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The interaction “viscous fluid–thin plate” is considered when the thickness of the plate, ε,
tends to zero, while the density and the Young’s modulus of the plate are of order ε−1

and ε−3, respectively. The thickness of the fluid layer is of the order of one. An asymptotic
expansion is constructed and the error estimates are proved. The leading term of the
asymptotic expansion is the solution of the interaction problem “fluid-Kirchoff plate”. The
method of asymptotic partial domain decomposition is discussed: the main part of the
plate is described by a 1D model while a small part is simulated by the 2D elasticity
equations, with appropriate junction conditions.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The interaction of a fluid with a deformable structure has important applications in biomathematics, medicine, hydro-
elasticity, etc. The paper [1] considered one of such fluid–plate interaction models but the plate’s thickness was supposed
to be equal to zero, i.e. the dimension reduction arguments were applied. More precisely, [1] deals with the viscous fluid-
elastic plate interaction problem, where the plate is described by Sophie Germain’s hyperbolic equation of the fourth order
in the space variable. This equation is a limit model for the elasticity equation set in a thin domain with a given force
at the lateral boundary (see [2, Ch. 3] and the bibliography there). However, the coupled system “viscous fluid flow–thin
elastic layer” has not been provided earlier. In the present paper we consider this dimensional reduction problem when the
thickness of the layer tends to zero. More precisely, we consider the small parameter ε that is the ratio of the thickness
of the plate and its length, while the density and the Young’s modulus of the plate material are of order ε−1 and ε−3,
respectively. The plate lies on the fluid which occupies a thick domain. The complete asymptotic expansion is constructed
when ε tends to zero and it is proved that the leading term of the expansion satisfies the equations of [1]. So, the first
goal of the present paper is an asymptotic derivation and justification of the model considered in [1]. The second goal is
the partial asymptotic decomposition formulation of the original problem when the main part of the plate is described by
a 1D model while a small part is simulated by the 2D elasticity equations. The appropriate junction conditions based on
the previous asymptotic analysis are proposed at the interface point between the 1D and 2D equations. The error of the
method is evaluated.

2. Statement of the problem

Consider the domains D− = (0,1) × (−1,0), D+
ε = (0,1) × (0, ε) occupied by the viscous fluid and by the elastic plate,

which is much thinner than the fluid layer, respectively. The problem is 1-periodic with respect to x1, so that it is set in the
layer R× (−1, ε). The small parameter of the problem, ε, is defined as the ratio between the thickness of the elastic domain
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and the length of the period of the motion. Consider as well the periodic extensions of D− and D+
ε : �− =R× (−1,0) and

�+
ε = R× (0, ε), respectively. Denote Γ − = {(x1,−1) | x1 ∈ (0,1)}, Γ 0 = {(x1,0) | x1 ∈ (0,1)}, Γ +

ε = {(x1, ε) | x1 ∈ (0,1)}.
The characteristics of the elastic medium are described by the variable density, ρ̃+ = ε−1ρ+(ξ2), by the 2 × 2-matrix-

valued coefficients Ãi j = Ãi j(ξ2), i, j ∈ {1,2}, by the Young’s modulus Ẽ = Ẽ(ξ2) and by the Poisson’s ratio ν̂ = ν̂(ξ2), with
ξ2 = x2

ε . In general, the Young’s modulus has very big values. We take Ẽ(ξ2) = ε−3 E(ξ2), where E is of order of one. The

matrices Ãi j = (ãkl
i j)1�k,l�2 are defined by

ãkl
i j = ε−3akl

i j , akl
i j = E

2(1 + ν̂)

(
2ν̂

1 − 2ν̂
δikδ jl + δi jδkl + δilδ jk

)

such that:

(i) akl
i j(ξ2) = ail

kj(ξ2) = alk
ji(ξ2), ∀i, j,k, l ∈ {1,2}, ∀ξ2 ∈ [0,1],

(ii) ∃κ > 0 independent of ε such that

2∑
i, j,k,l=1

akl
i j(ξ2)η

l
jη

k
i � κ

2∑
j,l=1

(
ηl

j

)2
, ∀ξ2 ∈ [0,1], ∀η = (

ηl
j

)
1� j,l�2

with ηl
j = η

j
l .

