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A heat-balance integral method employing a parabolic profile with a variable (self-
adapting) exponent has been developed. The parabolic profile satisfies both the boundary
conditions and the heat-balance integral at any value of the exponent, while the optimal
solution requires minimization of the mean-squared error defined by the domain parabolic
equation. The concept of a variable exponent results in simple relationships involving the
LambertW function and the initial values defined through the profile calibration at x = 0.
Two simple 1-D problems with classic solutions are developed to demonstrate the method.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The heat-balance integral of Goodman [1] is one of the leading techniques among the approximate methods in solving
1-D transient diffusion problem over 50 years and is still being developed [2–7]. The thermal penetration depth and pre-
scribed temperature profile transforms strong non-linear 1-D heat conduction problems into ordinary differential equations
with respect to the thermal layer front evolution [1,8]. The function approximating the temperature profile across the ther-
mal layer δ(t) [1,2] should satisfy the following boundary conditions (prescribed temperature and prescribed flux at x = 0).
The concept of the thermal penetration depth, the problem is defined as

∂T (x, t)

∂t
= α

∂2T (x, t)

∂x2
, 0 � x � δ(t) (1)

T (0, t) = Ts or − λ
∂T

∂x
= q̇s (2a)

T (δ, t) = T∞ (2b)

λ
∂T

∂x

∣∣∣∣
x=δ

= 0 (2c)

∂2T

∂x2

∣∣∣∣
x=δ

= 0 (2d)

δ(t = 0) = 0 (3)
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Nomenclature

A1(m) term of Eq. (11) defined by Eq. (8)
A2(m) term of z2(t) defined by Eq. (8) and used in

Eq. (11)
a term in the generalized parabolic profile

(Eq. (5))
b coefficient in the generalized parabolic profile

(Eq. (5))
C1 and C2 integration constants (see Eqs. (10) and (12))
c coefficient in the generalized parabolic profile
D(n, η) difference between the exact and the approxi-

mate solutions
j(η) function defined by Eq. (18)
k j weighting coefficient in Eq. (18)
LambertW(z) Lambert function
L1 and L2 norms defined by Eqs. (19a), (19b)
m = x/δ collocation point
n exponent of the parabolic profile
n0 exponent defined at x = 0
nT

M exponent defined by the Myers’ method
q heat flux density . . . . . . . . . . . . . . . . . . . . . . . . W/m2

q′′
s surface heat flux (x = 0) . . . . . . . . . . . . . . . . W/m2

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Ta approximate profile
T∞ temperature of the undisturbed medium . . . K
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

x space co-ordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . m
z argument of LambertW(z) defined by Eq. (10)

and Eq. (12)

Greek letters

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . m2/s
δ thermal penetration depth . . . . . . . . . . . . . . . . . . m
η = x/

√
αt similarity variable

η similarity method
λ thermal conductivity . . . . . . . . . . . . . . . . . . . W/m K
Θ dimensionless temperature

Superscripts

s surface (at x = 0)
T prescribed temperature problem
q prescribed flux problem

Subscripts

0 defined at the surface (x = 0)

a approximate
e exact
M Myers’ method
pw pointwise
W calculated through the LambertW function

The integration over the domain with respect to the space variable yields:

d

dt

δ∫
0

Ta dx − Ta(x = δ)
dδ

dt
= −α

∂T (x, t)

∂x

∣∣∣∣
x=0

(4)

The first term of (4) is the heat-balance integral of Goodman [1].
The problem at issue is the use of a Ta(x, t) with unspecified exponent Ta(x, t) = a + b(1 + cx)n very often used in the

form

Θ = T (x, t) − T∞
Ts − T∞

=
(

1 − x

δ

)n

(5)

This profile satisfies all boundary conditions (1) and the heat-balance integral (4) for every value of the exponent n [9].
The proper choices of the exponent have been analyzed in [9,10] using the principle concept that its value is constant

over the entire thermal layer (0 � x � δ(t)). The methods determining the profile exponent have been developed on the
basis of calibration by the exact solution [9–11], fractional boundary conditions [12], and minimization of the mean-squared
error of the domain equation (1) [12,13].

