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Pipe flow of purely viscous shear-thinning fluids is studied using numerical simulations.
The rheological behavior is described by the Carreau model. The flow field is decomposed
as a base flow and a disturbance. The perturbation equations are then solved using a
pseudo-spectral Petrov–Galerkin method. The time marching uses a fourth-order Adams–
Bashforth scheme. In the case of an infinitesimal perturbation, a three-dimensional linear
stability analysis is performed based on modal and non-modal approaches. It is shown that
pipe flow of shear-thinning fluids is linearly stable and that for the range of rheological
parameters considered, streamwise-independent vortices are optimally amplified. Nonlinear
computations are done for finite amplitude two-dimensional disturbances, which consist of
one pair of longitudinal rolls. The numerical results highlight a strong modification of the
viscosity profile associated with the flow reorganization. For a given wall Reynolds number,
shear-thinning reduces the energy gain of the perturbation. This is due to a reduction of
the exchange energy between the base flow and the perturbation. Besides this, viscous
dissipation decreases with increasing shear-thinning effects.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

L’écoulement de fluides rhéofluidifiants en conduite cylindrique est étudié à l’aide de
simulations numériques. Le comportement rhéofluidifiant est modélisé par la loi de
Carreau. L’écoulement est décomposé en un écoulement de base et une perturbation. Les
équations aux perturbations sont résolues en utilisant une méthode pseudo-spectrale de
Petrov–Galerkin. La discrétisation temporelle utilise un schéma d’Adams–Bashforth d’ordre
quatre. Dans le cas d’une perturbation infinitésimale, une analyse linéaire tridimensionnelle
est effectuée suivant une approche modale puis non-modale. Les résultats obtenus
montrent que dans la gamme des paramètres rhéologiques considérés, l’écoulement d’un
fluide rhéofluidifiant est linéairement stable. La perturbation optimale est constituée
d’une paire de rouleaux longitudinaux contra-rotatifs. Des simulations numériques non
linéaires sont ensuite effectuées pour une perturbation bidimensionnelle d’amplitude finie
constituée d’une paire de rouleaux longitudinaux. Les résultats numériques montrent que
la réorganisation de l’écoulement s’accompagne d’une forte modification du profil de
viscosité. En outre, pour une valeur donnée du nombre de Reynolds basé sur la viscosité
pariétale, la rhéofluidification réduit l’amplification de l’énergie de la perturbation. On
montre que cela est dû à la réduction des échanges d’énergie entre l’écoulement de base et
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la perturbation. Parallèlement à cela, la dissipation visqueuse décroit avec l’augmentation
des effets rhéofluidifiants.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Non-Newtonian fluids, such as colloidal suspensions, polymers or macro-molecules solutions are encountered in several
industrial processes such as oil-well cementing, extrusion of molten polymers, paper coating, transport of mined slurries,
etc. Many of these processes involve flows of non-Newtonian fluids through pipes. Knowledge of the flow structure is es-
sential for an accurate design of pipe flow systems. In the laminar regime, the flow can be quite easily calculated. On the
contrary, the transition to turbulence remains a genuine scientific challenge. Actually, this is also the case for Newtonian
fluids, despite the numerous works done since Reynolds’ experiment in 1883. The Hagen–Poiseuille flow is conjectured to
be linearly stable for all Reynolds numbers and numerically proven [1] so for Reynolds number up to 107, yet it exhibits
transition to turbulence at moderate flow velocities. A finite amplitude perturbation is therefore required to trigger transi-
tion to turbulence. In the last decade two different modeling approaches of transition to turbulence were proposed in the
literature for Newtonian fluids. The first one is based on the algebraic transient growth exhibited by the optimal perturba-
tions, which consist of streamwise counter-rotating vortices. These two-dimensional rolls evolve into streaks via the lift-up
mechanism [2]. The resulting flow contains inflection points in the velocity profiles and can be unstable with respect to
three-dimensional perturbations. This instability, which is typically studied by nonlinear direct simulations, is termed as
streak breakdown. It was shown that this modeling approach is pertinent in parallel shear flows such as pipe Poiseuille
flow [3], plane Poiseuille flow [4] and recently in magnetohydrodynamics channel flow [5]. The main goal of this approach
is to determine the threshold amplitude of a perturbation required to trigger transition. The second approach seeks nonlin-
ear wave solutions of the Navier–Stokes equations, by using the Self-Sustaining Process (SSP) initiated by Waleffe [6], and
continuation methods. The SSP employs streamwise rolls, streaks and traveling waves as a fundamental building unit. Some
unstable traveling waves solutions have been identified by Faisst and Eckhardt [7] and Wedin and Kerswell [8] for Newto-
nian pipe flow. Despite the fact that streaks, rolls and waves are all present in the exact coherent solution cited above, there
is as yet no description of how such states might arise from the stable laminar base flow [9]. Recently, Biau and Bottaro [9]
proposed an alternative optimization strategy, aimed at finding the optimal oblique waves yielding a self-sustained state.
This optimization approach provides a proper match between the SSP theory and the optimal perturbation approach.