The variable density of the elastic medium has the property

∃α,β > 0 independent of ε such that α � ρ+(ξ2) � β, ∀ξ2 ∈ [0,1] (1)

The characteristics of the viscous fluid, independent of ε, are the positive constants ρ− and ν representing its density and
its viscosity, respectively. In addition to the data ρ+ , Aij , E , ν̂ (for the elastic medium) and ρ− , ν (for the viscous fluid), we
also know the forces g and f which act on the elastic medium and on the fluid, respectively.

The unknowns of the fluid-elastic layer interaction problem are: uε , representing the displacement of the elastic medium
and vε , pε , representing the velocity and the pressure of the viscous fluid, respectively. Denote the velocity strain tensor
D(v) = 1

2 (∇v + (∇v)T ).
The coupled system which describes the fluid-elastic layer interaction is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε−1ρ+
∂2uε

∂t2
− ε−3

2∑
i, j=1

∂

∂xi

(
Aij

∂uε

∂x j

)
= ε−1g in �+

ε × (0, T )

ρ−
∂vε

∂t
− 2ν div

(
D(vε)

) + ∇pε = f in �− × (0, T )

div vε = 0 in �− × (0, T )

2∑
j=1

A2 j(1)
∂uε

∂x j
(x1, ε, t) = 0 for (x1, t) ∈R× (0, T )

vε(x1,−1, t) = 0 for (x1, t) ∈ R× (0, T )

vε(x1,0, t) = ∂uε

∂t
(x1,0, t) for (x1, t) ∈R× (0, T )

−pε(x1,0, t)e2 + 2νD
(
vε(x1,0, t)

)
e2 = ε−3

2∑
j=1

A2 j(0)
∂uε

∂x j
(x1,0, t) for (x1, t) ∈R× (0, T )

uε,vε, pε 1-periodic in x1

uε(x1, x2,0) = ∂uε

∂t
(x1, x2,0) = 0 in �+

ε , vε(x1, x2,0) = 0 in �−

(2)

with T a positive given constant.

3. The variational analysis of the problem

This section provides us some qualitative properties of the unknowns of the coupled system (2), uε , vε , pε , such as
existence, regularity and uniqueness. For performing the variational analysis of the problem (2), we choose the following
regularity for the data:

ρ+,akl ∈ L∞(0,1), g ∈ H1(0, T ; (L2(D+
ε

))2 )
, f ∈ H1(0, T ; (L2(D−))2 )

(3)
i j per per
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Here and in what follows the subscript per denotes the 1-periodicity of functions of the corresponding space in x1, i.e.
the space is a closure of the set of infinitely smooth 1-periodic in x1 functions with respect to the norm of the correspond-
ing space. Taking into account the properties of the displacement and of the velocity, given by (2), let us introduce the
spaces:

U =
{

z ∈ (
H1(D+

ε

))2
per

∣∣∣
1∫

0

z2(x1,0)dx1 = 0

}

V = {
w ∈ (

H1(D−))2
per

∣∣ div w = 0, w = 0 on Γ −}
S = {

(z,w) ∈ U × V
∣∣ z = w on Γ 0}

Hu =
{

z ∈ H1(0, T ; U )

∣∣∣ ∂2z

∂t2
∈ L2(0, T ; U ′)}

H v =
{

w ∈ L2(0, T ; V )

∣∣∣ ∂w

∂t
∈ L2(0, T ; V ′)}

The variational formulation for the physical problem (2) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (uε,vε) ∈ Hu × H v such that

ε−1 d

dt

∫
D+

ε

ρ+
(

x2

ε

)
∂uε

∂t
· z + ε−3

∫
D+

ε

2∑
i, j=1

Aij

(
x2

ε

)
∂uε

∂x j
· ∂z

∂xi
+ ρ−

d

dt

∫
D−

vε · w + 2ν

∫
D−

D(vε) : D(w)

= ε−1
∫

D+
ε

g · z +
∫

D−
f · w, ∀(z,w) ∈ S

vε = ∂uε

∂t
a.e. on Γ 0 × (0, T ), uε(0) = ∂uε

∂t
(0) = 0 a.e. in D+

ε , vε(0) = 0 a.e in D−

(4)

The main result of this section is the theorem which gives the existence, the regularity and the uniqueness of the solution
of (4).

