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An alternative and consistent approach, not appealing to the principle of virtual power
and to Coleman–Noll procedure, is used to derive constitutive and governing equations
involving temperature or entropy gradients, in thermomechanics of materials. Using the
balance of energy, an analysis of the dissipation naturally leads to the definition of
the temperature and the entropy as variational derivatives. The approach preserves the
classical forms of the equations and yields to consistent form of the second law and heat
conduction inequality. The framework of generalized standard materials is then suitable
for deriving admissible constitutive laws. The methodology is applied, first using entropy
and its gradient as state variables (with internal energy as thermodynamic potential), and
second using temperature and its gradient (starting from the free energy).
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r é s u m é

Une approche alternative et cohérente, ne faisant pas appel au principe des puissances
virtuelles et à la procédure de Coleman–Noll, est utilisée pour obtenir les lois de
comportement avec gradients de température ou d’entropie, ainsi que les équations
d’évolution en thermomécanique. En partant du bilan d’énergie, une analyse de la
dissipation conduit naturellement à la définition de la température et de l’entropie par des
dérivées variationnelles. Tout en préservant les formes classiques des équations, l’approche
permet d’établir les formes cohérentes de l’inégalité de l’entropie (second principe) et de
la conduction dont une nouvelle forme est proposée. Le formalisme standard généralisé
offre ensuite un moyen commode d’établir des lois admissibles. La méthodologie est
appliquée en prenant d’abord l’entropie et son gradient comme variables d’état (énergie
interne comme potentiel), et ensuite la température et son gradient (énergie libre comme
potentiel).
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1. Introduction

The approach proposed by Coleman and Noll [1] uses the Clausius–Duhem inequality as a tool to select constitutive
laws by requiring that this inequality holds by all thermodynamic processes. Adopting the Truesdell and Toupin’s principle
of equipresence, Coleman and Mizel [2] used this inequality to show that all the response functions cannot depend on
all the state variables; some of them must be independent of certain variables. More precisely, assuming that the heat
flux, the specific internal energy and entropy are functions of the temperature and the first n spatial gradients of the
temperature, they showed that the internal energy and the entropy are independent of the temperature gradients. This
result is related to the forms chosen for thermal energy exchanges only through heat flux and radiation, as they mentioned.
Within the same framework, Coleman and Gurtin [3,4] extended straightforward the result to obtain the independence of
the free energy, the entropy and the stress on the temperature gradients in the case of nonlinear materials with internal
state variables. However, this result is based on certain assumptions such as independence of stresses, or more generally of
irreversible forces, on the rate of temperature gradient. One way to account for this dependence is to add an extra term
of entropy flux [5–9] as constitutive quantity. Changes are also made in the energy balance by adding new contributions
to the power of internal forces. The principle of virtual power on microscopic movements or micromorphic approaches
(Frémond and Nedjar [10,11], Frémond [12], Fried and Gurtin [13], Gurtin [14]) has been used by Forest and Amestoy [15],
Forest and Aifantis [16] to account for entropy gradient. However, the physical meaning of the principle of virtual power
involving virtual rates of variables as entropy (in [15]) is not obvious. An extra term of entropy production inside the volume
has also been added by Ireman and Nguyen [17]. They showed that three different expressions of this quantities lead to
different thermodynamical models. A variational based field description coupled with the Generalized Standard Materials
formalism for gradient temperature thermomechanics is given by Nguyen and Andrieux [18] and Nguyen [19], followed by
a justification through a homogenization process. It can be seen as a non-local generalized standard model as proposed
by Lorentz and Andrieux [20,21]. The approach shows the way to derive the correct forms of intrinsic dissipation and to
restore duality between internal and free energy. However, in all these works, the classical expression of the heat conduction
inequality was maintained, while the introduction of the gradient of temperature or entropy is likely to affect its structure.

The objective of this work, is, while remaining strictly within the framework of the phenomenological theory of con-
tinuum thermodynamics, to derive the constitutive equations and inequations of the gradient thermomechanics, without
appealing to the principle of virtual power and to the Coleman–Noll procedure and the classical heat conduction inequality.
The approach conducts to the adoption of variational based derivatives for the definition of the temperature and the en-
tropy. These definitions lead to consistent forms of the second law (generalized Clausius–Duhem inequality) and a new heat
conduction inequality. Constitutive laws are postulated, based on the splitting of the dissipation in its intrinsic and ther-
mal parts. They permit to recover the existing results on temperature and entropy gradients thermomechanics. The formal
structure obtained is closely related to the one from the canonical thermomechanics with dual weakly non-local internal
variables proposed by Berezovski et al. [22].

