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A finite element algorithm is proposed to simulate steady-state diffusion–convection
problems with isothermal phase changes. This technique is based on an enthalpic approach
discretized by means of a finite element approximation of the enthalpy including the latent
heat of transformation. The interface of phase changes is implicitly described without
coupling with an interface-capturing technique. An example clearly shows the efficiency
of the method developed.
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r é s u m é

Un algorithme éléments finis est proposé pour simuler les problèmes de diffusion–
convection avec des changements de phase isothermes. Cette technique repose sur une
approche en enthalpie, discrétisée au moyen d’une approximation éléments finis de
l’enthalpie intégrant la chaleur latente de transformation. L’interface est décrite de manière
implicite sans couplage avec une technique spécifique de capture d’interface. Un exemple
met clairement en évidence l’efficacité de la méthode développée.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Finite element analysis of heat transfer involving phase changes is a numerical problem which has been extensively stud-
ied in the past years. Steady-state conduction–convection with a phase change occurs in many engineering processes. One
example is welding processes which are widely used in the material processing industry. For example, welding processes
or heat treatments involve a very small size heat source compared to that of the structure studied. Local modeling of the
thermal and mechanical effects requires very fine meshes in the vicinity of the source so as to perform a finite element
analysis. A refined analysis of the joint may lead to significant size problems. This can be avoided by means of a re-meshing
procedure refining discretization in the vicinity of the heat source only along the weld joint. This type of transient analysis
involves long calculation times and it is very often assumed that a quasi-steady state is established when the structure
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displays a translation geometry on a long distance. In order to determine the temperature field during the steady phase of
the process, it only takes a steady analysis with a reference connected with the source velocity. That is why the models
are very often based on diffusion–convection formalism as described in [1]. It makes it possible to significantly simplify the
simulations by doing away with the transient state analysis whose calculation time is very long. With this new reference,
the material moves owing to the thermo-mechanical load and partial time derivatives are canceled.

It is well-known that the finite element simulation of phase changes is confronted with computational pathologies when
high latent heat effects appear. For example, these phenomena can occur during directional solidification for crystal growth
applications [2,3] or solidification phenomena for continuous casting process which is widely used in the material processing
industry [4]. It is necessary to find the temperature field of a casting and the location of the solid/liquid interface in order
to understand and control such a process and to improve the quality of products. The accuracy of the temperature field and
interface location is very important because it directly affects the calculated thermal stresses and velocities of fluid flow.

One of the most famous solution methods is the fixed grid technique well described in [5] and [6]. In this way, the
latent heat effect can be easily overcome with an equivalent heat capacity [7–9]. The application of this technique raises
problems since the phase change is spread over a small range of temperatures as for isothermal phase changes. One may
easily numerically miss the very high (virtually infinite) peak of heat capacity, thus failing to respect exact conservation of
energy.

To overcome these difficulties, an enthalpic formulation has been introduced by Feulvarch et al. for the modeling of tran-
sient and steady-state diffusion–convection problems [10]. The proposed approach is based on the classical heat equation
coupled with a function providing the temperature in terms of enthalpy. This enthalpy–temperature relation characterizes
the kinetics of phase transformation and it includes the latent heat. Unfortunately, the FEM technique developed considers
a continuous approximation of the temperature and the enthalpy which is not able to catch the jumps in the heat flux and
in the enthalpy for isothermal phase changes.

The aim of this work is to improve this technique for steady-state diffusion–convection problems with a discontinuous
finite element approximation of the enthalpy in space such as proposed in [11] for transient heat conduction problems. The
advantages of the method developed in this paper are two-fold:

– its enrichment functions which introduce a discontinuity on the enthalpy throughout the interface of phase change;
– its implicit geometry description of the interface which does not need any interface updating procedure (as for usual

X-FEM applications).

The article is organized as follows. Section 2 is devoted to the general formulation of the problems envisaged and the
enriched numerical scheme proposed is detailed in Section 3. The example proposed in Section 4 shows evidence the
potential and the efficiency of the method proposed.

2. Steady-state diffusion–convection problem

The problem studied in this paper is based on the formulation proposed by Feulvarch and Bergheau [10] for stationary
convection–diffusion problems:

For i = 1,2, find functions Ti , Hi defined on Ωi verifying the boundary value problem defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�v · −−−→
gradHi = div(λ

−−−→
gradTi) in Ωi

T i = g(Hi) in Ωi

λ
−−−→
gradTi · n̄ = q(p) + k

(
T (p) − Ti

)
on ∂Ωi

T i = Tm on ∂Ωm

λ
−−−→
gradT2 · n̄m − λ

−−−→
gradT1 · �nm = �H�v · �nm on ∂Ωm

(1)

In these equations, ∂Ωm is the common portion of the boundaries of the open sets Ω1 and Ω2; ∂Ωi = (Ω i\Ωi)\∂Ωm

as shown in Fig. 1; �v is the material velocity in the reference frame of work; λ is the thermal conductivity which can be
temperature dependent; g is the function providing the temperature in terms of the enthalpy1 as shown in Fig. 2; �n is the
unit outward normal vector to the boundary; �nm is the unit outward normal vector to Ω1 on the boundary ∂Ωm; q(p) is a
prescribed “input flux”; T (p) is a prescribed value of the temperature and k is a “transfer coefficient”. As is well-known, the
general boundary conditions (1)3 encompass both the cases of a prescribed flux (for k = 0) and a prescribed value of T (for
k → +∞). The isothermal phase change is assumed to take place at temperature Tm on the smooth surface ∂Ωm .