Comparatively to the Newtonian case, very few studies have been devoted to the transition to turbulence in a pipe
for non-Newtonian fluids. This is perhaps not surprising, given the inherent additional complexities involved. There is a
demand from industrial applications to predict the Reynolds number at which transition occurs. For instance, in the oil-
well cementing process, turbulent flow is the preferred flow regime for efficient mud removal [10]. Therefore, a reliable
criterion for the critical Reynolds number is needed to properly design the well-cleaning process with a minimum pump
rate. Similarly, in the pipeline transport of slurries, in mining industry, turbulent flow is necessary to prevent particles
from settling [11]. The existing literature reveals two interesting and yet unexplained effects. The first one concerns the
delay in the transition to turbulence, more precisely in the onset of “puffs” [12–15]. For instance, Escudier et al. [14,15]
investigated the transitional pipe flow of 0.15% w/w aqueous solution of xanthan gum (semi-rigid polymer) and 0.2% w/w
polyacrylamide (flexible polymer). They found that the transition occurs at Reynolds number (defined with the bulk velocity,
the pipe diameter and the wall shear-viscosity) about 3000 for xanthan gum and ≈ 4000 for polyacrylamyde. For a barite
suspension (fluid used in oil-well cementing process) transition was found at Reynolds about 4000 [10]. The interpretation
of the delayed transition is not straightforward, since the fluids considered, are both, to certain extent, shear-thinning
(the viscosity decreases with increasing the shear-rate) and viscoelastic. Recently, Roland et al. [16] examined the effect of
shear-thinning on the traveling waves found in Newtonian fluid. The authors focused only on the waves with an azimuthal
wavenumber n = 3. They found that the critical Reynolds number of the saddle-node bifurcation where these waves appear
increases when shear-thinning come into play. The second effect concerns the asymmetry of the mean axial velocity profiles
observed in transitional regime [14,17,18,15,19], while in the laminar and turbulent regimes, the flow is axisymmetric. Here,
“mean” refers to time-averaged. This asymmetry suggests the existence of a robust coherent structure characterized by two
weakly modulated counter-rotating longitudinal vortices [18], i.e. with an azimuthal wavenumber n = 1. The asymmetry
seems to be shear-thinning dependent. Indeed, non-Newtonian liquids with similar shear-thinning and different elastic
behavior show the same degree of asymmetry [15].

The present work focuses on the pipe flow of purely viscous shear-thinning fluids, i.e., fluids without elasticity and for
which the viscosity is a nonlinear function of the second invariant of the strain rate tensor. Additional nonlinear couplings
between flow variables, in addition to the quadratic nonlinear inertial terms, appear in the momentum equations. Laminar
flows of such fluids are mainly characterized by a stratification of the viscosity between the wall and the pipe axis: the
viscosity decreases from the axis to the wall. To our knowledge the linear stability of the laminar flow of a shear-thinning
fluid has not been performed before. Here it will be shown, for a wide range of the rheological parameters, that the flow
is linearly stable, and that the optimal perturbation is constituted of streamwise-independent counter-rotating vortices. We
will then study, with direct numerical simulation, the nonlinear development of the optimal perturbation, i.e. the first step
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of the transition scenarios described above. More precisely, the objective is to examine the modification of the viscous
dissipation induced by the viscosity perturbation, in presence of finite amplitude disturbance, and its consequence on the
disturbance energy.

An outline of the article is as follows. The governing equations of the problem and the Carreau law as a model for shear-
thinning behavior are given in dimensionless form in Section 2. The characteristics of the base flow in terms of velocity
and viscosity profiles are discussed. The initial value problem for the perturbation field is stated. The presentation of the
numerical method is made in Section 3. The dynamical system obtained is first solved in the case of an infinitesimal per-
turbation (linear theory) in Section 4. The validation of the numerical procedure and the convergence analysis for nonlinear
computations are given in Section 5. The results for a finite perturbation are discussed in Section 6. Finally, conclusions on
the main findings of the present work are drawn in Section 7.

2. Governing equations and base flows

2.1. Momentum equations – dimensionless parameters

We consider the flow of an incompressible purely viscous shear-thinning fluid in a circular pipe of radius R̂ . Here and in
what follows, the quantities with a hat (.̂) are dimensional. The governing equations in dimensionless form are

∇ · U = 0 (1)
∂U

∂t
+ (U · ∇)U = −∇P + ∇ · τ (2)

where P is the pressure, including the gravity effect, and τ the deviatoric stress tensor. The above equations have been
rendered dimensionless using Ŵ0 the maximal velocity of the laminar flow as a velocity scale, the radius R̂ of the pipe
as a length scale, R̂/Ŵ0 as a time scale and ρ̂Ŵ 2

0 as a stress and pressure scale. The velocity vector U is written as
U = U er + V eθ + W ez , where U , V and W are the velocity components in the radial, azimuthal and axial directions
respectively. For purely viscous fluids, i.e. fluids for which the viscosity depends only on the shear rate, the deviatoric shear
stress tensor

τ = 1

Re
μγ̇ with γ̇ = ∇U + (∇U )T (3)

the strain-rate tensor. The Reynolds number

Re = ρ̂Ŵ0 R̂

μ̂ref
(4)

where the reference viscosity μ̂ref is defined afterwards. We focus on fluids of shear-thinning type. Many models are pro-
posed in the literature to describe the dependence of viscosity on shear rate. Probably the most popular is the power-law
model. However, this model gives an infinite viscosity as the shear rate tends to zero. A more realistic model is the Carreau–
Yasuda model [20] for which the zero-shear rate viscosity μ̂0 is finite. Using μ̂0 as the reference viscosity, μ̂ref = μ̂0, the
Carreau–Yasuda model in dimensionless form reads

μ = μ∞ + (1 − μ∞)
[
1 + (λγ̇ )a](nc−1)/a

(5)

where μ∞ = μ̂∞/μ̂0 is the dimensionless shear viscosity at infinite shear rate, λ = λ̂R̂/Ŵ0 is the dimensionless time
constant of the fluid (its inverse is the dimensionless shear rate at which the onset of shear-thinning occurs), nc < 1 is
the shear-thinning index, a is a constant which describes the transition from the zero shear viscosity region to the power-
law region. This five-parameter model offers the possibility to fit a wide variety of experimental data. However, for many
polymer solutions, a good fit is obtained with a = 2, referred to as the Carreau model. One can note that the Newtonian
fluid is recovered by setting any of the limits: nc = 1, λ = 0 or μ∞ = 1. The dimensionless second invariant of the strain
rate tensor γ̇ is

γ̇ =
[

1

2
γ̇i jγ̇i j

]1/2

(6)

2.2. Base flows

A one-dimensional shear flow, U = U b = Wb(r)ez is driven by a constant pressure gradient, i.e. the pressure Pb =
P 0

b − G p z, with P 0
b and G p some constants. The subscript b means base flow. Then, the axial momentum equation reads

0 = G p + 1 1 d
(

rμb
dWb

)
(7)
Re r dr dr
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Fig. 1. Base velocity profiles. (a) λ = 30 and different values of the shear-thinning index: (1) nc = 1 Newtonian fluid; (2) nc = 0.7; (3) nc = 0.5; (4) nc = 0.3.
(b) nc = 0.5 and different values of the dimensionless time constant λ: (1) λ = 0 Newtonian fluid; (2) λ = 1; (3) λ = 30.