2. Entropy gradient: using internal energy

2.1. Energy balance

The basic principle is the energy balance (first law of thermodynamics) stating that energy cannot be generated. The
variation of the energy of a system is solely due to exchange with the environment. The form of the energy exchanged with
the outside defines therefore how to act on the system, that is to say its control variables. For the continuum medium, the
external rate of energy supply is generally composed of two terms:

– the power of external forces Pe, associated with the primal kinematic variables (displacement and another independent
variable denoted α), given by:

Pe =
∫
Ω

f Ωu · v dΩ +
∫

∂Ω

f Su · v da +
∫
Ω

aΩα · α̇ dΩ +
∫

∂Ω

aSα · α̇ da (1)

where v is the velocity, f Ωu (resp. aΩα ) and f Su (resp. aSα ) are the external body and surface forces associated
with the displacement (resp. with the variable α). Superimposed dot denotes time derivative. α is a state variable
which typically represents microscopic motions as such damage associated with failure of bonds within the material
particle [12]. This variable can be controlled by external forces (such as radiation in the case of damage). We assume
that the external rate of energy supplies associated with α are objective and the surface rate of energy related to α
depends only on the considered point, the surface normal vector and the time.

– The total heat supply per unit time Pcal, associated with the thermal control variable, is given by:

Pcal =
∫
Ω

r dΩ +
∫

∂Ω

Q da (2)
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r is the external rate of heat supply per unit volume and Q is the external rate of heat supply per unit surface. For instance,
one can have:

– as in Frémond (2002) [12],

r = RT and Q = Q T T (3)

– or, consistent with the choice of entropy s as internal variable, the following form could be proposed

r = Rsṡ and Q = Q sṡ (4)

The balance of energy is written as:

Ė +
∫
Ω

ρ v̇ · v dΩ +
∫
Ω

ρaγa · α̇ dΩ =
∫
Ω

f Ωu · v dΩ +
∫

∂Ω

f Su · v da +
∫
Ω

aΩα · α̇ dΩ +
∫

∂Ω

aSα · α̇ da

+
∫
Ω

r dΩ +
∫

∂Ω

Q da (5)

where the internal energy E is the objective and non-kinetic part of the total energy of the system. The classical argu-
ments (invariance under superposed rigid body motion and tetrahedron lemma applied on the energy balance) lead to the
existence of a second order symmetric tensor σ , a vector q and also a tensor A ((order α) + 1) such as:

f Su = σ · n, Q = −q · n, and aSα = A · n (6)

where n is the outward unit normal vector at the considered point. Some invariance requirements may allow to precise the
form of A but are not considered in the paper as they have no direct influence on our purpose.

Using Eq. (6) in Eq. (5), one obtains:

Ė =
∫
Ω

(
(divσ + f Ωu − ρ v̇) · v + σ : ∇v + (div A + aΩα − ργ α) · α̇ + A : ∇α̇ + (

div(−q) + r
))

dΩ (7)

We assume that the internal energy (extensive quantity) is regular; e denotes the internal energy per unit volume. With
suitable regularity (smoothness) assumptions for the different field quantities and assuming also the validity of Eq. (7) on
Ω and any of its subdomains, we obtain the local equation:

ė = (divσ + f Ωu − ρ v̇) · v + σ : ∇v + (div A + aΩα − ρaγ α) · α̇ + A : ∇α̇ + (
div(−q) + r

)
(8)

Remark. If we use the assumption (4), the previous equation can be written as:

ė = (divσ + f Ωu − ρ v̇) · v + σ : ∇v + (div A + aΩα − ργ α) · α̇ + A : ∇α̇ + (div Q
s
+ Rs)ṡ + Q

s
· ∇ ṡ (9)

2.2. Intrinsic dissipation: definition of temperature and heat flux

Entropy is the extensive heat variable, naturally associated with the internal energy. We assume that the volumic internal
energy depends on the kinematic variable ∇u

s
, α, ∇α, the entropy per unit volume s and also on the entropy gradient ∇s

(as in [15,19]). ∇u
s

is the symmetric part of ∇u. The following quantities are defined:

T = e,s , T ′ = e,∇s , σ nd = e,∇u
s
, and = e,α and And = e,∇α (10)