The results provided by Myers [13] with the mean-squared error minimization clearly revealed that the error of approx-
imation depends on the time. This problem, solved with respect to the profile exponent indicates that the profile exponent
is time-dependent, that is, it varies as the thermal layer depth δ(t) grows in time.

The present work focus the attention of the concept that the exponent of the profile (5) depends on time with an initial
value defined at any time at x = 0.

2. Variable exponent of the parabolic profile

2.1. Basic assumptions – a collocation approach

The hypothesis underlying the analysis is that n depends on the time but is independent on the space variable x. Besides,
the approximate profile matches the exact solution and satisfies domain equation (3) at a given point m = x/δ (a collocation
condition). With the prescribed temperature problem (T = Ts at x = 0), for instance, the profile can be expressed as

Ta(x, t) = T∞ + (Ts − T∞)(1 − m)n, x = mδ, 0 � m(x) � 1 (6)
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Hence, with n = n(t) and taking into account that daz/dz = az ln a we have from (6):
Denoting 1 − m = p and taking into account that δ2 = 2(αt)n(n + 1) we get[

(1 − m)n ln(1 − m)
dn

dt
− αn(n − 1)(1 − m)n−2 1

δ2

]
= 0 (7)

Denoting 1 − m = p and taking into account that δ2 = 2(αt)n(n + 1)

dn

dt
= A1

(n − 1)

2(n + 1)

1

t
(8a)

A1 = 1

2

(
1

ln p

)
1

p2
(8b)

The solution of (9) with respect to n is therefore:

n(t) = 1 + 2 LambertW

[
1

2
t( 1

4 )A1 exp

(
C1

4
A1 − 1

2

)]
= 1 + 2 LambertW(z1) (9)

z1 = z1(m, t) =
[

1

2
t( 1

4 )A1 exp

(
C1

4
A1 − 1

2

)]
(10)

where C1is an integration constant and A1 = A1(m).
Similarly, for the prescribed flux problem (q0 = −λ∂T /∂x|x=0 at x = 0), we have[

(1 − m)n ln(1 − m)
dn

dt
− αn(n − 1)(1 − m)n−2 1

δ2

]
= 0 (11)

The solution of (12) with respect to n is

n(t) = 1 + 2 LambertW(z2) (12)

where the z2 = z2(m, t) = [ 1
2 t( 1

4 )A2 exp( C2
4 A2 − 1

2 )], where A2 = A2(m) depends on the choice of m.

2.2. Some comments on the solution concerning the time-dependence of the exponent

Because the point x/δ = m could be any point of the profile, let us assume for simplicity x/δ = m = 1/2 which de-
notes the middle point of the thermal layer. Then for p = 1 − m = 0.5 and A1 = 2/ ln 0.5 ≈ −2.885, LambertW(z) = zez for
z(m=0.5) ≈ 0.5t−0.721. Similarly, for m = 0.3 we get: p = 0.7, A1 = −15.575 and z(m=0.3) ≈ 0.5t−3.893. For m = 0.75 near the
front of the thermal layer, z(m=0.75) ≈ 0.5t−1.442. Therefore, the argument of the Lambert function depends on m and t ,
i.e. z = z(x, t). However, this complicates the form of the functional relationship since in this case, n = n(x, t). This can be
successfully used if the solution should attain a minimum error at a given point of the thermal layer, at x/δ = m = 0.5, for
instance.

2.3. Direct approach to the relationship n(η) and numerical tests

Thanking into account that HBI solution can be expressed through the similarity variable η = x/2
√

αt in the form Θa =
(1 − η/F )n (F T = √

2n(n + 1) for the prescribed temperature at x = 0, while Fq = √
n(n + 1) for prescribed flux at x = 0).

