
C. R. Mecanique 340 (2012) 471–476
Contents lists available at SciVerse ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Analytical and innovative solutions for heat transfer problems involving phase change and interfaces

Solid–liquid phase change driven by internal heat generation

John Crepeau a,∗, Ali S. Siahpush b

a Department of Mechanical Engineering, PO Box 440902, University of Idaho, Moscow, ID 83844-0902, USA
b Idaho National Laboratory, PO Box 1625, MS 3760, Idaho Falls, ID 83415-3760, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 3 May 2012

Keywords:
Stefan Problem
Internal heat generation
Scale analysis

This article presents results of solid–liquid phase change, the Stefan Problem, where
melting is driven internal heat generation, in a cylindrical geometry. The comparison
between a quasi-static analytical solution for Stefan numbers less than one and numerical
solutions shows good agreement. The computational results of phase change with internal
heat generation show how convection cells form in the liquid region. A scale analysis of
the same problem shows four distinct regions of the melting process.
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1. Introduction

The first published solution to the solid–liquid phase change problem was given by Joseph Stefan in 1889 [1], and has
been known as the Stefan Problem since the pioneering monograph by Rubinstein [2]. Reviews of the state-of-the-art work
on the Stefan Problem have also been published [3,4]. Due to the phase change along the interface, convection and flow
instabilities can form [5]. Phase change by internal heat generation has numerous applications, including geophysics and
materials processing, but most work has been done in nuclear energy. Simple transient models of reactor pins [6], successive
approximation methods of flow in a reactor plug [7], numerical studies in a heat generating slab [8], and the enthalpy
method to model the mushy zone [9] have been studied. The Nusselt number and other heat transfer characteristics of
flows with internal heat generation in tubes [10] have been determined.

The governing mass, momentum and energy equations in cylindrical coordinates, with no change in the circumferential
direction, are given by [11],
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In Eq. (2), the Boussinesq approximation is used to model the buoyancy term. The geometry of the problem is shown in
Fig. 1.
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Nomenclature

cp specific heat, kJ/kg K
�h f latent heat of fusion, kJ/kg
g gravitational acceleration, m/s2

H cylinder height, m
k thermal conductivity, W/mK
q̇ volumetric heat generation, W/m3

Q nondimensional heat generation
r, z radial coordinates, m
r0 radius of cylinder, m
s distance to phase change front, m

t time, s
T temperature, K
u, w velocities, m/s
α thermal diffusivity, m2/s
β thermal expansion coefficient, K−1

θ nondimensional temperature
μ viscosity, kg m/s2

ρ density, kg/m3

τ nondimensional time
ξ nondimensional radius

Fig. 1. Schematic diagram of phase change in a cylinder with volumetric heat generation.

2. Comparison of quasi-static and numerical solutions

We begin by assuming that the phase change occurred at a single fusion temperature (i.e., a pure material), that the
internal heat generation was constant, uniform, and equal in both the solid and liquid phases. Also, for this analysis, there
was no convection heat transfer in the liquid, so that heat transferred solely by conduction. The cylinder was infinitely
long so end effects were neglected. At r0, the temperature is held constant at T0, and at the phase change interface the
temperature is the melting, Tm , was constant. The fusion temperature is greater than the surface temperature, so a solid
layer forms along the wall.

Under these conditions, the energy equation (Eq. (3)) for both the solid and liquid phases reduces to
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Along the phase change front, the interface equation is given by [12],
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Integrating Eq. (4) in its quasi-static form (∂T /∂t = 0) produces temperature gradients in both the solid and liquid phases,
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Substituting Eqs. (6) and (7) into the interface equation (Eq. (5)) produces a relation governing motion of the phase change
front,
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Fig. 2. Comparison of computational and analytical solutions for Q = 5.0, and Stefan numbers both in and out of the range of validity of the quasi-static
method in a cylindrical geometry for a constant surface temperature during solidification.

Nondimensionalizing Eq. (8) with the variables,
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where St is the Stefan number, the nondimensional interface relation becomes [13],
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Eq. (10) can then be solved for the nondimensional distance to the phase change front, ξ .
To verify the accuracy of the quasi-static solutions, a computational model using the code FLUENT® was developed. The

computational method used an energy equation solution technique to solve for solidification/melting that is based on the
enthalpy–porosity method [14].