Theorem 3.1. The problem (4) has a unique solution, (uε,vε). Moreover, for g, f with the regularity given by (3) we get

∂2uε

∂t2
∈ L∞(

0, T ; (L2(D+
ε

))2)
,

∂vε

∂t
∈ L∞(

0, T ; (L2(D−))2)
(5)

4. The asymptotic analysis

Assume that ρ+ , akl
i j are piecewise smooth functions i.e. ρ+,akl

i j ∈ C1(ζi, ζi+1), where 0 = ζ0 < ζ1 < · · · < ζp = 1 and⎧⎪⎪⎨
⎪⎪⎩

g = g(x1, t) ∈ C∞([0, T ], (C∞(R)
)2)

, 1-periodic in x1

f ∈ C∞([0, T ], (C∞(
R× [−1,0]))2)

, 1-periodic in x1

∃τ0 < T such that f(x1, x2, t) = 0, g(x1, t) = 0, ∀t ∈ [0, τ0]
(6)

We look for the asymptotic solution of order J for (2) in the form

u( J )
ε (x1, x2, t) =

J∑
q+l=0

εq+l Nq,l

(
x2

ε

)
∂q+lw( J )

ε (x1, t)

∂tq∂xl
1

+
J∑

q+l=0

εq+l+2Mq,l

(
x2

ε

)
∂q+lz( J )

ε (x1, t)

∂tq∂xl
1⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v( J )
ε (x1, x2, t) =

J∑
k=0

εkvk(x1, x2, t)

p( J )
ε (x1, x2, t) =

J∑
k=0

εk pk(x1, x2, t)

z( J )
ε (x1, t) = 2νD

(
v( J )
ε (x1,0, t)

)
e2 − p( J )

ε (x1,0, t)e2, w( J )
ε (x1, t) =

J∑
εkwk(x1, t) (7)
k=0
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To determine the asymptotic solution means to determine the matrices Nq,l = Nq,l(ξ2), Mq,l = Mq,l(ξ2), Nq,l, Mq,l ∈R
2×2 and

the functions vk = vk(x1, x2, t), pk = pk(x1, x2, t), wk = wk(x1, t).
Replacing into the left hand side of (2) uε with its asymptotic expansion (7)1 and denoting 〈F 〉 = ∫ 1

0 F (s)ds, we are led
to the following second order differential problem for Nq,l , ∀q + l > 0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
A22N ′

q,l + A21Nq,l−1
)′ = −A12N ′

q,l−1 − A11Nq,l−2 + ε2ρ+Nq−2,l + hq,l

hq,l =
〈
A12N ′

q,l−1 + A11Nq,l−2 − ε2ρ+Nq−2,l
〉

A22(0)N ′
q,l(0) = −A21(0)Nq,l−1(0)

〈Nq,l〉 = O 2

(8)

and N0,0 = I2. The problem for Mq,l , q + l � 0 is the following:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
A22M ′

q,l + A21Mq,l−1
)′ = −A12M ′

q,l−1 − A11Mq,l−2 + ε2ρ+Mq−2,l + hM
q,l

hM
q,l =

〈
A12M ′

q,l−1 + A11Mq,l−2 − ε2ρ+Mq−2,l
〉 − ε2 I2δq0δl0

A22(0)M ′
q,l(0) = ε2 I2δq0δl0

Mq,l(0) = O 2

(9)

All the other unknown functions appearing in the definition of the asymptotic solution are obtained from a coupled problem
for ((wk)2,vk, pk) and a problem for (wk)1. In order to simplify the writing of these problems we introduce the notations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ê =
〈

