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The damping properties estimation assumes a viscoelastic model calibrated from experi-
ments and simulations. This Note presents a gradient method for viscoelastic behaviour
identification of damped sandwich structures devoted to the passive control of mechanical
vibration. The method combines experimental data, numerical simulations realized with a
complex non-linear eigenvalue solver using the asymptotic numerical method, and optimal
control for the identification of viscoelastic parameters. An automatic differentiation tool
is used to get numerical derivatives exact up to the machine precision with minimal user
effort. Results are presented for a sandwich beam with a frequency dependent viscoelastic
core.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

L’estimation des propriétés amortissantes suppose un modèle viscoélastique calibré par
des expériences et des simulations. Cette Note présente une méthode de gradient pour
l’identification du comportement viscoélastique de structures sandwich dédiées au contrôle
passif des vibrations mécaniques. La méthode combine des données expérimentales, des
simulations numériques réalisées avec un solveur de problèmes aux valeurs propres
non-linéaires complexes, et du contrôle optimal pour l’identification de paramètres
viscoélastiques. Un outil de différentiation automatique est utilisé pour obtenir des dérivées
numériques exactes à la précision machine près avec un minimimum d’effort pour
l’utilisateur. Des résultats sont présentés pour une poutre sandwich à cœur viscoélastique
dépendant de la fréquence.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Vibration control study is essential in the design of complex mechanical structures. In many fields (aerospace, auto-
motive industry, electrical devices, civil engineering, . . . ), vibrations generate instabilities in the structure inducing failure
and some discomfort for users. Such vibrations may be controlled using some passive damping treatments on the existing
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structure, viscoelastic materials used as layers sandwiched between elastic faces for instance, with the goal of increas-
ing energy dissipation. The damping property modelling of viscoelastic sandwich structures assumes a viscoelastic model
[1] whose parameters may be identified through a combination of experiments and simulations. As demonstrated in [2],
the description of the actual behaviour of a damping material for a wide frequency band may be tackled considering a
frequency and temperature dependent complex Young’s modulus. Parametric representations of this modulus range from
simple rheological models to higher order models such as the generalized Maxwell model.

An appropriate account of the frequency and temperature dependent complex Young’s modulus is a major challenge in
viscoelastic sandwich structures. This Note discusses an inverse method combining experiments [1], numerical simulations
[2] and optimal control for the identification of the viscoelastic parameters to be used in damping modelling of sandwich
structures. Gradients are obtained at a low development effort thanks to the Automatic Differentiation (AD) tool Tapenade
[3] applied to the complex non-linear eigenvalue solver code [2] and the objective function measuring the discrepancies
between computed and measured structural damping properties. Results are reported for a viscoelastic sandwich beam.

2. Problem statement

Within the finite element discretization, the linear free vibration problem leads to a complex non-linear eigenvalue
problem [2]. This may be solved combining the asymptotic numerical method (ANM) and a homotopic deformation [2]
which allow for a direct and accurate computation of the modal damping and resonance frequency for a large number of
vibration modes. However, for some temperatures (see Table 2), numerical results do not fully agree with experiments when
the Young’s modulus identified for a pure polymer is used in the vibration modelling of a sandwich structure. A detailed
discussion is presented in this section.

2.1. Damping property calculations

The complex non-linear eigenvalue problem is written [2] as

R(u,ω) = [
K (ω) − ω2M

]
u = 0 (1)

where u is the complex eigenmode and ω is the complex eigenvalue. The mass matrix M is real. Assuming that the core
and face materials of the sandwich structure are linear, homogeneous and isotropic, the complex stiffness matrix K (ω) may
be written [2] as

K (ω) = K (0) + E(p,ω)Kc

where K (0) is related to the delayed elasticity, Kc is a constant matrix, and E(p,ω) is a parametric frequency dependent
Young’s modulus defined by the set of parameters p. The complex eigenvalue ω is related to the resonant frequency Ω and
the modal loss factor ηm following

ω2 = Ω2(1 + iηm)