We introduce the pointwise error of the approximation as Dpw(n, η) = Θe − Θa , where the exact solutions are [14]:

• For prescribed temperature problem

Θ T
e = 1 − erf(η/2) (13)

• For the prescribed flux problem

Θ
q
e = 2

[
ierfc

(
η

2

)]
(14)

Then, setting Dpw(n, η) = 0 we get a non-linear equation that can be solved with respect to n, at a given value of the
similarity variable η. Setting different values of η in the range 0.1 � η � 6 we got values of n (by Maple 13) exhibiting
different behaviors depending on the range of η. Two approximations were done, for the prescribed temperature problem,
for example:

nT = 0.266 + 0.649η, 1 � η � 6 (15)

nT = 1.888 + 0.036 exp(6.796η), 0.1 � η � 0.9 (16)
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Fig. 1. Numerical experiments with the approximate profile obtained for the prescribed temperature problem. Fixed exponent (HBIM); Variable exponent
(HBIM-variable); Exact solution (Exact). (a) Profiles over the entire range of variations 0 � η � 6 with k j = 1.0 in the approximate solution. (b) Profiles in
the range 2 � η � 5 with k j = 1.0 in the approximate solution. (c) Profiles in the range 2 � η � 5 demonstrating the effect of the weighting coefficient k j .
(d) Profiles in the range 2 � η � 5, k j = 0.5.

The upper range η = 6 was chosen from practical reasons because Θ T
e (η = 6) ≈ 0.0002, that is almost the front of the

thermal layer. The point η = 0 was excluded because at x = 0, the exponent can be calibrated directly through the exact
solution, as it was demonstrated elsewhere [9–11]. From Eq. (16), setting η → 0 we may extrapolate n → 1.924, that is
between the value obtained through calibration at x = 0, i.e. nT

0 = 1.75 [9,11] and the that obtained through the mean-
squared error approach: nT

M ≈ 2.235 (the Myers’s approach [13]) and nT
η ≈ 1.507 [12].

Similarly, for the prescribed flux problem, by using the exact solution (14), and setting Dpw(n, η) = 0, we got two sets
of values of n. The solutions in this case with η � 1.5 are straightforward and provide reasonable values of the exponent n.
Unfortunately, for η � 1.5, more precisely for 0 � η � 1, Maple numerical solution provides extremely high values of n
which are practically unacceptable. Because of that, only those values of n obtained for η � 1.5 where approximated to
establish the trend in the relationship n = n(η). They were approximated by

nq = 3.602 + 0.478 exp(0.423η), 1.5 � η � 6 (17)

As η → 0 we extrapolate n ≈ 3.602 that is close to nq
0 = 3.65 established by direct calibration to the exact solution [14] and

by the fractional boundary condition applied to the profile [12], but lower than nq
M ≈ 3.854 obtained by Myers [13].

Relationship (17) as well as (15) and (16) should be considered as outcomes of direct experiments matching the ap-
proximate HBIM profiles and the exact solutions and their use is possible, to some extent, in practical cases. However, the
principle question is: what is the upper limit of the time t in the parabolic profile, because the exponent should be in the
range established. This question comes naturally from (15), (16) and (17) where the exponent is not limited from above
(i.e. n(t) → ∞) as the time goes on. This ambiguity is avoided by the self-adaptive exponent depending on the similarity
variable, as it is presented next.

2.4. Self-adaptive exponent n(η) and numerical tests

The outcomes of the collocation approach and the direct numerical test indicate that the correction to initial value n0
should grow almost exponentially as the depth of the thermal layer increases. Hence, a general expression of the variable
exponent can be suggested as



J. Hristov / C. R. Mecanique 340 (2012) 493–500 497
Fig. 2. Numerical experiments with the approximate profile obtained for the prescribed flux problem. Fixed exponent (HBIM); Variable exponent (HBIM-
variable); Exact solution (Exact). (a) Profiles over the entire range of variations 0 � η � 6 with k j = 1.0 in the approximate solution. (b) Profiles in the
range 2 � η � 5 with k j = 1.0 in the approximate solution. (c) Profiles close to the edge of the thermal front (defined by the exact solution) demonstrating
the effect of the weighting coefficient k j . (d) Profiles in the range 4.5 � η � 7k j .