Fig. 2. Base viscosity profiles. (a) λ = 30 and different values of the shear-thinning index: (1) nc = 0.7; (2) nc = 0.5; (3) nc = 0.3. (b) nc = 0.5 and different
values of the dimensionless time constant λ: (1) λ = 1; (2) λ = 4; (3) λ = 30.

where

μb = μ∞ + (1 − μ∞)

(
1 + λ2

(
dWb

dr

)2)(nc−1)/2

(8)

The above equations are supplemented by the no-slip condition at the wall. An iterative spectral method is used for solving
the nonlinear equation (7). Since the center line velocity is the characteristic velocity, Wb(0) = 1. Hence, a specific pressure
gradient has to be applied to produce Wb(0) = 1. Examples of the axial velocity profiles obtained at fixed λ and varying nc ,
or fixed nc and varying λ are given in Fig. 1. Hereafter, the infinite shear-rate viscosity is non-zero and is fixed, μ∞ =
2 × 10−3. This value is based on the rheological data given by Escudier et al. [15]. As expected, with increasing shear-
thinning effects, the wall shear rate increases, and the velocity profile flattens in the central region. Fig. 2 shows the
influence of shear-thinning effects with increasing λ or decreasing nc on the viscosity profile. In order to highlight the
viscosity sensitivity with respect to changes in the shear rate we define the quantity vs = (1/μb)(dμb/dγ̇ ). As displayed in
Fig. 3, vs increases with increasing shear-thinning effects. Furthermore, the curves of Fig. 3 highlight a strong sensitivity of
the viscosity to change in γ̇ near the axis, particularly for large values of λ (Fig. 3(b)).

2.3. Disturbance equations

The base flow is initially subjected to a disturbance (u, p): U = U b + u and P = Pb + p. The equations governing the
time-evolution of the disturbance are obtained by subtracting the base equations from (1), (2):

∇ · u = 0 (9)
∂u

∂t
= −(U b.∇)u − (u.∇)U b − (u.∇)u − ∇p + ∇.

[
τ (Ub + u) − τ (Ub)

]
(10)

with the no-slip boundary conditions on the pipe wall. In Eq. (10), the components of the deviatoric stress tensor of the
disturbed flow are:

τi j(U b + u) = 1
μ(U b + u)γ̇i j(U b + u) (11)
Re
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Fig. 3. Viscosity sensitivity. (a) λ = 30 and different values of the shear-thinning index: (1) nc = 0.7; (2) nc = 0.5; (3) nc = 0.3. (b) nc = 0.5 and different
values of the dimensionless time constant λ: (1) λ = 1; (2) λ = 4 and (3) λ = 30.

As the fluid is supposed purely viscous, it was therefore assumed that the viscosity instantaneously adjusts the shear rate
of the perturbed flow U b + u. Physically, this assumes that the characteristic time of the reorganization of the internal
structure is much smaller than the characteristic time of the perturbation.

3. Numerical method

Following Meseguer and Trefethen [21,1], a pseudo-spectral Petrov–Galerkin is used to integrate the governing equations.
Fourier expansions are used in the azimuthal and axial directions, and Chebyshev-based functions are used in the radial
direction. The expansion of the velocity, which is truncated at order L in z, order N in θ and order M in r, is written as:

us(r, θ, t) =
∑

k=1,2

L∑
l=−L

N∑
n=−N

M∑
m=0

a(k)

mnlΦ
(k)

mnl (12)

The trial bases Φ
(k)

mnl are of the form:

Φ
(k)

mnl = exp(iqz + inθ)v(k)

mnl(r) (13)

where q = 2π l/Q is the axial wavenumber based on the axial periodicity Q of the flow, n the azimuthal wavenumber and
v(k)

mnl(r) a function based on the first kind Chebyshev polynomial T2m(r) [21]. The trial bases v(k)

mnl(r) are given in Appendix A.

The coefficients a(k)

mnl depend on time and satisfy the property amnl = a∗
m−n−l , since us is real. The star denotes the complex

conjugate. By construction, the trial bases are divergence free, satisfy the no-slip condition at the wall and the regularity
condition at the axis. Actually, the use of solenoidal basis functions of velocity appeared earlier in the literature [22]. Eq. (12)
combined with (13) is substituted into Eq. (10) and a projection over solenoidal test fields ψ

(k)

mnl , given in Appendix A which

include the weight 1/
√

1 − r2 and satisfying the boundary and the regularity conditions, is performed. The pressure term
−∇p cancels in the projection. The nonlinear inertial and viscous terms are calculated using a pseudo-spectral method. To
avoid aliasing error, i.e., the production of small scales, the 3/2 padding rule for de-aliasing [23] is employed. Setting a the
column vector containing the elements a(k)

mnl , the dynamical system resulting from the projection procedure can be written
as:

Aȧ = Ba + b (14)

where b, the column vector containing the nonlinear terms b(k)

mnl , and the matrices A and B are defined such as:

[Aȧ](k)

mnl = 〈
∂t us,ψ

(k)

mnl

〉
(15)

[Ba](k)

mnl = −〈
(U b · ∇)us + (us · ∇)U b,ψ

(k)

mnl

〉
(16)

b(k)

mnl = −〈
(us · ∇)us,ψ

(k)

mnl

〉 + 〈∇ · τ (U b + us) − τ (U b),ψ
(k)

mnl

〉
(17)

The scalar product 〈. , .〉 is defined by the integration over the fluid domain of the functions product:

〈Φ,ψ〉 =
2π/q∫ 2π∫ 1∫

Φ · ψr dr dθ dz (18)
0 0 0
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where Φ belongs to the physical or trial space and ψ is a solenoidal vector belonging to the test space. The time discretiza-
tion uses a fourth-order semi-implicit Adams–Bashforth scheme. The nonlinear terms (17) are calculated explicitly, while
the linear terms (16) are integrated implicitly. Since the nonlinear viscous terms are integrated explicitly, the maximum
allowable time step 	t which ensures the numerical stability decreases when the number of azimuthal and radial modes
increases.

4. Case of infinitesimal three-dimensional perturbation: linear stability analysis

When the disturbance is infinitesimal, the nonlinear advective terms are neglected and the quantity τ (U b + u) − τ (U b)

is linearized around the base flow (U b, Pb),

τ ′ = τ (U b + u) − τ (U b) = μ(U b)γ̇ (u) + μ′γ̇ (U b) (19)

Using Taylor expansion at first order, the viscosity perturbation μ′ is given by

μ′ = ∂μ

∂γ̇i j

∣∣∣∣
b
γ̇i j(u) (20)

Since U b = Wb(r)ez , one has

τ ′
i j = μ(U b)γ̇i j(u) if i j 
= rz, zr (21)

τ ′
i j = μt(U b)γ̇i j(u) if i j = rz, zr (22)

with the “tangent viscosity”

μt(U b) = μ(U b) + ∂μ

∂γ̇rz
(U b)γ̇rz(U b) (23)

Indeed, for one-dimensional shear flow, with velocity Wb(r) in the z-direction, the tangent viscosity is defined as μt =
∂τrz/∂γ̇rz . For shear-thinning fluids μt < μ. One can note that the fluctuation stress tensor τ ′ is anisotropic, due to viscosity
perturbation. The initial value problem that results can be written

Aȧ = La (24)

with

[Aȧ](k)

mnl = 〈
∂t us,ψ

(k)

mnl

〉
(25)

[La](k)

mnl = −〈
(U b · ∇)us + (us · ∇)U b,ψ

(k)

mnl

〉 + 〈∇ · τ ′,ψ (k)

mnl

〉
(26)

4.1. Modal approach: long-time behavior

When the long time behavior is sought, the disturbance is assumed to behave exponentially as exp(σ t). The initial value
problem (25)–(26) is transformed into a generalized eigenvalue problem, with σ as eigenvalue:

σ Aa = La (27)

The numerical results show that for the range of rheological parameters considered here, 0 < λ < 30 and 0.3 < nc < 1, the
real part of σ remains negative for all the eigenmodes. It is therefore conjectured that the pipe flow of a shear-thinning
fluid (0,0, Wb(r)) is linearly stable. The asymptotic behavior of the least stable mode was determined for two different
kinds of perturbations n = 1, q = 0 and n = 1, q = 1. The same scaling as for Newtonian fluid is found when the Reynolds
number is defined with the wall shear-viscosity μw = μb(r = 1):

Rew = Re/μw (28)

Hence, for the streamwise mode n = 1, q = 0, the least stable mode eigenvalue σ behaves as Re−1
w and for n = 1, q = 1, the

real part of the eigenvalues of the wall mode and the center mode behave as Re−1/3
w and Re−1/2

w .
In the following, the results will be presented in terms of Rew . It is worth noting here that the experimentalists [14,18,15]

use μw in the Reynolds number definition. From a practical point of view, the tangential wall shear-stress τrz is determined
from the measurement of the pressure gradient. The wall viscosity is then calculated from τrz and the rheological law.
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Fig. 4. (a) Maximum amplification of the disturbance kinetic energy as a function of the axial wavenumber q for different azimuthal wavenumbers n at
Rew = 4000, λ = 30 and nc = 0.5. (b) Gain of kinetic energy for the optimal perturbation at Rew = 4000, λ = 30 and different values of the shear-thinning
index, nc .

4.2. Non-modal approach: transient growth

As the linear operator L = A−1L is non-normal, i.e. the eigenmodes are not orthogonal under the energy norm, transient
growth of the kinetic energy of the perturbation is expected, before an exponential decay. To characterize the transient
growth, we define the gain G of the kinetic energy at given time t and non-zero initial condition, u(t = 0), as:

G
(
t,q,n, u(t = 0)

) = E(t, u)

E(t = 0, u)
(29)

where E(t, u) is the instantaneous disturbance kinetic energy density, for a given mode, defined by

E(t, u) = q

4π2

2π
q∫

0

2π∫
0

1∫
0

u.ur dr dθ dz (30)

The maximum amplification of the kinetic energy over all non-zero initial conditions and over all times is

Gmax(q,n) = sup
t>0

G(t,q,n) with G(t,q,n) = sup
u(t=0) 
=0

G
(
t,q,n, u(t = 0)

)
(31)

The optimal amplification over all the azimuthal and axial wavenumbers is defined by

Gopt = sup
q,n

Gmax(q,n) (32)