We denote by R the function that links ω to (Ω,ηm) through the solution of (1).
The complex non-linear eigenvalue problem (1) is solved combining the ANM and a homotopic deformation [2] involving

functions S and T such that

R(u,ω) = S(u,ω) + T (u,ω), where S(u,ω) = [
K0 − ω2M

]
u and T (u,ω) = E(p,ω)Kcu

For modes of interest, the homotopy (2) then enables to deform continuously the real eigenvalue problem S(u,ω), corre-
sponding

R(u,ω) = S(u,ω) + aT (u,ω) = 0, for a ∈ [0,1] (2)

to a = 0, into the complex eigenvalue problem (1). Under analyticity assumptions, eigensolutions (u,ω) are approximated as
truncated Taylor series (

∑N
n=0 u(a),

∑N
n=0 ω(a)) that, introduced in (2), yield a sequence of N linear systems involving the

same tangent linear matrix and higher order differentiation recurrence formulas. Nowadays, these series may be evaluated
using automatic differentiation [4,5].

2.2. Results with a generalized Maxwell model identified from the pure polymer

Numerical tests are realized on a cantilever sandwich beam (elastic/viscoelastic/elastic) (Fig. 1). The viscoelastic material
is assumed to be linear, homogeneous and isotropic. In the frequency domain, the stress–strain law of the central layer is

σ = 2με + λI3 tr(ε), μ = E(ω)
, λ = νc E(ω)
2(1 + νc) (1 + νc)(1 − 2νc)
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Table 1
Material properties.

Elastic layers Viscoelastic core

Young’s modulus El = 2.1 × 1011 Pa E0 = 2.7216 × 107 Pa
Poisson’s ratio νl = 0.3 νc = 0.44
Density ρl = 7800 kg m−3 ρc = 1200 kg m−3

Thickness hl = 0.6 mm hc = 0.045 mm

Fig. 1. Cantilever sandwich beam.

Table 2
Frequencies and loss factors. Data: (Ωo, ηo

m), generalized Maxwell model: (ΩGM, ηGM
m ) and relative errors, identified Young’s modulus: (Ω∗, η∗

m) and relative
errors.

Data Generalized Maxwell model Identified Young’s modulus

Ωo ηo
m ΩGM ηGM

m
ΩGM−Ωo

Ωo
ηGM

m −ηo
m

ηo
m

Ω∗ η∗
m

Ω∗−Ωo

Ωo
η∗

m−ηo
m

ηo
m

60 ◦C 34 2.75 × 10−2 30.60 3.58 × 10−2 1.00 × 10−1 3.02 × 10−1 30.34 2.75 × 10−2 1.08 × 10−1 7.93 × 10−5

147 5.03 × 10−2 156.27 7.56 × 10−2 6.31 × 10−2 5.03 × 10−1 153.81 4.98 × 10−2 4.63 × 10−2 9.25 × 10−3

357 6.68 × 10−2 382.77 7.52 × 10−2 7.22 × 10−2 1.26 × 10−1 382.75 6.68 × 10−2 7.21 × 10−2 4.72 × 10−5

636 6.77 × 10−2 636.12 6.77 × 10−2 1.86 × 10−4 2.22 × 10−6

70 ◦C 34 2.82 × 10−2 30.25 2.92 × 10−2 1.10 × 10−1 3.55 × 10−2 30.20 2.82 × 10−2 1.12 × 10−1 1.63 × 10−3

145 4.45 × 10−2 152.49 8.60 × 10−2 5.17 × 10−2 9.33 × 10−1 147.83 4.45 × 10−2 1.95 × 10−2 5.66 × 10−4

352 5.52 × 10−2 376.11 7.88 × 10−2 6.85 × 10−2 4.26 × 10−1 368.12 5.52 × 10−2 4.58 × 10−2 1.79 × 10−5