n = n0 j(η), j(η) = 1 + k jLambertW(η) (18)

concerning the positive branch of the Lambert function.
Because for the Lambert function W (η)eW (η) = η we have W (0) = 0, the correction j(η) provides n(0) = n0 thus match-

ing the exact solution at x = 0.
Plots of the HBIM profiles with the self-adaptive exponents are shown in Figs. 1 and 2. The approximate profiles with

adaptive exponents go closer (slightly underestimating) to the exact solutions within the range 0 � η � 2 (see Figs. 1a, 1b
and Figs. 2a, 2b) with k j = 1. However, beyond η ≈ 2, and going to the edge of the thermal layer, the effect of the right
choice of k j becomes more significant (see Figs. 1b and 2b). In general, the approximate profiles come close to the exact
solutions as k j approaches k j ≈ 0.5 from the left (0 < k j � 0.5) and go away as k j > 0.5, as it is shown in Figs. 1c and 2c.
The numerical tests performed allow suggesting that k j = 0.5 can be used in both approximated profiles discussed here
over the entire range of variations of η. To some extent, at the edge of the thermal layer (i.e. η > 4) k j ≈ 0.4 leads to a
better approximation of the prescribed flux problem profile (see Figs. 2c and 2d), while 0.4 < k j < 0.6 works better for
the prescribed temperature problem (Figs. 1c and 1d). However, the differences with respect to the case with k j = 0.5 are
negligible taking into account the global error of approximation of the heat-balance integral method.

In addition, we notice that the average values of the exponents calculated through (18), over the range 0 � η � 6, for the
prescribed temperature problem, have a mean of 〈nT

W 〉 ≈ 2.121 which is quite close to that established by Myers’ nT
M ≈ 2.235

[13]. Similarly, for the prescribed flux problem, we have a mean of 〈nq
W 〉 ≈ 4.0036. These are only statistical estimates, so

we have to estimate next the errors of approximations established through the L1 and L2 norms.

2.5. Error of approximation

The pointwise error of approximation (14) allows defining the L1- and L2-norm of errors as

eL1 =
δ∫

0

|Θa − Θe|dx, eL2 =
δ∫

0

(Θa − Θe)
2 dx (19a)

Using the similarity variable η = x/
√

αt , the above can be expressed as
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Fig. 3. Pointwise errors of approximation for both classical HBIM and modified HBIM with a variable exponent k j = 0.5. (a) Prescribed flux problem.
(b) Prescribed temperature problem.

Table 1
Errors in approximation with the HBIM profiles-prescribed temperature problem.

Norm Fixed exponenta Variable exponentb

k j = 0.2 k j = 0.4 k j = 0.5 k j = 1 k j = 1.2 k j = 1.5

L1 × 103 56.33 51.85 68.14 76.25 101.94 108.167 11.51
L2 × 103 1.33 1.257 1.979 2.49 4.47 5.134 5.9

a The upper limit of integration is y = Fn =
√

2nT
0 (nT

0 + 1) = 3.102.

b The upper limit of integration is η = 6.

Table 2
Errors in approximation with the HBIM profiles-prescribed flux problem.

Norm Fixed exponenta Variable exponentb

k j = 0.2 k j = 0.4 k j = 0.5 k j = 1 k j = 1.2 k j = 1.5

L1 × 103 113.465 94.2 94.972 98.4 114.78 119.933 126.388
L2 × 103 7.309 1401.9 7.106 7.146 7.479 7.626 1401.914

a The upper limit of integration is y = Fn =
√

nq
0(nq

0 + 1) = 4.119.

b The upper limit of integration is η = 6.

eL1 =
Fn∫

0

|Θa − Θe|dη, eL2 =
Fn∫

0

(Θa − Θe)
2 dη (19b)

The pointwise errors as functions of the similarity variable are shown in Fig. 3. For the prescribed flux problems (see
Fig. 3a) the HBIM profiles with either fixed or variable exponents exhibit similar pointwise errors in the range 0 � η � 1.
Beyond this range the error of the profile with the variable exponent is significantly lower than that exhibited by fixed
exponent approximation. For the prescribed temperature problem (Fig. 3b) the error of the profile with a variable exponent
is comparable or slightly greater than that with the fixed exponent with 0 < η < 3.5. Beyond η ≈ 3.5 the profile with
variable exponent is better. The upper limits of integration in (19b) are different for the fixed and the variable exponent

solutions. More precisely, the upper limits for the profiles with fixed exponents are F T (n0) =
√

2nT
0 (nT

0 + 1) and Fq(n0) =√
nq

0(n
q
0 + 1). Beyond these points these HBIM profiles are no longer valid. With the variable exponent, the upper limit of

integration was chosen as η = 0.6 because limη→6 Θa ≈ 1.0194 × 10−5, that practically matches the exact solutions and the
real front of the penetration layer, irrespective of the problem at issue.