The procedure to compute the optimal initial condition is outlined in [24]. For all the range of rheological and dynamical
parameters considered here, it is found that the optimal transient growth is reached for a streamwise homogeneous pertur-
bation (q = 0), with an azimuthal wavenumber n = 1 as in the case of a Newtonian fluid. Nonetheless, from a very low axial
wavenumber, the maximum amplification of the kinetic energy of the perturbation is reached for higher azimuthal modes
as indicated by Fig. 4(a) at nc = 0.5, λ = 30 and Rew = 4000. The amplification of the kinetic energy at Rew = 4000, n = 1,
l = 0, λ = 30 and different values of the shear-thinning index is displayed in Fig. 4(b). As can be observed, shear-thinning
reduces significantly the amplification of the kinetic energy as well as the corresponding time where the maximum am-
plification is reached. These results may be anticipated on the basis of those obtained in [25]. Numerical results show for
instance at λ = 30 that Gopt

nc 
=1 ∝ n1.66
c × Gopt

nc=1 and topt
nc 
=1 ∝ n0.67

c × topt
nc=1. For given nc and λ, the dependence of Gopt and

topt on Rew has been studied. It is found that Gopt increases with Rew . The scaling with Re2
w is recovered. Similarly the

scaling of topt with Rew is satisfied. The structure of the initial perturbation which ensures the optimal amplification of
the kinetic energy is represented in Fig. 5. It consists of two counter-rotating streamwise vortices along the wall-normal
direction. At t = 0, almost all the energy is in the azimuthal and radial components and only a negligible part is contained
in the streamwise component. For instance for nc = 0.5 and λ = 30, 67.87% of the energy is in the azimuthal component
and 32.06% in the radial component of the velocity. These vortices allow the transfer of energy to the streamwise velocity
components by the lift-up mechanism creating low and high speed streaks, displayed in Fig. 5(b). The location of maximum
streamwise velocity approaches the wall with increasing shear-thinning effects.
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Fig. 5. (a) Optimal pattern of perturbation at t = 0 in the (r, θ) section, for nc = 0.5, λ = 30 and Rew = 4000. The arrows represent the vectors uer + veθ .
(b) Optimal streaks at t = topt = 150 time units: Iso-values of the axial velocity component w . Continuous lines for positives values of w: 0.1 near the wall
with a step of 0.2 until 0.9. Dashed lines for negative values of w: −0.1 near the wall then with a step of −0.2 until −0.9.

Fig. 6. Case of a Newtonian fluid. Energy amplification factor G(t) of a two-dimensional streamwise perturbation at Re = 3000 and for different values of
the initial energy ε0. The results are obtained using M = 6 radial modes, N = 9 azimuthal modes and 	t = 0.01.

5. Nonlinear two-dimensional computations: validation and convergence

5.1. Validation

Firstly, Zikanov’s result [3] corresponding to the energy amplification of two-dimensional perturbation, in the case of a
Newtonian fluid, is reproduced in order to validate the computational code. The initial perturbation is in the form of a pair
of streamwise rolls with azimuthal wavenumber n = 1. The normalized energy of an arbitrary perturbation u is defined by

ε(u) = E(t, u)

E(U b)
(33)

where E(U b) = 1/6 in the case of a Newtonian fluid. Fig. 6 shows the variation of the energy amplification G(t). The results
are in very good agreement with those given by Zikanov [3] and Meseguer [26]. It is interesting to note that the numerical
computations started with the simplified expressions of the coefficients a(k)

mn proposed by Zikanov [3] and used by Meseguer
[26] are not distinguishable from those obtained with the optimal perturbation, within plotting accuracy.

5.2. Convergence

5.2.1. Spatial convergence
In order to test the spatial convergence of the solution, computations are performed for different truncation levels

(Mi, Ni). The relative variation of G with respect to the highest level of truncation (Mh, Nh) is defined by

	G(t)Mi ,Ni = |G Mi ,Ni − G Mh,Nh |
G Mh,Nh

(34)

The truncation error is estimated by the maximum of 	G(t) over all the time interval considered, typically 0 � t � 1000.
For instance, for an initial disturbance consisting of one pair of longitudinal rolls, at nc = 0.5, λ = 30 and Rew = 4000,
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Fig. 7. Convergence test for a Carreau fluid nc = 0.5, λ = 30 at Rew = 4000. The initial perturbation is in the form of streamwise rolls with an energy
ε0 = 10−2. (a) Truncation error for two different spatial resolutions: (1) (M1 = 6, N1 = 9) and (2) (M2 = 12, N2 = 12), with (Mh = 12, Nh = 16). (b) Energy
spectra over the azimuthal modes at t ≈ 70 and for the three truncation levels tested: (�) (M = 6, N = 9); (◦) (M = 12, N = 12) and (�) (M = 12, N = 16).

computations were done for (M, N) = (6,9), (12,12) and (12,16). Fig. 7(a) displays 	G vs time. For truncation levels
(M, N) = (6,9) the error truncation is 18% obtained at t = 54 while it is 0.07% obtained at t = 87 for (M, N) = (12,12).
There is no significant gain in accuracy of the solution, if one considers truncation level (M � 12, N � 12). At an intermediate
time t ≈ 70, where 	G is maximum, the spectral convergence of the solution is checked. This is illustrated by Fig. 7(b)
where the energy distribution Gn over the azimuthal wavenumber n is displayed for the above three truncation levels. The
ratio Gn of the kinetic energy associated to an azimuthal mode n, to that of the initial perturbation is

Gn = 1

E(t = 0, u)

∑
k=1,2

M∑
i=0

M∑
j=0

[
a(k)∗

in0 a(k)
jn0

1∫
0

(
v(k)∗

in0 (r).v(k)
jn0(r)r dr

)]
(35)

Fig. 7(b) shows that the spectral convergence is ensured when M � 12 and N � 12, with Gn ∝ exp(−n). The test of spatial
convergence described above is done for all the set of rheological and dynamical parameters studied.