Eq. (10) was then solved and compared to the computational solutions. Fig. 2 shows results for the nondimensional
internal heat generation of Q = 5 over four decades of Stefan numbers both in and out of the range of validity of the
quasi-static method. The curves show excellent agreement between the two methods for St = 0.1 and 0.01, where the quasi-
static approximation used in the analytical solution is valid. Outside of the range where the quasi-static approximation
is valid, St = 1.0 and 10.0, the analytic solutions reach steady state more quickly than the computational results. This
is because the elimination of the time-dependent term from which the temperature gradients are calculated forces the
resultant temperature profiles to reach the steady-state values more rapidly than the profiles given in the computational
results. However, both reach the same value of the steady-state phase change front location. Fig. 3 is similar to Fig. 2 except
that Eq. (10) is plotted for St = 0.1 and a range of Q . The agreement is very good between the analytical and computational
solutions for these curves which are valid under the quasi-static approximation.

3. Phase change and convection in the melt driven by VEG

To determine the effect that convection has on the phase change process, a numerical study was performed. Since the
convection heat transfer was driven by the internal heat generation and not a simple temperature difference, a modified
version of the Rayleigh number was used. After Tritton and Zarraga [15] and Roberts [16], we used the definition

Ra = ρgβq̇D5

μαk
(11)

Fig. 4 [17] shows a single snapshot of system using the Rayleigh number defined in Eq. (11), where Ra = 106, Q = 5.0, and
St = 0.1. The solid phase is in blue along the outer portion of the cylinder, red corresponds to the liquid phase and the
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Fig. 3. Comparison of computational and analytical solutions for St = 0.1 and various values of Q in a cylindrical geometry for constant surface temperature
during solidification.

Fig. 4. Movement of the solid–liquid phase change front and velocity vectors in the liquid region during solidification at Ra = 106, Q = 5.0 and St = 0.1 [16].

intermediate colors represent the mushy zone. Velocity vectors are superimposed to give a quantitative representation for
the motion of the fluid. A small recirculation zone forms at the top of the cylinder, melting more material at the top than
at the bottom. At larger values of Ra, the recirculation zone becomes more pronounced.

4. Scale analysis

This section gives a brief overview using scale analysis to study the phase change process driven by internal heat gener-
ation in a cylinder. A more in-depth study was presented previously [18]. Scale analysis has been extensively used by Bejan
[19,20]. The phase change process can be divided into four regimes. We initially considered the material within the cylinder
to be completely solid.
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Regime A is when a thin layer of liquid forms along the centerline. There is no convection in the liquid, and since melting
has just begun, the temperature of the liquid is just above the melting point. Since the liquid temperature is constant, Eq. (5)
becomes
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(12)

Substituting Eq. (12) into Eq. (7) and rearranging give
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Since the diameter of the melted region is small compared to the radius, s � r0, we find

t A ∼ ρs�h f

q̇
(14)

and at this time, Regime A ends. Typically this time is very short.
In Regime B, the liquid layer grows, but the temperature is no longer constant throughout and no convection cells have

yet formed. In this regime, Eq. (5) scales like
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For small Stefan numbers, we have
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Regime C begins when convection starts in the liquid portion of the melt. Experimental evidence [21] shows that con-
vection in the liquid begins along the top portion of the cylinder and along the bottom of the cylinder, heat transfers by
conduction. The governing equations (Eqs. (1)–(3)) scale like
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After inserting these scaling terms into Eq. (5) and reducing, we find
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where H is the height of the cylinder, and the Rayleigh number is defined in Eq. (11).
In the final stage of the phase change process, Regime D, the convection cell takes up the complete length of the cylinder.

Here, the governing equations scale like
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Scaling Eq. (5) by the terms in Eq. (19) yields a differential equation,
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Eq. (20) can then be solved numerically to give the distance to the phase front, s, in terms of time.
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5. Conclusions

Comparison of the quasi-static and numerical solutions of the Stefan Problem shows good agreement when St � 1,
which is when the quasi-static solution is valid. The scale analysis shows the existence of four separate regimes, each with
an appropriate time scale associated with the process. The scale analysis gives a straightforward way to model the phase
change process driven by internal heat generation.
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