627 5.27 × 10−2 634.47 5.26 × 10−2 1.19 × 10−2 1.05 × 10−3

where I3 is the identity matrix and Poisson’s ratio νc is assumed to be constant. Material and geometrical characteristics of
the beam are reported in Table 1, dimensions are L × l = 178 mm × 10 mm. The complex Young’s modulus is parameterized
using the following generalized Maxwell model,

EGM
({α j, β j} j=0,...,Nmax ,ω

) = α0 + iβ0ω +
Nmax∑

j=1

iω
iω
α j

+ 1
β j

(3)

whose parameters were determined from experimental tests realized on the pure viscoelastic material [1] (provided by
the steel company Usinor). This model involves a set p = {α j, β j} j=0,...,Nmax parameters, with Nmax = 129. The delayed
elasticity is denoted by a0. The structure is meshed using the sandwich finite element described in [6]. In this three node
triangular element based on the discrete Kirchhoff theory, each node has eight degrees of freedom that are the longitudinal
displacements of the elastic layers, the common deflection and three rotations. The chosen finite model, detailed in [6],
has been validated by comparison to other models devoted to the finite modelling of viscoelastic sandwich structures. The
vibration analysis of the sandwich beam is performed under clamped-free boundary conditions.

The truncature order of the ANM series is set to N = 20 and the parameter that controls the convergence of the ANM is
equal to 10−6 as usual.

Table 2 compares measured and computed frequencies and loss factors for temperatures 60 ◦C and 70 ◦C. Relative errors
are also provided. Each temperature row presents up to four modes. Data are denoted by (Ωo, ηo

m). Values (ΩGM, ηGM
m )

computed using (3) were reproduced from [2]. One observes that resonant frequencies are determined in a satisfactory
manner (relative errors less than of 10%) because the structure stiffness is mainly due to elastic faces. On the contrary,
misfits on the modal loss factor may be important. Such discrepancies may be attributed to either measurement errors on
the data and/or the choice of the viscoelastic model. The generalized Maxwell model (3) identified from relaxation tests
realized on a pure polymer at 20 ◦C and extended [1] to other temperatures by mean of the Williams–Landel–Ferry (WLF)
law [7] is unadapted to the sandwich modelling we perform. The next section is devoted to the identification of a parametric
complex Young’s modulus. Related frequencies and loss factors are denoted by (Ω∗, η∗

m) in Table 2.
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3. Optimization

The degree to which a particular Young’s modulus formula is applicable to a given material strongly depends on the
value of its parameters. Numerical methods proposed for the identification of viscoelastic parameters are usually based on
gradient [8] or response surface [9] methods. We discuss a gradient method for which derivatives are obtained using AD
techniques [10]. Such numerical derivatives are exact up to the machine precision with minimal user effort. Identification
results are then presented discussing the last columns of Table 2.

3.1. Theoretical issues

Let J be an objective function that measures the discrepancies between simulated and observed structural damping
properties, denoted by (Ω,ηm) and (Ωo, ηo

m) respectively, taking into account the difference in the orders of magnitude,

J (Ω,ηm) = wΩ

(Ω − Ωo)2

(Ωo)2
+ wη

(ηm − ηo
m)2

(ηo
m)2

(4)

In Eq. (4), weights wΩ and wη are introduced to favour the minimization with respect to one data over the other. From a
modelling point of view, the objective function J may be seen as a compound function

J (Ω,ηm) = J ◦R ◦ E(p,ω) (5)

that links the viscoelastic parameters p of Young’s modulus E to the discrepancies. Let P be a set of admissible viscoelastic
parameters. Under continuity and differentiability assumptions, the minimization problem (6)

Find p∗ ∈ P such that min
p∈P J ◦R ◦ E(p,ω) = J ◦R ◦ E

(
p∗,ω

)
(6)

may be solved through a gradient method.
There exist several computational options for sensitivity analyses [11] and gradient computations [10,12]. On the one

hand, gradients may be obtained differentiating the continuous (or discrete) equations of the model and evaluating the
resulting equations in particular directions of perturbation δp. For instance the differentiation of (5) yields

[∇J (Ω,ηm)
]
.
[∇R

(
E(p,ω)