The weak formulation of the problem is classically obtained by multiplying Eq. (1)1 by a weighting function T ∗
i , Eq. (1)2

by a weighting function H∗
i , for i = 1,2, and integrating over both domains Ω1 and Ω2, respectively. Integrating the first

equation by parts and accounting for the boundary condition (1)3, one thus obtains the following variational formulation of
the problem:

For i = 1,2, find functions Ti , Hi such as for all functions T ∗
i , H∗

i ,

1 Eq. (1)2 cannot be inverted to yield the temperature T as a function of the enthalpy H in the case of an isothermal transformation.
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Fig. 1. Schematic representation of the domain Ω and the interface of phase change ∂Ωm .

Fig. 2. Typical evolution of the function g(H) for an isothermal transformation occurring at temperature Tm with a latent heat �H .

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ωi

�v · −−−→
gradHi T

∗
i dV +

∫
Ωi

λ
−−−→
gradTi · −−−→

gradT ∗
i dV +

∫
∂Ωi

kT i T
∗
i dS −

∫
∂Ωi

(
q(p) + kT (p)

)
T ∗

i dS = 0

∫
Ωi

[
Ti − g(Hi)

]
H∗

i dV = 0
(2)

with

λ
−−−→
gradT2 · �nm − λ

−−−→
gradT1 · �nm = �H�v · �nm and T1 = T2 = Tm on ∂Ωm (3)

Under the boundary conditions (3), the enthalpy H is discontinuous in space throughout the interface of phase change
∂Ωm . Thus, H can be expressed as the sum of a continuous function h and a discontinuous one providing the enthalpy of
transformation �H = H2 − H1 due to the phase change:

H = h + Id�H

where Id is a function which indicates the state of the transformation:

Id =
{

1 if the transformation occurred

0 otherwise

This definition includes the release or the storage of latent heat and therefore the discontinuity of the heat flux through-
out the interface of phase change. These considerations allow to define the following weak formulation on the whole
domain Ω , from a mathematical point of view:

Find functions T ∈ H1(Ω), H = h + Id �H ∈ L2(Ω) such as for all functions T ∗ ∈ H1(Ω), H∗ ∈ L2(Ω),⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

dH

dt
T ∗ dV +

∫
Ω

λ
−−−→
gradT · −−−→

gradT ∗ dV +
∫

∂Ω

kT T ∗ dS −
∫

∂Ω

(
q(p) + kT (p)

)
T ∗ dS = 0

∫
Ω

[
T − g(H)

]
H∗ dV = 0

(4)

Despite the fact that the gradient of the function H is not defined on ∂Ωm , it is possible mathematically to express the
derivative in time of the enthalpy dH

dt by a convective term in this integral formulation. Indeed, H = h + Id�H ∈ L2(Ω),
the integrals are taken in the sense of Lebesgue and the (N + 1)-dimensional measure of the N-dimensional boundary ∂Ωm
is zero. However, the gradient of enthalpy is not suitable to represent the jump in enthalpy �H throughout the boundary
∂Ωm from the physical point of view. This is the reason why the derivative is denoted with the general symbol d .
dt
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3. Finite element formulation

Following the usual finite element procedure, the discretization of the temperature T is of the form

T (�x) =
N∑

i=1

Ti Ni(�x) ∈ H1(Ω) (5)

In this expression, N denotes the number of nodes, Ti the value of the function T at node i and Ni(�x) the shape function
associated to this node. One can note that this classical finite element approximation smooths naturally the discontinuity of
the heat flux throughout the interface of transformation. As far as the enthalpy approximation is concerned, a discontinuous
finite element approximation is used as proposed in [11]:

H(�x) ≈ Hd(�x) =
N∑

i=1

hi Ni(�x) + Id�H ∈ L2(Ω) (6)

Following Galerkin’s standard approach, the test functions T ∗ and H∗ are taken in the same form. Substituting the nodal
approximations (5) and (6) into the variational formulation (4), one obtains the following non-linear system of equations:{ [K] · {T} + {

Cd} − {F} = {0}
[M] · {T} − {G} = {0} (7)

where {T} ≡ (Ti)1�i�N , {h} ≡ (hi)1�i�N denote the vectors of nodal values of the functions T and h. [K] ≡ (Ki, j)1�i, j�N ,
[M] ≡ (Mi, j)1�i, j�N , {F} ≡ (Fi)1�i�N and {G} ≡ (Gi)1�i�N are respectively matrices and vectors which are described in [11]
for transient heat conduction problems. The vector {Cd} ≡ (Cd

i )1�i�N is defined by

Cd
i ≡

∫
Ω

dH

dt

d

Ni dV (8)