The non-local generalized standard approach (Nguyen and Andrieux [18]) has led to the appropriate expression of the
intrinsic dissipation. Without recourse to the variational derivation, the intrinsic dissipation is defined as the part of heat
rate which does not come from external sources and exchanges. It is therefore given by the difference between the rate of
internal energy associated with the variation of entropic (or heat) variables (s and ∇s) and the rate of heat supply from the
environment, namely,

D1 = ė|{∇u
s
,α,∇α} − r + div q =

︷ ︸︸ ︷
e,s ṡ + e,∇s ·∇ ṡ − r + div q (11)

By denoting:

T̃ = T − div T ′ and q̃
s
= q + T ′ ṡ (12)

the following expression of the intrinsic dissipation is obtained:
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D1 = (
T − div T ′)ṡ − r + div

(
q + T ′ ṡ

) = T̃ ṡ − r + div q̃
s

(13)

This form is similar to the one obtained in the classical approach (without entropy gradient), with the definitions of
temperature as the variational derivative of the internal energy relative to the entropy (T̃ = e,s −div e,∇s , as defined by
Gouin [23], Gouin and Ruggeri [24]) and of the heat flux as (q̃

s
= q + T ′ ṡ).

2.3. Second law and heat conduction inequality

To formulate the second law, we use the balance of entropy as proposed in Green and Naghdi [25] using the same
assumptions while adopting the generalized temperature and heat flux. The external rate of supply of entropy per unit
volume (resp. per unit surface) is given by the ratio of the external rate of volume heat supply r (resp. surface supply of
heat q̃

s
) to the temperature T̃ . Denoting the rate of internal production of volumic entropy by Si , the balance of entropy is:

ṡ = Si + r

T̃
− div

q̃
s

T̃
(14)

and the second law is thus written as:

ṡ − r

T̃
+ div

q̃
s

T̃
� 0 (15)

Let us notice that when there is no external volumic heat source (r = 0), the internal entropy production is reduced to:

Si = ṡ + div

(
T ′ ṡ
T̃

)
+ div

q

T̃
(16)

The proposed expression for the second law is different from that used as a starting point by Forest and Amestoy [15].
Indeed Forest and Amestoy [15] kept the classical form.

One notices that the entropy production can be written in the following form:

Si = ṡ − r

T̃
+ div

q̃
s

T̃
= D1

T̃
− q̃

s
· ∇ T̃

T̃ 2
(17)

Admitting the separation of the total dissipation in intrinsic and thermal parts, the thermal dissipation is therefore given by

−q̃
s
· ∇ T̃

T̃
and the conduction inequality is:

−q̃
s
· ∇ T̃

T̃
� 0 or −(

q + T ′ ṡ
) · ∇(T − div T ′)

T − div T ′ � 0 (18)

which is again different from the classical heat conduction inequality (−q · ∇T
T � 0).

The generalized Clausius–Duhem inequality, in this case, reads:

D1 − q̃
s
· ∇ T̃

T̃
= T̃ ṡ − r + div q̃

s
− q̃

s
· ∇ T̃

T̃
� 0 (19)

Using Eq. (8), the intrinsic dissipation (11) is written as:

D1 = (divσ + f Ωu − ρ v̇) · v + (σ − e,∇u
s
) : ∇v

+ (div A + aΩα − ργ α − e,α ) · α̇ + (A − e,∇α ) : ∇α̇ (20)

or:

D1 = (−ρ v̇ + f Ωu + divσ) · v + (
σ − σ nd) : ∇v

s

+ (−ργ α + ava − and + div A
) · α̇ + (

A − And) : ∇α̇ (21)

By denoting,

f d = divσ + f Ωu − ρ v̇, σ d = σ − σ nd

ad = div A − and + ava − ργ α and Ad = A − And (22)

The term f d is zero (this is the equilibrium equation, we notice that it can be obtained directly here by using the invariance
of the energy balance (Eq. (5)) relative to an observer in uniform translation). Then, one obtains:

D1 = σ d : ∇v + ad · α̇ + Ad : ∇α̇ (23)

s
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Finally, the dissipation inequality is written as:

σ d : ∇v
s
+ ad · α̇ + Ad : ∇α̇ − q̃

s
· ∇ T̃

T̃
� 0 (24)

2.4. Constitutive and governing equations

The following quantities T , T ′ , σ nd , and , And have already been defined constitutively by Eqs. (10) using the internal
energy.

Constitutive laws must be specified for the dissipative variables σ d , ad , Ad and q̃
s
. They must allow to satisfy the second

principle, or equivalently the dissipation inequality (24). Because, in the general case, the dissipative forces may depend on
the rate on all state variables, Coleman and Noll procedure [1] is not adequate.

