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We present in this Note an identification method for the crack front of a crack emerging
at the surface of an elastic solid, provided displacements field or its tangential components
are given on a part free of loading of the external surface. The method is based on
two steps. The first one is the solution of a Cauchy problem in order to expand the
displacement field within the solid up to a surface enclosing the unknown crack. Then
the reciprocity gap method is used in order to determine the displacement jump on the
crack and then the crack itself. We prove then an identifiability result. The method is
illustrated with two synthetic examples: a crossing crack with linear crack front and an
elliptic emerging crack.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On présente dans cette Note une méthode d’identification du front d’une fissure débouchant
à la surface d’un solide élastique, à partir de la donnée des composantes tangentielles du
champ de déplacement sur une partie libre de charge de la surface extérieure. La méthode
comporte deux étapes. Dans un premier temps, on résoud un problème de Cauchy pour
prolonger le champ en surface jusqu’à une surface englobant la fissure inconnue. Dans
une seconde étape, on utilise la méthode d’écart la réciprocité pour identifier le saut de
déplacement à la traversée de la fissure, ce qui conduit, par l’identification du support,
à l’identification de la fissure elle-même. On prouve ainsi un résultat d’identifiabilité. La
méthode est illustrée sur deux exemples synthétiques : une fissure traversante à front
rectiligne et une fissure elliptique débouchante.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The development of image correlation techniques for digital image cameras (DIC) makes it possible to obtain the dis-
placement field on parts of the surface of a deformed solid [1,2]. The precision and the amount of available data have led
to revisit various identification or inverse problems originally based on the fitting of sparse and discrete data. Considering
that full field data are available on the boundary, it is possible to replace these problems in the continuum framework in
order to derive new solution methods, such as reciprocity methods and Cauchy or data completion problems, methods that
will be used in this Note.

Applications of the Cauchy problem in three-dimensional linear fracture mechanics have been recently developed [3]
when the geometry of the crack is known. In this article, a constructing method is designed for determining the crack
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Fig. 1. The generic problem.

geometry, that is the crack front, for plate-like linearly elastic solids and tangential displacement measurements on one side
of it. We prove in passing an identifiability result. The applications aimed at here are non-destructive evaluation procedures
for the identification of the depth of emerging cracks and monitoring of crack propagation in fatigue tests.

2. Statement of the problem

Consider the solid in Fig. 1 which occupies a three-dimensional domain Ω with height 2H and a regular boundary ∂Ω

with outwards unit normal n. It contains a planar crack γ = γ + ∪ γ − , where γ + and γ − are the two faces of the crack,
and N the outwards unit normal to the face γ − . Hereafter, we consider only emerging cracks. Therefore the plane where
the crack is located is assumed to be known beforehand.

The solid is homogeneous, isotropic and linearly elastic, the fourth order Hooke tensor is denoted by A. The solid
is submitted to a loading on some part of its external surface, the crack lips being free of any mechanical loading. The
external surface tractions σ .n are not entirely known, then we denote by Γb the part of ∂Ω where this boundary condition
is given and we denote by Γu the part where all boundary conditions are missing. On another part Γm of ∂Ω , which is free
of loading σ .n = 0, some DIC measurements can be performed, so that the displacement field Um or only its tangential part
denoted by Um

t is known. The crack does not intersect this measurement surface. The problem can be stated as follows:

Given the overspecified boundary data (Um
t , σ .n = 0) on Γm, to identify the emerging planar crack, that is the plane domain γ .

Let us comment briefly the fact that the measurement surface does not meet the crack intersection with the external surface
of the solid. Because of displacement discontinuities are likely to occur across the crack surface, usual image correlation
techniques which rely on regularity assumptions on the displacement field are not suited to deal with this kind of situation.
It must be restricted to parts where the regularity assumptions are valid. Some authors [4,5] developed special methods
in order to include the possibility of discontinuous displacements across a line but it usually requires the knowledge of
the direction of the line and of the position of the crack tip, sometimes very difficult to achieve, or necessitate non-linear
sophisticated algorithms.

Using the data completion problem as a mean for the identification of planar cracks has yet been used by [6], but for a
very special situation when the solid is decomposed into to parts being on each side of the crack plane and when data are
available in such a way that two data completion problems can be formulated for each of these subdomains.

3. A two steps identification procedure

3.1. Principle

To solve the above problem, a two steps procedure will be used. First, the displacement field given on the part Γm
of the external surface is expanded within a subdomain Ω1 of the original domain Ω , excluding a cylindrical domain
Ω2 containing the crack γ , such that Ω = Ω1 ∪ Ω2. This extension or continuation is performed via the solution of a data
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Fig. 2. Geometries and boundary definitions for the two steps.

completion problem [7–9] which is a form of the Cauchy problem and leads to the determination of the whole displacement
field and the stress vector field on a surface Γu enclosing the crack. Secondly, equipped with these fields, the crack domain
is identified by using the reciprocity gap method [10], which is adapted in order to deal with the lack of knowledge of the
displacement field on the upper and lower free surfaces of the boundary of the cylindrical domain Ω2. Fig. 2 shows the
subdomains Ω1 and Ω2 and their related boundaries. Notice that normally, the cylindrical part of the boundary Γu , which
represents the hole’s surface in the domain Ω1, is the same as that of the subdomain Ω2: Ω1 ∩ Ω2 = ΓL . However, for the
reciprocity gap computation the subdomain enclosing the crack could be chosen larger than Ω2 as shown in Fig. 7.