5.2.2. Temporal convergence
The sensitivity of the computational results to the magnitude of the time step is examined by comparing the solutions

G(t) obtained with two time steps 	t and 	t/2. The convergence criterion is based on the maximum of the relative
variation |G(t)	t − G(t)	t/2|/G(t)	t/2 which has to be less than 0.5%. Hence, for one pair of longitudinal rolls, at nc = 0.5,
λ = 30, Rew = 4000, with (M = 12, N = 12), the criterion of temporal convergence is ensured with 	t = 10−2.

6. Nonlinear two-dimensional computations: results and discussion

The results section consists of four parts. Section 6.1 focuses on shear-thinning effects on the temporal evolution of the
disturbance energy. Section 6.2 describes the flow structure and modification of the viscosity profiles. Section 6.3 gives
the Reynolds–Orr equation and highlights the additional terms arising from the viscosity perturbation. Section 6.4 analyzes
shear-thinning effects on each term of the energy equation. In the following, the dimensionless time constant in the Carreau
model is fixed at λ = 30. This value is chosen in order to highlight clearly the shear-thinning effects. In addition, the results
seem to be weakly dependent on λ when λ � 20.

6.1. Time evolution of the disturbance energy

The time evolution of the amplification factor G(t) for a Carreau fluid with nc = 0.5 is shown in Fig. 8(a). The initial
energy E0 = E(t = 0, u) varies between 10−5 and 10−2 relative to the energy of the base flow. For a low value of ε0 =
E0/E(U b), of the order of 10−5, the contribution of the nonlinear terms can be neglected and we recover the transient
growth due to the non-normality of the linear operator. For ε0 > 2.5×10−3, two stages can be distinguished in the evolution
of the finite amplitude perturbation. In the first stage, at small t , the nonlinear curve follows the linear curve. The growth of
the energy is mainly due to a “pseudo-linear” growth [3]. It is found that the maximum growth time is of order ε

−1/2
0 . The

second stage is the nonlinear development of the perturbation. According to Waleffe [27], nonlinear inertial terms triggered
by transients reduce the non-normality by adjusting the mean flow. This leads to a reduction of energy amplification factor
G with increasing ε0. Because of the z-independence of the perturbation, the rolls do not have an energy source and the
flow undergoes, for t → +∞, a viscous decay back to the laminar regime. Qualitatively, the evolution G(t) is similar to that
of a Newtonian fluid. However, it is worth noting that for a given Rew the amplification factor decreases with increasing
shear-thinning effects as illustrated in Fig. 8(b). This reduction of G is more significant when the viscosity perturbation,
μ′ , is not taken into account as illustrated in Fig. 9(a), where the amplification factor is reported as a function of time and
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Fig. 8. (a) Energy amplification factor G(t) of a two-dimensional streamwise perturbation for a Carreau fluid with nc = 0.5 at Rew = 4000 and different
values of the initial energy ε0. The curve obtained from linear transient growth is not distinguishable from that corresponding to ε0 = 10−5. (b) Shear-
thinning effects on the amplification factor G for ε0 = 10−2: (1) nc = 1 Newtonian case; (2) nc = 0.7; (3) nc = 0.5 and (4) nc = 0.4.

Fig. 9. (a) Energy amplification factor G(t) of a two-dimensional streamwise perturbation for a Carreau fluid with nc = 0.5 at Rew = 4000: (1) the viscosity
perturbation is taken into account, (2) the viscosity perturbation is not taken into account. (b) Relative variation between G(t) calculated when the viscosity
perturbation is taken into account and that calculated without taking into account the viscosity perturbation. This later case is called ‘purely stratified case’
and is indicated by the subscript st .

compared with the situation where μ′ is artificially forced to zero. The relative variation of G(t) between the two situations,
where the viscosity perturbation is taken and not taken into account increases with increasing shear-thinning effects as it
is shown in Fig. 9(b). These different results can be discussed in terms of the balance equation for the averaged disturbance
kinetic energy equation. This analysis is deferred to a later section, after having described the time evolution of the flow
structure and the modification of the viscosity profiles.

6.2. Flow structure and viscosity profiles

In order to emphasize the nonlinear effects, the amplitude of the initial disturbance has to be sufficiently important. The
results given in this section are obtained for ε0 = 10−2. In Fig. 10, we have represented the kinetic energy associated with
each component u, v and w of the perturbation velocity. The radial and azimuthal kinetic energy decrease strongly, while
the axial kinetic energy becomes rapidly dominant. Indeed, the counter-rotating vortices drag slow moving fluid into faster
moving fluid, and lift faster moving fluid into slower moving fluid. This mechanism gives rise to the appearance of inflection
points in the azimuthal profile of the streamwise velocity. This is clearly illustrated by Figs. 11(a)–11(c), where we have
represented contours of constant streamwise velocity at three different times: t = 5 (first stage in G(t)), t = 15 (maximum
growth time) and t = 150 (second stage in G(t)). They are analogous to that of Newtonian fluids. Nevertheless, for shear-
thinning fluids, the contours are squeezed at the top of the cross-section where the viscosity is lower. The distortion of the
axial velocity profile with respect to the base flow is shown in Fig. 12, for two azimuthal positions θ = 0 and θ = π/2.
Here, θ is oriented counterclockwise, with θ = π/2 the “vertical” axis of symmetry of the initial perturbation, see Fig. 5(a).
As the fluid is advected downstream by a pressure-driven mechanism, the flow rate has a tendency to drop. This is a
natural consequence of the energy transfer from the mean flow to disturbance. The distortion of the axial velocity profiles
described above is accompanied by a significant modification of the shear-rate. The incidence on the viscosity profiles is
shown in Fig. 13. At short time (Fig. 13(a)), a strong decrease of the viscosity is observed in the central zone of the pipe,
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Fig. 10. Time evolution of the kinetic energy associated to: (1) axial E(w), (2) azimuthal E(v) and (3) radial E(u), components of the velocity perturbation,
at nc = 0.5 and Rew = 4000.