However, a stronger assumption we adopt here, is to require the positiveness of the intrinsic and the thermal dissipations.
In such a case, the constitutive model is completely determined by specifying, on the one hand the internal energy defining
the non-dissipative forces and the temperature, and on the second hand the dissipative forces σ d , and and Ad satisfying the
following intrinsic dissipation inequality,

σ d : ∇v
s
+ ad · α̇ + Ad : ∇α̇ � 0 (25)

and the flux q̃
s

fulfilling the heat conduction inequality.
Using the Standard Generalized Materials (SGM) formalism [26,27], a special class of material can be constructed if one

postulates the existence of two pseudo-potentials with the suitable properties [18]: (i) an intrinsic dissipation potential
which is a function of the rates ∇v

s
, α̇ and ∇α̇ with the state variables as parameters: D(∇v

s
, α̇,∇α̇ | ∇u

s
,α, s), (ii) a heat

potential which is a function of the entropy gradient ∇s and possibly of higher order gradients of s, with the state variable
and possibly their time derivatives as parameters: Ds(∇s | s,∇u

s
,α, ṡ, . . .), such as:

σ d ∈ ∂ D,∇v
s
, ad ∈ ∂ D,α̇ and Ad ∈ ∂ D,∇α̇ (26)

which is denoted:

σ d = D,∇v
s
, ad = D,α̇ and Ad = D,∇α̇ (27)

and

−q̃
s
= δDs

δ∇s
(28)

For instance, considering a potential Ds function of ∇s and ∇∇s (and so, not adopting the principle of equipresence), one
has:

−q̃
s
= Ds,∇s −div(Ds,∇∇s ) (29)

To sum up, the following field equations are obtained:⎧⎪⎨
⎪⎩

divσ + f Ωu − ρ v̇ = 0

div A + ava − a − ργ α = 0

div q̃
s
− r − (

σ d : ∇v
s
+ ad · α̇ + Ad : ∇α̇

) + T̃ ṡ = 0

(30)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ nd = e,∇u
s

and = e,α
And = e,∇α

T̃ = δe

δs

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ d = D,∇v
s

ad = D,α̇

Ad = D,∇α̇

−q̃
s
= δDs

δ∇s

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ = σ nd + σ d

a = and + ad

A = And + Ad

q = −T ′ ṡ + q̃
s

(31)

with the following boundary conditions, on the surface ∂Ω:⎧⎪⎪⎨
⎪⎪⎩

σ · n = f Su or
(
σ nd + σ d) · n = f Su

A · n = aSα or
(
And + Ad) · n = aSα

(−q) · n = Q or −(
q̃

s
− T ′ ṡ

) · n = Q

(32)

The set of field equations obtained in this framework can be written in a compact manner as:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div(e,∇u
s

+ D,∇v
s
) + f Ωu − ρü = 0

div(e,∇α + D,∇α̇ ) + ava − (e,α + D,α̇ ) − ργ α = 0

div
δDs

δ∇s
+ r + (D,∇v

s
: ∇v

s
+ D,α̇ ·α̇ + D,∇α̇ ·∇α̇) − δe

δs
ṡ = 0

(33)

2.5. Heat equation and comparisons

As established in Section 2.3, the heat equation is

T̃ ṡ + div q̃
s
− r −D1 = 0 (34)

with

T̃ = δe

δs
= e,s −div e,∇s and q̃

s
= δDs

δ∇s
(35)

It is also written as:

T ṡ + T ′ · ∇ ṡ + div q − r −D1 = 0 (36)

When Fourier law is adopted one recovers the form proposed by Nguyen [19]. This form is different the one obtained by
the micromorphic approach of Forest and Amestoy [15] in the absence of intrinsic dissipation. Indeed, Forest and Amestoy
[15] adopt the classical forms of the heat equation and the Fourier law

T ṡ + div q − r = 0 and q = −κ∇T (37)

but define the temperature with a state law

T = e,s −as

ρ
and bs = e,∇s (38)

Using a principle of virtual work on entropy, the justification of which is not obvious, they find the equilibrium equation
associated with the variable s, readily:

div bs − as = 0 (39)

Thus, we have:

T = e,s − 1

ρ
div bs = e,s −div(e,∇s ) (40)

which is exactly the variable denoted T̃ here, and therefore, with our notations,

q = −κ∇ T̃ (41)

which is a particular form of the law (28). More specifically, in our case, by taking:

e = T0s + 1

2
a1s2 + 1

2
a2∇s · ∇s (42)

one obtains: T̃ = T0 + a1s − a2
s. The potential

Ds = κ(a1∇s · ∇s − a2∇∇s : ∇∇s) (43)

leads to the generalized Fourier law (41). And finally the heat equation (34) is:

(T0 + a1s − a2
s)ṡ + r + κ
(
a1
s − κa2


2s
) = 0 (44)

The linearization of this equation gives the equation obtained in [15].
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3. Temperature gradient: using the Helmholtz free energy

In this section, the temperature and its gradient as adopted as internal variables instead of the entropy and its gradient.
A complementary description to the previous one, in term of Helmholtz free energy, is established. It leads to the same
results as the variational formulation of Nguyen and Andrieux [18], except for the heat conduction inequality given here by
a new inequality.

The point of departure is still the balance of energy in its global and then local form (Eqs. (7) and (8)). As s and ∇s are
no longer state variables and replaced by T and ∇T , the more convenient thermodynamic function is no longer the internal
energy but its conjugate function obtained by a Legendre transformation on the entropic variables (dual variables of T and
∇T ). These variables, denoted respectively s and s′ , are related to T and ∇T by:

T = ∂e

∂s
and ∇T = ∂e

∂s′ (45)

The thermodynamic function w keeping the duality, as established by Nguyen and Andrieux [18], is defined as:

w = e − T s − ∇T · s′ (46)

Thus:

s = −w,T and s′ = −w,∇T (47)

w is the Helmholtz free energy per unit volume defined in a non-classical way. In this context, it is a function of ∇u
s
, α,

∇α, T and ∇T .
As ė|s,s′ = ẇ|T ,∇T , the intrinsic dissipation D1 given by (13) becomes:

D1 = T ṡ + ṡ′ · ∇T − r + div(q) = (
ṡ − div ṡ′)T − r + div

(
q + T ṡ′) (48)

If we set ˙̃s = ṡ − div(ṡ′) and q̃
T

= q + T ṡ′ , we obtain

D1 = T ˙̃s − r + div q̃
T

(49)

This form is similar to the one obtained in the classical approach (without temperature gradient), with the definitions of
entropy as the variational derivative of the Helmholtz free energy relative to the temperature (s̃ = w,T −div w,∇T ) and of
the heat flux as (q̃

T
= q + T ṡ′).

3.1. Second law and heat conduction inequality

Given the entropy s̃ and the total heat flux q̃
T

, the internal production of entropy Si is, as previously in Section 2.3,
given by:

Si = ˙̃s − r

T
+ div

q̃
T

T
(50)

and the second law is defined as:

˙̃s − r

T
+ div

q̃
T

T
� 0 (51)

Let us notice that when there is no external volumic heat source (r = 0), the internal entropy production is reduced to:

Si = ṡ + ṡ′ · ∇T

T
+ div

q

T
(52)

which is exactly the expression proposed by Nguyen and Andrieux [18] and Nguyen [19] while Cardona et al. [28] keep the
classical form.

One notices that the entropy production can be written in the following form:

Si = s̃ − r

T
+ div

q̃
T

T
= D1

T
− q̃

T
· ∇T

T 2
(53)

Admitting the separation of the total dissipation in intrinsic and thermal parts, the thermal dissipation is therefore given by
−q̃

T
· ∇T

T and the conduction inequality is:

−q̃
T

· ∇ T̃

T̃
� 0 or −(

q + T ṡ′) · ∇T

T
� 0 (54)

which is again different from the classical heat conduction inequality (−q · ∇T � 0).
T
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The Clausius–Duhem inequality, in this case, reads:

D1 − q̃
T

· ∇T

T
= T ˙̃s − r + div q̃

T
− q̃

s
· ∇ T̃

T̃
� 0 (55)

The free energy w depends on ∇u
s
, α, ∇α, T , ∇T , we thus define:

σ nd = w,ε , and = w,α , And = w,∇α , s = −w,T and s′ = −w,∇T (56)

The intrinsic dissipation is given by Eq. (23) and the dissipative forces σ d , ad , Ad and q̃
s

are defined by Eq. (22).

3.2. Constitutive and governing equations

The same approach as previously is used. The following quantities T , T ′ , σ nd , And are defined constitutively by Eq. (56)

using the free energy. Constitutive laws are specified for the dissipative variables σ d , ad , Ad and q̃
s
. They must satisfy

the second principle, or equivalently the dissipation inequality (24). Because, in the general case, the dissipative forces
may depend on the rate on all state variables, Coleman and Noll procedure [1] is not adequate. The constitutive model
is completely determined by specifying, on the one hand the internal energy defining the non-dissipative forces and the
temperature, and on the second hand the dissipative forces σ d , ad and Ad satisfying the positiveness of D1, and the flux q̃

s
fulfilling the heat conduction inequality.