3.2. Solution of the data completion problem

The displacement field u throughout the solid satisfies the equilibrium condition, the constitutive elastic relation, and
the associated stress tensor field meets the boundary condition on Γb ∩ ∂Ω1. Furthermore, boundary conditions have to be
fulfilled on the part Γm where the measurements are performed. The set of equations is then:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

divσ(u) = 0 in Ω1

σ(u) = A : ε(u) in Ω1

σ(u).n = b on Γb ∩ ∂Ω1

σ(u).n = 0, u − u.n = Um
t on Γm

(1)

Expanding the data within the solid Ω1 is reformulated as the following data completion problem:

Find (U , T ) on the remaining part Γu of the boundary of the domain Ω1, such that a displacement field u exists, satisfying (1)
and the conditions on Γu :

σ(u).n = T , u = U (2)

Strictly speaking, the problem of determining a displacement field satisfying the equations set (1) is a Cauchy problem.
More precisely the problem tackled with here has been called an incomplete Cauchy problem because only the tangential
part of the displacement field is given on Γm . The determination the pair (U , T ) is a data completion problem. Both problems
are ill posed. Firstly because the given data on Γm must be compatible, a condition that is not explicit, meaning that all
pairs of H1/2(Γm)3 × H−1/2(Γm)3 do not lead to a solution of the Cauchy or data completion problem. It can nevertheless
be proven [11] that the subset of compatible pairs is dense in H1/2(Γm)3 × H−1/2(Γm)3. Secondly, the two problems are ill
posed because of the lack of continuity of the solution, when it exists, with respect to the data pair (U m

t , σ .n = 0).
To solve the data completion problem, we use a special version of the energy error gap method [8]. It has two steps.

First two elastostatic problems are defined on the domain Ω1 with solutions u1 and u2:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

divσ(u1) = 0 in Ω1

σ(u1) = A : ε(u1) in Ω1

σ(u1).n = b on Γb

u1 − (u1.n)n = Um
t on Γm

σ(u1).n = η on Γu

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

divσ(u2) = 0 in Ω1

σ(u2) = A : ε(u2) in Ω1

σ(u2).n = b on Γb

σ(u2).n = 0 on Γm

σ(u2).n = η on Γu

(3)

The normal traction vector η in H−1/2(Γu)3 is taken as the unknown of the problem. If u1(η) = u2(η) + R B then the
data completion problem has the solution:

T = η, U = u1|Γu + R B |Γu (4)

where R B is a rigid body motion belonging to the (possibly empty) subspace of such displacements satisfying the condition
of zero tangential displacement on the measurement surface Γm:{

R B = t + r ∧ x, (t, r) ∈ R6, R B − (R B .n)n = 0 on Γm
}

(5)

Then, as a second step, the normal traction vector field η is determined by minimising an error gap between u1(η) and
u2(η). This gap is chosen as an energy gap. The data completion problem is then solved via the following optimisation
problem:

T = arg min E(η)
η∈H−1/2(Γu)3

(6)

with E(η) =
∫
Ω1

A :ε(u1 − u2) :ε(u1 − u2)dΩ1, q
(
u1(η), u2(η)

)
given by (3) (7)

One can easily show [7] that for a compatible data pair (Um
t , σ (u).n = 0), the functional E is positive, quadratic, convex

and zero if u1(η) and u2(η) differ only by a rigid body motion of R B , which leads to the results (4). The solution of the
Cauchy problem is u1(T ). The minimisation of E has nevertheless to be conducted with care as the data completion problem
is ill posed. In particular the discrete gradients have to be computed with adjoint methods and trust-region algorithms
are to be used, see [11] for details. Let us note that no regularisation is incorporated although it could be considered as
unavoidable in the solution procedure for ill-posed problems. Numerical experiments have shown that within a noise range
less than 5% on the data, the regularisation brought by an ad hoc stopping criterion is sufficient as shown in [12]. Notice
that the situation is favourable here because of the nullity of one of the data. This noise level is currently obtained with DIC
image correlation techniques.