)]
.
[

E(p,ω)
]
.δp = δ J

which is evaluated at point p in the direction δp. On the other hand, AD techniques [10] may be used on the code im-
plementing J ◦ R ◦ E . In a nutshell, AD views any computer code as a sequence of elementary operations and intrinsics
functions, control statements and do-loops provided by the programming language. The differentiation is performed apply-
ing the chain rule to this sequence, statement by statement, operation by operation. This generic approach constitutes a
reliable technique when dealing with large codes and/or large gradients [13], or with higher order differentiation [4,12]. The
reader is referred to [14] and the references therein for an exhaustive discussion about AD and non-linear mechanics. In
this Note, we do not discuss finite difference schemes because approximate gradients they produce may be of insufficient
accuracy for optimization purposes.

Our Fortran code implements J ◦R ◦ E(p,ω) following the ANM method presented in [2]. It contains about 5200 lines.
Given this code, the tangent linear mode of differentiation allows to get a linear code that enables the computation of the
gradient components. Among the available softwares, we choose Tapenade (freely available for research purposes) since it
may be applied to general Fortran codes. The user provides the source code, the name of the top routine to be differentiated,
here J , a set of “independent” input variables (the viscoelastic parameters p) and the mode of differentiation. The resulting
source code, generated in 16 seconds on an Intel Core2 Duo 2 GHz processor with 2 GB memory, evaluates both (4) and its
partial derivative with respect to a prescribed direction δp. AD generally provides efficient tangent linear codes.

3.2. Numerical results

The viscoelastic model is written as

E(ω) = E0 + (
E R(ω), E I (ω)

) = Re
(

E(ω)
)(

1 + iη(ω)
)

(7)

where E0 ∈ R is the delayed elasticity modulus, E R(ω) = Re(E(ω)) and E I (ω) = Im(E(ω)) are the real part and the imagi-
nary part of the complex non-linear Young’s modulus of the viscoelastic structure to be identified, respectively. The variable
η(ω) is the material loss factor. For a given frequency ω, Eq. (7) may be turned into a constant complex modulus formu-
lation containing two parameters. The independent variables are thus E R and E I at the AD stage. Weights (wΩ, wη) are
set to (10−6,1) in order to favour a better fit of the modal loss factor. The optimization process, including the L-BFGS-b
routines [15], identifies optimal parameters p∗ of Young’s modulus (7), what enables to deduce related structural damping
properties (Ω∗, η∗

m) =R ◦ E(p∗,ω).
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Results are reported in Table 2. As expected, error on the damping ηm is less than � 10−3 when using the identified
Young’s modulus. Resonant frequencies (less than 10−2 for modes 2, 3 and 4) are well reproduced because the stiffness of
the structure is mainly supported by elastic faces. Errors on the first mode are higher (about 10−1) because the experimental
device was not enough accurate in the measurement of damping properties for low frequencies [1]. Manufacturing error
sources may be also invoked in [1] since the thickness and Young’s modulus of the steel, and the complex modulus of the
polymer are known with a precision of ±10%. These identification results prove the efficiency of our optimization process:
identified viscoelastic parameters enable an accurate computation of the modal loss factor.

4. Conclusion

This Note proposes an optimal control approach for the identification of viscoelastic parameters. The direct and accurate
computation of the modal damping for a large number of vibration modes of the sandwich structure is realized by means of
the complex non-linear eigenvalue solver described in [2]. The identification algorithm is provided with AD-based gradient
computations. This optimization process is tested on a sandwich structure (steel/polymer/steel) and data acquired by the
Usinor company (Arcelor group). The viscoelastic parameter identification is successful and enables to estimate the modal
loss factor in an accurate manner. Future works are concerned with a data measurement campaign to provide reliable
data, acquired on different materials and structures, to be used in this optimization process for instance. Parameters such
as optimal thickness and shear modulus of the viscoelastic layer [16] may be identified in a similar manner considering
another objective function and differentiating the resulting computer code with respect to the parameters of interest.
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