E

1 − ν̂2

〉
,

ˆ̂E =
〈

E

1 − ν̂2

(
1

2
− ξ2

)〉
,

ˆ̂̂
E = 1

2

〈
E

1 − ν̂2

〉
−

〈 ξ2∫
0

E(s)

1 − ν̂2(s)
ds

〉

Ĵ =
〈(

E

1 − ν̂2

(
1

2
− ξ2

))〉
,

ˆ̂J = Ê−1(
ˆ̂E · ˆ̂̂

E − Ê · Ĵ )

(10)

where F̄ (x) = x〈F 〉 − ∫ x
0 F (s)ds. The triplet ((wk)2,vk, pk) is obtained as the unique solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ρ+〉∂
2(wk)2

∂t2
+ ˆ̂J ∂4(wk)2

∂x4
1

+
(

2ν
∂(vk)2

∂x2
− pk

)∣∣∣∣
x2=0

= g2δk0 − Rk−1 · e2 − Ê−1 · ˆ̂̂
E

(
∂ g1

∂x1
δk1 − ∂Rk−1

∂x1
· e1

)
in R× (0, T )

ρ−
∂vk

∂t
− 2ν div

(
D(vk)

) + ∇pk = fδk0

div vk = 0 in �− × (0, T )

vk(x1,−1, t) = 0 in R× (0, T )

(vk)1(x1,0, t) = ∂(wk)1

∂t
(x1, t) + ak−1(x1, t) · e1 in R× (0, T )

(vk)2(x1,0, t) = ∂(wk)2

∂t
(x1, t) + ak−1(x1, t) · e2 in R× (0, T )

(wk)2,vk, pk 1-periodic in x1

vk(x1, x2,0) = 0 in �−, (wk)2(x1,0) = ∂(wk)2

∂t
(x1,0) = 0 in R

(11)

with Rk−1, ak−1 representing known functions, which depend on (w j,v j, p j) and on their derivatives, j < k.
The problem for (wk)1 is the following second order differential problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ê
∂2(wk)1

∂x2
1

= − ˆ̂E ∂3(wk−1)2

∂x3
1

− g1δk−1,1 + Rk−2 · e1, (x1, t) ∈R× (0, T )

(wk)1 1-periodic in x1,

1∫
(wk)1(x1, t)dx1 = 0

(12)
0
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Taking k = 0 in (11) and in (12) we get (w0)1 = 0 and for ((w0)2,v0, p0) the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ρ+〉∂
2(w0)2

∂t2
+ ˆ̂J ∂4(w0)2

∂x4
1

− p0

∣∣∣∣
x2=0

= g2 in R× (0, T )

ρ−
∂v0

∂t
− ν�v0 + ∇p0 = f

div v0 = 0 in �− × (0, T )

v0(x1,−1, t) = 0 in R× (0, T )

v0(x1,0, t) = ∂(w0)2

∂t
(x1, t)e2 in R× (0, T )

(w0)2,v0, p0 1-periodic in x1

v0(x1, x2,0) = 0 in �−, (w0)2(x1,0) = ∂(w0)2

∂t
(x1,0) = 0 in R

(13)

which means that (u0,v0, p0) represents the exact solution of the interaction problem between a viscous fluid and an elastic
membrane in the periodic case, studied in [1].

Theorem 4.1. Let (uε,vε, pε) be the exact solution of (2) and (u( J )
ε ,v( J )

ε , p( J )
ε ) the asymptotic solution of order J , defined by (7). Then

the error between these two solutions is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥∥ ∂ i

∂ti

(
uε − u( J )

ε

)∥∥∥∥
L∞(0,T ;(L2(D+

ε ))2)

= O
(
ε J+3/2), i = 1,2

∥∥Ex
(
uε − u( J )

ε

)∥∥
L∞(0,T ;(L2(D+

ε ))4)
= O

(
ε J+1/2)

∥∥∥∥ ∂ i

∂ti

(
vε − v( J )

ε

)∥∥∥∥
L∞(0,T ;(L2(D−))2)

= O
(
ε J+1), i = 0,1

∥∥Dx
(
vε − v( J )