Using the SGM formalism [26,27], a class of constitutive models can be constructed using two pseudo-potentials with
the suitable properties [18]: (i) an intrinsic dissipation potential which is a function of the rates ∇v

s
, α̇ and ∇α̇ with

the state variables as parameters: D(∇v
s
, α̇,∇α̇ | ∇u

s
,α, T ), (ii) a thermal dissipation potential which is a function of

the temperature gradient ∇T and possibly of higher order gradients of T , with the state variable and possibly their time
derivatives as parameters: DT (∇T | T ,∇u

s
,α, Ṫ , . . .), such as:

σ d ∈ ∂ D,∇v
s
, ad ∈ ∂ D,α̇ and Ad ∈ ∂ D,∇α̇ (57)

that we denote:

σ d = D,∇v
s
, ad = D,α̇ and Ad = D,∇α̇ (58)

and

−q̃
T

= δDT

δ∇T
(59)

For instance, considering a potential DT function of ∇T and ∇∇T (and so, not adopting the principle of equipresence), one
has:

−q̃
T

= DT ,∇T −div(DT ,∇∇T ) (60)

To sum up, the following field equations are obtained:⎧⎪⎨
⎪⎩

divσ + f Ωu − v̇ = 0

div A + ava − a − γ α = 0

div q̃
T

− r − (
σ d : ∇v

s
+ ad · α̇ + Ad : ∇α̇

) + T ˙̃s = 0

(61)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ nd = w,∇u
s

and = w,α

And = w,∇α

s̃ = −δw

δT

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ d = D,∇v
s

ad = D,α̇

Ad = D,∇α̇

−q̃
T

= δDT

δ∇T

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ = σ nd + σ d

a = and + ad

A = And + Ad

q = −T ṡ′ + q̃
T

(62)

with the following boundary conditions, on the surface ∂Ω:⎧⎪⎨
⎪⎩

σ · n = f Su or
(
σ nd + σ d

) · n = f Su

A · n = aSα or
(
And + Ad

) · n = aSα

−q · n = Q or −(
q̃

T
− T ṡ′) · n = Q

(63)

The set of field equations obtained in this framework, consistent with the results of [19], can be written in a compact
manner as in [19]:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div(w,∇u
s

+ D,∇v
s
) + f Ωu − ρü = 0

div(w,∇α + D,∇α̇ ) + ava − (w,α + D,α̇ ) − ργ α = 0

div
δDT

δ∇T
+ r + (D,∇v

s
·∇v

s
+ D,α̇ ·α̇ + D,∇α̇ ·∇α̇) + δw

δT
Ṫ = 0

(64)

with the boundary conditions:⎧⎪⎪⎨
⎪⎪⎩

(w,∇u
s

+ D,∇v
s
) · n = f Su

(w,α + D,α̇ ) · n = aSα(
δDT

δ∇T
+ T

˙︷ ︸︸ ︷
w,∇T

)
· n = Q

(65)

3.2.1. Heat equation and comparisons
As established in Section 3.1, the heat equation is

T ˙̃s + div q̃
T

− r −D1 = 0 (66)

with

˙̃s = ṡ − div
(
ṡ′) = −

˙︷ ︸︸ ︷
(w,T −div w,∇T ) and −q̃

T
= δDT

δ∇T
(67)

It is the equation obtained from the variational formulation of Nguyen and Andrieux [18]. Suitable choices of the potentials
permit also to recover results obtained in [28,29].

4. Conclusion

This work is intended to give some physical insights into the entropy and temperature gradients thermomechanics,
without using variational approach or virtual work principle. Departing from the expression of the intrinsic dissipation,
it is shown that, when using the variational derivation to define temperature and entropy, the (temperature or entropy)
gradient thermodynamics preserves the classical forms of equations and leads to consistent formulations of the second law
and the heat conduction inequality. More particularly, the obtained heat conduction inequality is different from the classical
one. Its expression is clearly related to the form and the nature of the entropy fluxes. Finally, the SGM formalism can be
used as systematic tool for proposing thermodynamic admissible constitutive laws. Note that, as suggested by Nguyen and
Andrieux [18], the extension to higher order gradient is straightforward adopting the variational derivatives.
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