Fig. 11. Contours of constant streamwise velocity Wb(r)+ w(r, θ, t) of the perturbed flow at Rew = 4000 and ε0 = 10−2. (a) t = 5; (b) t = 15 and (c) t = 150.
(Top) Case of Carreau fluid with nc = 0.5. (Bottom) Case of Newtonian fluid.

due to the high sensitivity of the viscosity to shear rate described in Fig. 3. Over time, the viscosity profile becomes more
complex, but can still be analyzed from the corresponding axial velocity profile. It is clear that this strong modification of
the viscosity profile affects the viscous dissipation.

6.3. Energy equation

It is useful to consider the Reynolds–Orr equation, to describe the time evolution of the kinetic energy of the disturbance.
For this, we take the dot product of Eq. (10) with u and integrate over a cross-section. This yields
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Fig. 12. Axial velocity profiles Wb(r) + w(r, θ, t) of the perturbed flow at two azimuthal positions (horizontal θ = 0 and vertical θ = π/2). Case of Carreau
fluid with nc = 0.5 at Rew = 4000. The results are generated using M = 12 radial modes, N = 12 azimuthal modes and 	t = 0.01. (a) t = 5, (b) t = 15 and
(c) t = 150.

Fig. 13. Viscosity profiles μ(r, θ, t). Case of Carreau fluid at Rew = 4000 and nc = 0.5. The results are generated using M = 12 radial modes, N = 12
azimuthal modes and 	t = 0.01. (a) t = 5, (b) t = 15 and (c) t = 150.

dE

dt
= −

1∫
0

2π∫
0

uw
dWb

dr
r dr dθ −

1∫
0

2π∫
0

1

2

[
τi j(U b + u) − τi j(U b)

]
γ̇i j(u)r dr dθ (36)

Eq. (36) can be written as

dE

dt
= J + D (37)

The first term J on the right-hand side of Eq. (37) is the rate of production of disturbance energy by the interaction of
the Reynolds-stress uw and the mean velocity gradient dWb/dr. The second term D is the rate of viscous dissipation. By
introducing the viscosity perturbation μ′ = μ(U b + u) − μ(U b), the dissipation term can be written as the sum of three
terms

D = D1 + D2 + D3 (38)

with

D1 = − 1

Re

1∫
0

2π∫
0

1

2
μb

(
γ̇ (u) : γ̇ (u)

)
r dr dθ

D2 = − 1

Re

1∫
0

2π∫
0

1

2
μ′(γ̇ (u) : γ̇ (u)

)
r dr dθ

D3 = − 1

Re

1∫ 2π∫
μ′γ̇rz(u)

dWb

dr
r dr dθ (39)
0 0
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Fig. 14. Shear-thinning effects on the production of the disturbance energy by the interaction of the Reynolds stress with the base flow. (a) Time evolution
of the production rate J/E0. (b) Time evolution of 〈 J 〉t/E0: (dotted line) purely stratified case, (continuous line) the viscosity perturbation is taken into
account.

Fig. 15. (a) Time evolution of the additional terms D2 and D3 in the Reynolds–Orr equation arising from the viscosity perturbation at nc = 0.5 and
Rew = 4000. (b) Effect of shear-thinning on (D2 + D3)/E0: (1) nc = 0.4, (2) nc = 0.5 and (3) nc = 0.7.

D1 is the expression of the rate of viscous dissipation in the purely stratified case (μ′ is artificially forced to zero). D2 and
D3 are the modifications of the rate of viscous dissipation due to the viscosity perturbation. These two former terms vanish
in the Newtonian case.

6.4. Analysis

6.4.1. Energy-exchange between the base flow and the disturbance
The production of disturbance kinetic energy by the interaction of the Reynolds stress with the base flow is examined

in Fig. 14 for different values of the shear-thinning index. We have represented J/E0 and G J = 〈 J 〉t/E0, where 〈(.)〉t =∫ t
0 (.)dt . The energy-exchange between the base-flow and the disturbance holds mainly in the “pseudo-linear” growth step.

It decreases with increasing shear-thinning effects. One has to note that G J evaluated in the purely stratified case (μ′ forced
to zero) is very close to that evaluated when the viscosity perturbation is taken into account (Fig. 14(b)).

6.4.2. Viscous dissipation terms
Fig. 15 shows the time evolution of the additional terms D2 and D3. The following observations can be made:

(i) At short time, D2 is large and positive because of the strong decrease of the viscosity as explained previously.
(ii) As time increases, D2 becomes negative and tends to zero.

(iii) D3 is always positive. This term is the integral of the product of the “non-Newtonian Reynolds stress”, μ′γ̇rz(u) with
the mean velocity gradient. Actually, this product denoted d3 is almost always positive. Using first-order Taylor approx-
imation for μ′ it can be shown straightforwardly that

d3 = −μ′γ̇rz(u)dWb/dr ≈ −γ̇ 2
rz(u)

(
∂μ

∂γ̇rz

)
b

dWb

dr
(40)

is positive for shear-thinning fluids. This is confirmed by the numerical computations. In Fig. 16, the distribution of d3
is displayed in a (r, θ) section at different times. It is not surprising that, the maximal values of d3 are attained mainly
near the wall where the axial velocity gradient dWb/dr is larger.
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Fig. 16. Distribution in section r, θ of the non-Newtonian Reynolds stress at three different times: (a) t = 5; (b) t = 15 and (c) t = 150. The computation is
done with Rew = 4000 and nc = 0.5.

Fig. 17. Reduction of the viscous dissipation with respect to the purely stratified case: (1) nc = 0.4; (2) nc = 0.5 and (3) nc = 0.7.

(iv) The sum of these two additional terms is positive. It increases with increasing shear-thinning effects. This can be related
to the increase of the viscosity sensitivity to changes in the shear-rate as indicated by Fig. 3(a).