We have already seen that it is not possible to define the material derivative of the enthalpy from a single convective
term based on the gradient of enthalpy because it is discontinuous. This is also true for the discontinuous approximation
of the enthalpy proposed above. To overcome this difficulty, we propose to introduce an auxiliary approximation of the
enthalpy Hc of class C1 on Ω for the resolution. Considering that Hc is continuous unlike Hd , the gradient of Hc is able to
model all spacial evolutions of the enthalpy. This approximation Hc is taken equal to the discontinuous approximation Hd

in a weak sense. One can note that the function Hd is not defined on the boundary ∂Ωm but it is possible mathematically
to define this weak equality on Ω . As mentioned before, the integrals are taken in the sense of Lebesgue and the (N + 1)-
dimensional measure of the N-dimensional boundary ∂Ωm is zero. To compute the material derivative in time by means of
a convective term depending on the gradient of Hc , we establish the following result:

Proposition 1. In a steady-state configuration:

∀δHc ∈ H1(Ω),

∫
Ω

δHc(Hc − Hd)dv = 0 
⇒
∫
Ω

δHc
(

dH

dt

c

− dH

dt

d)
dv = 0 (9)

Proof. It is clear that:

∀δHc,

∫
Ω

δHc(Hc − Hd)dv = 0 
⇒ d

dt

∫
Ω

δHc(Hc − Hd)dv = 0

Applying the Leibniz–Reynolds’ transport theorem in a steady state, we get:

d

dt

∫
Ω

δHc(Hc − Hd) dv =
∫

∂Ω

δHc(Hc − Hd)�v · �n ds

From the divergence theorem, we can write:∫
∂Ω

δHc(Hc − Hd)�v · �n ds =
∫
Ω

(
div

(
δHc�v))(

Hc − Hd)dv +
∫
Ω

δHc(�v · −−−→
gradHc − �v · −−−→

gradHd)dv

Thus, under the equality defined in a weak sense between Hc and Hd , since δHc ∈ H1(Ω) and assuming that �v is
sufficiently regular, we get in a stationary configuration:
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Fig. 3. Boundary conditions.

∀δHc,
d

dt

∫
Ω

δHc(Hc − Hd)dv =
∫
Ω

δHc
(

dH

dt

c

− dH

dt

d)
dv �

One can note that the steady material derivative d
dt is taken equal to �v · −−−→

grad. This is mathematically correct even if this
definition is not satisfactory for Hd from the physical point of view as mentioned in Section 2.

Considering this result and a classical finite element approximation for Hc (as for the temperature T ), system (7) be-
comes{ [K] · {T} + [C] · {H} − {F} = {0}

[M] · {T} − {G} = {0} (10)

where {H} ≡ (Hi)1�i�N denotes the vector of nodal values of Hc ; [C] ≡ (Ci, j)1�i, j�N is a matrix defined by

Ci, j ≡
∫
Ω

Ni�v · −−−→
gradN j dV (11)

Eqs. (10) are solved by a Newton–Raphson iterative method as described in [11] for transient heat conduction problems.
One can note that the standard Galerkin’s approach can lead to spurious oscillations for convection-dominated problems
[12]. To obtain stable solutions, various techniques can be used such as sub-grid methods [13–15] or the so-called Streamline
upwind/Petrov–Galerkin [16] as used in [10].

4. Application to the Stefan problem

This application is a non-dimensional example which consists of modeling a one-dimensional isothermal transformation
with a constant velocity along x axis as shown in Fig. 3. The temperatures are set to T1 = −5 and T2 = 20 for x = 0 and
x = 1, respectively.

The material properties are:

– Specific heat: C = 1;
– Mass density: ρ = 1;
– Thermal conductivity: λ = 1;
– Latent heat: L = 70;
– Temperature of transformation: Tm = 0.

The finite element mesh is composed of linear elements. The element size �x is uniform and taken equal to 0.1. Fig. 4
shows the computed temperature and enthalpy distributions, together with the analytical temperature distribution given
in [4]. The numerical results closely agree with the analytical distribution.

5. Conclusion

The aim of this article was to detail a numerical algorithm to simulate latent heat effects during isothermal transfor-
mations for steady-state diffusion–convection configurations. This technique is based on an enthalpic formulation of the
heat equation coupled with a function providing the temperature from the enthalpy. In this approach, the discretization is
based on a classical finite element approximation of the temperature and the enthalpy which includes the jump of enthalpy
throughout the interface of phase changes. This interface is implicitly described without coupling with an interface-capturing
technique as for usual X-FEM applications. An example clearly shows the efficiency of the method developed.
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Fig. 4. Temperature and enthalpy distributions.
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