En(1.194) 	 194.533,
while n = 1.740 is the only real positive zero of (25) providing En(1.7405) 	 4.84. The second real root is n 	 −2.459.
The other two roots are: complex ones: −0.768 ± i.0.088. On other hand, the numerical solution provides n = 1.5047.

• Prescribed flux at x = 0 and F = Fq: the derivative dEq(n)/dn = 0 at n 	 1.194, while n = 1.487 is the only real zero
of (25). The other two roots are complex: −0.623 ± i.101. On other hand, the numerical solution provides, n = 3.314.

4. Numerical examples and discussion

All method developed above provide different values of the optimal exponent of the parabolic profile.
The evaluation of the correct values will be performed in two cases:

(a) Determination of the flux at x = 0 with the temperature is prescribed and vice versa.
(b) Comparisons of the approximate profiles expressed through the similarity variable η thus allowing a direct comparison

with the exact solutions.

4.1. Results at x = 0 and mean-squared errors of approximation

The determination of the optimal exponent was commented above and the final results are summarized in Table 1.
Besides, Table 2 summarizes the information about the errors in approximation based on the mean-squared error approach
with different exponents derived in this work.

• Prescribed temperature at x = 0: The calculated surface fluxes are: q′′
s (n = 1.740) ≈ 0.563(�T /

√
at) and q′′

s (n =
1.5047) ≈ 0.548(�T /

√
at). The fist flux is practically that provided by the exact solution while the second one underes-

timates the surface flux with about 2%. Even thought the difference is practically negligible, the right exponent should
be based on the value of En (see Table 2, too): With n = 1.740 we have En(1.7405) ≈ 4.84, while En(1.5047) ≈ 0.0431.
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Table 2
Mean-squared error function E(n) of approximation.

Condition at x = 0 Error function HBIM solutions

Prescribed temperature nT
0

= 1.75 nT
M = 2.235 nT

η = 1.5047

E(n) ⇒ 2.517 2.191 0.0431

Prescribed flux nq
0
= 3.65 nq

M = 3.854 nq
η = 3.314

E(n) ⇒ 0.0394 0.0604 ≈ 1.1 × 1−7

Fig. 1. Temperature profiles with the prescribed temperature problem. (a) Approximate profiles over the range 0 � η � 5. (b) Approximate profiles close to
the edge of the thermal layer, 3 � η � 5.

Fig. 2. Temperature profiles with the prescribed flux problem. (a) Approximate profiles over the range 0 � η � 5. (b) Approximate profiles close to the edge
of the thermal layer, 3 � η � 5.

• Prescribed flux: Simple calculations of the temperature at x = 0 with n = 1.487 provide: Ts ≈ 1.293(q0/λ)
√

at that
overestimates the exact solution with about 14.62% and gives En(1.497) ≈ 0.0092 (see Table 1 and Table 2). In contrast,
with n = 3.314 we have: Ts ≈ 1.140(q0/λ)

√
at , i.e. with about +1.14% error, and En is practically zero (see Table 2).

Therefore, the optimal exponents are with the mean-squared error approach using the similarity variable are: nT
η

≈
1.5047 and nq

η ≈ 3.314. The Myer’s exponents nT
M

and nq
M satisfy the domain condition to minimize the mean-squared error

over the entire thermal penetration depth but under the ad hoc accepted condition that the time-dependent terms of E(n, t)
should be excluded from the minimization procedure; a step eliminated in the similarity approach developed in this work.

4.2. Approximate profiles

The approximate profiles obtained with the parabolic profiles using with different exponents are illustrated in Figs. 1
and 2. In general, the approximate profiles are quite close to the exact solutions when 0 � η � 2 and discrepancies becomes
more evident when 3 � η � 5. The former range corresponds to zones close to point x = 0 while the second one to the
front of the penetration layer (x → δ). In this context, regarding the fixed exponents defined above, the higher value of n,
the higher upper limit for η, because at η = F (n) the approximate profiles end. Hence, looking at the values of exponents in
Table 1, it is clears that those provided by Myers allow the approximate profiles to be extended towards larger values of η
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beyond those at which the others (with lower exponents end) end (cross the abscissa). This is only reason why the profiles
calculated by the Myers’ exponents continue together the exact solutions towards zero in ranges where the other profiles
provides negative unrealistic values. The additional plots in Figs. 1 and 2 show through “a magnifying glass” the behavior
of the approximated solution in narrow ranges of variations of η. In all cases, irrespective of the method determining
the profile exponent, the approximate profiles underestimate the exact temperature profiles. These plots reveal that the
approximate solutions work almost equally for 0 < η < 1 when the prescribed temperature problem is simulated and within
the range 0 < η < 3.5 for the flux problem. In this context, Braga [23], has commented that the profiles with nT

0 = 1.75 and
nq

0 = 3.65 work quite well up to η ≈ 4 and the differences with the exact solution are undetectable; a conclusion that
matches the outcomes of the present work.

5. Conclusions

The calibration problem of the integral-balance parabolic profile with unspecified exponent was investigated with three
techniques: (1) Additional boundary conditions at x = 0 created by entropy generation minimization (EGM) conditions and
provided by half-time a fractional derivative (integral); (2) The Myers’ approach; and (3) Similarity transform approach
developed in the present work looking for optimal exponent minimizing the mean-squared error the domain equation over
the thermal penetration layer.

The main outcomes can be outlined as:

• The EGM approach is clear and straightforward since it generates an additional boundary condition to the approximate
profile that can be easily provided by fractional (Riemann–Liouville) half-time derivative (prescribed flux problem) or
integral (prescribed temperature problem). These boundary conditions do not exist in the classical method of Goodman.

• The Myers approach is based on the classic L2 norm but leads to cumbersome expressions including both the exponent
and the time. The crucial point of this approach is the omission of the time-dependent terms. The method provides the
highest values of the profile exponent among the others.

• The similarity approach (SA) transforms the domain equation, following also the rules of the L2 norm, but leads to
simple expression of the mean-squared error over the thermal layer. The determination of the optimal exponent by SA
is straightforward. The values are between those determined by the EGM and Myers.

• All methods provide approximate profiles that almost match the exact solution in the range 0 � η � 2. The discrepancies
become more significant as the point approaches the front of the thermal layer. This a general drawback of the HBIM
using a fixed exponent over the entire domain 0 � δ �. The approximation can be improved by the concept of the
self-adaptive exponent of the parabolic profile developed in the companion article (Part 2) [24].

• The use of fractional half-time semi-derivative is a step ahead toward improvement of the HBIM approach never applied
so far. The fractional calculus approach has a great potential in solving practical engineering problems in a broad aspect
[25–30] avoiding cumbersome entire-domain analytical solutions. The example developed in this work may serve as a
good source of ideas to solve many practical problems such as thermal contact resistance [31,32] as it was demonstrated
in [33].
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