The importance of the additional terms D2 and D3 may be assessed by introducing the quantity Rdst as:

Rdst =
∫ t

0 [D1(t′) + D2(t′) + D3(t′) − D1st(t′)]dt′

− ∫ t
0 D1st(t′)dt′ (41)

which represents the reduction of the viscous dissipation with respect to the purely stratified case, where μ′ is artificially
canceled. Fig. 17 displays Rdst as function of time for three different values of shear-thinning index. It is observed that Rdst

increases sharply, reaches a maximum within a short time then decreases asymptotically towards a constant value nearing
zero. We note also that Rdst increases with increasing shear-thinning effects, i.e., with increasing the viscosity sensitivity.
This reduction of the viscous dissipation with respect to the purely stratified case can be viewed as an energy source term
for the perturbation that explains the difference between curves (1) and (2) in Fig. 9(a). The contribution of the inertial
term G J is very close to that obtained for a purely stratified case, as it is shown in Fig. 14(b).

Finally, Fig. 18 displays the rate of viscous dissipation D/E0 = (D1 + D2 + D3)/E0 as well as G D = 〈D/E0〉t for different
values of nc . It is observed that shear-thinning reduces the viscous dissipation.

6.5. Discussion

Fig. 14(b) shows that the production of disturbance kinetic energy by the interaction of the Reynolds stress with the
mean field, decreases with increasing shear-thinning effects. This mechanism is at the origin of the reduction of the am-
plification factor G indicated in Section 6.1. This result can be considered as an extension of that obtained by Govindarajan
et al. [28] and Nouar et al. [25] when they studied the linear stability of the plane channel flow of a Carreau fluid. The
authors [28,25] have shown that the stabilizing effect observed for shear-thinning fluids, is primarily due to reduced energy
intake from the mean flow to the perturbation. Besides this, the total viscous dissipation given by

∫ t
0 (D1 + D2 + D3)dt′

decreases as nc decreases.
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Fig. 18. Shear-thinning effects on the viscous dissipation. (a) D/E0 versus time and (b) 〈D/E0〉t versus time.

7. Conclusion

A pseudo-spectral Petrov–Galerkin computational code has been used to investigate the influence of the nonlinear de-
pendence of the viscosity on the shear-rate, on the receptivity of pipe flow of shear-thinning fluids with respect to finite
two-dimensional disturbances. The code has been validated for Newtonian fluids by comparison with Zikanov’s [3] and
Meseguer’s [26] results. The linear stability analysis performed for a wide range of rheological parameters shows that pipe
flow of shear-thinning fluids is linearly stable. The optimal perturbation is achieved for a two-dimensional perturbation with
an azimuthal wavenumber n = 1 similar to the Newtonian case. It is then used as an initial condition for the nonlinear prob-
lem. For a sufficient initial energy ε0, the longitudinal rolls give rise to streaks and inflection points. The viscosity profile is
strongly modified by the perturbation. The consequence of this modification is analyzed through the Reynolds–Orr equation.
Two additional terms arising from the viscosity perturbation appear which reduce significantly the viscous dissipation, with
respect to the purely stratified case (case where μ′ = 0). Globally, the viscous dissipation decreases with increasing shear-
thinning effects. The decrease of the amplification factor with increasing shear-thinning effects is ascribed to the reduced
energy intake from the mean flow. These results indicate that shear-thinning effects contribute on one hand in the delay of
transition observed experimentally [14,15] and on the other hand to the reduction in the friction coefficient [12].

A natural perspective to the present study is to analyze the influence of the shear-thinning effects on the stability of
the 2D solutions obtained with respect to very small streamwise-dependent perturbation, i.e. the next step in the streak-
breakdown scenario for transition to turbulence. This mechanism could be used to characterize the basin of attraction of
Poiseuille flow of shear-thinning fluids.
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Appendix A. Trial and test fields

The choice of trial and test fields has been discussed in the papers [21,26,29]. For the purpose of completeness, we list
these functions here. They are defined in terms of the functions:

hm(r) = (
1 − r2)T2m−2(r), gm(r) = (

1 − r2)hm(r) (42)

with Tm the Chebyshev polynomial of degree m, and of the operators:

D = d

dr
, D+ = D + 1

r
(43)

A.1. Trial fields

In the case n = 0,

v(1)

m0l = rhmeθ

v(2)

m0l = −ilrgmer + D+(rgm)ez (44)

except that, if l = 0,

v(2) = hmez (45)
m00
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In the case n 
= 0,

v(1)

mnl = −inrσ−1 gmer + D
(
rσ gm

)
eθ

v(2)

mnl = −ilrσ+1hmeθ + inrσ hmez (46)

with σ = σ(n) = 1 if n is odd, 2 if n is even.

A.2. Test fields

The test fields are of the form

ψ
(k)

mnl = exp[2π ilz/Q + inθ]ṽ(k)

mnl(r) (47)

Let’s introduce the Chebyshev weight function

W = 1√
1 − r2

(48)

The functions ṽ(k)

mnl(r) are: In the case n = 0,

ṽ(1)

m0l = Whmeθ

ṽ(2)

m0l = W
{−ilr2 gmer + [

D+
(
r2 gm

) + r3hm
]
ez

}
(49)

except that, if l = 0,

ṽ(2)
m00 = Wrhmez (50)

In the case n 
= 0,

ṽ(1)

mnl = W
{−inrβ gmer + [

D
(
rβ+1 gm

) + rβ+2hm
]
eθ

}
ṽ(2)

mnl = W
(−ilrβ+2hmeθ + inrβ+1hmez

)
(51)

except that, if l = 0,

ṽ(2)
mn0 = W inr1−βhmez (52)

with, β = β(n) = 1 if n is odd, 0 if n is even.
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