ε

)∥∥
L2(0,T ;(L2(D−))4)

= O
(
ε J+1)

∥∥pε − p( J )
ε

∥∥
L2(0,T ;H1(D−))

= O
(
ε J+1)

(14)

5. The method of partial asymptotic decomposition of the domain

Let us apply the method of partial asymptotic decomposition of the domain for the fluid-elastic layer interaction prob-
lem (2) (see [2, Chapter 6]). Namely, let us replace Eq. (2)1 by some special 1D in the space equations in the part of the
domain corresponding to the values x1 ∈ (1/3,2/3) with some special interface conditions between the 2D and 1D parts at
the lines x1 = 1/3 and x1 = 2/3. To this end, let us introduce, as follows, the partially decomposed spaces: the main, H ( J )

dec ,

for the solution, and the other space, S( J )
dec , representing the space of the test functions, which is the space of the traces for

a fixed t of functions from H( J )
dec . We first define

H̃ ( J )
dec =

{
(ϕ,v) ∈ Hu × H v

∣∣∣ ϕ(x1, x2, t) =
J∑

q+l=0

εq+l Nq,l

(
x2

ε

)
∂q+lw(x1, t)

∂tq∂xl
1

+
J∑

q+l=0

εq+l+2Mq,l

(
x2

ε

)
∂q+lψ(x1, t)

∂tq∂xl
1

,

x1 ∈ (1/3,2/3), w,ψ ∈ H J+2(0, T ; H J+1(1/3,2/3)
)
,

∂ϕ(x1,0, t)

∂t
= v(x1,0, t)

}

S̃( J )
dec =

{
(ϕ,ω) ∈ U × V

∣∣∣ ϕ(x1, x2) =
J∑

q+l=0

εq+l Nq,l

(
x2

ε

)
∂ lwq(x1)

∂xl
1

+
J∑

q+l=0

εq+l+2Mq,l

(
x2

ε

)
∂ lψq(x1)

∂xl
1

,

x1 ∈ (1/3,2/3), wq,ψq ∈ H J+1(1/3,2/3), q = 0, . . . , J , ϕ = ω on Γ 0

}

then we put

H ( J ) = H̃ ( J )‖·‖Hu×H v , S( J ) = S̃( J )‖·‖U×V

dec dec dec dec
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Consider the following variational formulation for the partially decomposed problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find
(
u( J )

ε,dec,v( J )
ε,dec

) ∈ H ( J )
dec such that

ε−1 d

dt

∫
D+

ε

ρ+
(

x2

ε

)
∂u( J )

ε,dec

∂t
· ϕ + ε−3

∫
D+

ε

2∑
i, j=1

Aij

(
x2

ε

)
∂u( J )

ε,dec

∂x j
· ∂ϕ

∂xi

+ ρ−
d

dt

∫
D−

v( J )
ε,dec · ω + 2ν

∫
D−

D
(
v( J )
ε,dec

) : D(ω) = ε−1
∫

D+
ε

g · ϕ +
∫

D−
f · ω, ∀(ϕ,ω) ∈ S( J )

dec

v( J )
ε,dec = ∂u( J )

ε,dec

∂t
on Γ 0

u( J )
ε,dec(0) = ∂u( J )

ε,dec

∂t
(0) = 0 in D+

ε , v( J )
ε,dec(0) = 0 in D−

(15)

We study the existence and the regularity of the solution of (15) by means of the Galerkin’s method as for the solution
to (4). Applying the same arguments as in the proof of Theorem 3.1, we get the existence and uniqueness of the solu-
tion (u( J )

ε,dec,v( J )
ε,dec) to the partially decomposed problem (15). Applying the estimates of Theorem 4.1 to the differences

u( J )
ε,dec − u( J )

ε instead of uε − u( J )
ε and v( J )

ε,dec − v( J )
ε instead of vε − v( J )

ε we get for these differences the estimates (14). Then,

applying the triangle inequality, we finally get the same estimates for u( J )
ε,dec − uε and v( J )

ε,dec − vε , which justify the method
of asymptotic partial domain decomposition.
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