The final choice, however, should be made based on the L1- and L2-norm errors (see Tables 1 and 2). The effect of
the weighting coefficient k j on both L1 and L2 norms is obvious: the better approximations correspond to 0.4 < k j < 0.5.
This work does not investigate the value of k j because from a practical point of view either k j = 0.4 or k j = 0.5 can
be used without significant effect on the approximate solution. From author’s experience with the numerical experiments
performed, k j = 0.5 leads to better results even though both the L1 and L2 norms with k j = 0.4 are lower. The latter
suggestion is based on the fact, that beyond the point where the HBIM with fixed exponent ends, the self-adaptive profiles
with k j = 0.5 demonstrate lower pointwise errors that those with k j = 0.4. The L1 and L2 norms are global measures of
the approximation over the entire domain, while the pointwise error directly shows how close the approximate solution is
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to the exact one over a certain range of variation of the variable. In cases when exact solutions are not available, then the
L1 and L2 norms are the only on hand to take the decision. From a practical point of view, the expressions of the L2 norm
(the classic approach) are cumbersome and those of the L1 norm can be used, taking into account that under the absolute
value of the pointwise error is the integral sign. This leads to simpler expressions and practical results about the error of
approximation as the similarity variable increases.

3. Discussion

The present work conceives the idea of a heat-balance integral method employing a parabolic profile with self-adaptive
exponent. The numerical experiments with HBIM profiles expressed through η = x/

√
αt clearly show that the approximate

solution does not follow the exact one as the time goes on and the exponent should vary as η increases. The present work
has demonstrated this by two numerical experiments: (1) The collocation condition requiring the approximate profile to
match the exact solution at one point of the thermal layer; (2) Direct solution of the pointwise error with respect to the
exponent n. Both attempts reveal that the exponent depends on the space variable and the time explicitly (the collocation
approach) or implicitly through the similarity variable. The second approach shows more clearly, what the behavior of the
exponent should be as the similarity variable increases.

As a general rule, accepted from the outcomes of both attempts, a relationship of a self-adaptive exponent was conceived.
The self-adaptive correction is based on the LambertW function with the similarity variable as argument. All experiments
and the analyses of the both the L1- and L2-norm errors reveal that the parabolic profile with a self-adaptive exponent
approximates better the temperature profiles than the classical HBI method with fixed exponent. Moreover, the self-adaptive
profile works beyond the limit established by the classical HBIM towards the thermal layer front determined by the exact
solution.

The suggested profile, in fact, draws a new approach in the design of the HBIM profiles and shows a straightforward
algorithm how the self-adaptive exponent can be determined, namely:

(1) Fit the profile provided by temperature (or flux) problem to that provided by the exact solutions (if any) at x = 0 and
determine the exponent. If exact solution for the particular boundary condition is not available, then fit the profile
provided temperature (or flux) to those calculated through fractional half-time derivatives (Riemann–Liouville sense) as
it is demonstrated in [12], then determine the exponent at x = 0.

(2) Use the exponent defined at x = 0 as the initial value of the relationship n(η) = n0 + k jLambertW(η) and create the
HBIM profile. The weighting coefficient k j can be adjusted through minimization of the L1 and L2 norms.

4. Conclusions

The concept of self-adaptive parabolic profile of the heat-balance integral method has been conceived. The main outcome
can be outlined as:

(1) The exponents established at the boundary x = 0 are the initial values of self-adaptive functional relationships based on
the LambertW function. The numerical simulations performed reveal that the weighting coefficient on LambertW-based
correction is about 0.4 or 0.5 for both prescribed flux and prescribed temperature problems.

(2) The self-adaptive approximate profiles work beyond the limits established by the classical HBIM towards the thermal
layer fronts determined by the exact solutions. It may serve as good tool for developing approximate analytical solutions
problems where the temperature profile close to the phase-change interface is of primary importance [15,16].

(3) The L1 and L2 norms of the self-adaptive profiles are close to those of the classical HBIM approximate solutions but
over wider ranges of variation of the similarity variable.
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