4. Identification of the crack front by the reciprocity gap method

Once the displacement field U L and the traction vector field T L are determined on the ΓL surface, the reciprocity gap
method can be applied in order to identify the crack domain γ and the crack front. The reciprocity gap functional is here
defined as the following linear form acting on H1(Ω2)

3, that is on regular fields v defined on the uncracked domain:

RG(v) =
∫
ΓL

[
T L .v − σ(v).n.U L

]
dS (8)

This definition uses only known quantities on the lateral side of the domain Ω2 and the computation of RG on any v
field involves only a boundary integral. Using the elastic equilibrium equation in Ω2�γ for the real displacement field u,
it is straightforward to show the following property of the reciprocity gap functional on the subspace of elastic equilibrium
fields in Ω2, with vanishing traction vector on the upper and lower sides Ω+

2 and Ω−
2 of Ω2, as depicted in Fig. 2b:

RG(v) =
∫
γ

σ (v).n.[[u]]dS, ∀v: divσ(v) = 0 in Ω2 and σ(v).n = 0 on Ω+
2 ∪ Ω−

2 (9)

[[u]] denotes the actual displacement jump across the crack.
As mentioned before, we consider only emerging cracks. Therefore the plane where the crack is located is assumed to be

known beforehand. Let us now define ρ = [0,2R] × [0,2H], the rectangle resulting from the intersection of the crack plane
Π and the domain Ω2 as shown in Fig. 3, and then specialise the v fields in the following N2 parametrised family:

vmn(x, y, z) =
⎡
⎢⎣

mπ
2Rλmn

sin(
mπ y

2R ) cos(nπ z
2H ) sinh(λmnx)

cos(mπ y
2R ) cos(nπ z

2H ) cosh(λmnx)

0

⎤
⎥⎦ with λmn = π

2

√
m2

R2
+ n2

H2
(10)



S. Andrieux, T.N. Baranger / C. R. Mecanique 340 (2012) 565–574 569
Fig. 3. The definition of the rectangular domain ρ in the Π plane, containing the crack surface.

It is easily seen that the vmn fields are divergence-free (then Tr(ε(vmn)) vanishes), and that each component is harmonic.
It is then deduced first that the fields vmn satisfy the Navier equation because this equation involves only the Laplacian of
the displacement components and the gradient of its divergence. Secondly, the associated stress tensor by the Hooke’s law
takes the simple form: σ(vmn) = 2με(vmn) where μ is the Lamé shear modulus.

Because the traction vector also vanishes identically when z = 0 and z = 2H , that is on the upper and lower faces of the
domain Ω2, the vmn fields can be used in Eq. (9). This leads to the following expressions, where the continuation by zero
throughout the rectangular domain ρ of the function [[ux]] is denoted by [[ũx]]:∫

ρ

[[ũx]](y, z) sin

(
mπ y

2R

)
cos

(
nπ z

2H

)
dy dz = R

μmπ
RG

(
vmn) (11)

This equation shows that the components umn in the series expansion of the function [[ũx]]:

[[ũx]](y, z) =
∑
m,n

umn sin

(
mπ y

2R

)
cos

(
nπ z

2H

)
(12)

can be determined by computing the reciprocity gap on fields of the vmn family. Considering now the following spectral
problem for the Laplacian operator on the rectangular domain ρ:⎧⎪⎪⎨

⎪⎪⎩
−φ = λφ ∀(y, z) ∈ ]0,2R[ × ]0,2H[
φ = 0 ∀y ∈ ]0,2H[, y = 0,2R
∂φ

∂n
= 0 ∀z ∈ ]0,2R[, z = 0,2H

(13)

it is straightforward to verify that the eigenfunctions φ are precisely the functions (sin(
mπ y

2R ) cos(nπ z
2H ))m,n establishing that

this function set forms a Hilbertian basis of L2(ρ) [13] and justifying then the series expansion (12). The formula (11)
allows us to claim that the function [[ũx]] can be entirely determined by the data on the lateral surface only of the domain
enclosing the crack. The support of this function can be shown to be exactly the γ domain [10] so that (11) proves:

Identifiability property. The crack domain is identifiable by only one set of lateral overspecified elastic data provided that the normal
discontinuity of displacement on the crack does not identically vanish.

We prove then also that the crack domain is identifiable provided the tangential displacement field on a part of the
external surface of the solid is given.



570 S. Andrieux, T.N. Baranger / C. R. Mecanique 340 (2012) 565–574
In order to extract the support of the approximation of the function [[ũx]], obtained in practice by a truncated series
expansion up to (M, N) and denoted by [[ũx]]MN , the indicator function Iγ of the crack domain is finally deduced by the
following truncation formula where H is the Heaviside function and δ a small positive scalar:

Iγ (y, z) ∼= H
(∣∣[[ũx]]MN(y, z)

∣∣ − δ
)

(14)

A practical way of choosing the scalar δ is to look for the minimum value that leads to a simply connected domain for
the approximation of γ .

5. Numerical examples

In order to illustrate the efficiency of the presented method, we consider a solid as that described in Fig. 1: 30 × 10 ×
6 mm. Two cases were studied. In the first case, the solid has at its middle a traversing rectangular crack. In the second case,
an elliptic emerging crack is considered. The material is steel with Young modulus E = 2.1 GPa and Poisson ratio ν = 0.3. To
perform these two numerical experiments, synthetic Cauchy data were generated by solving well-posed forward problems,
using finite element modelling with Comsol [14] and Matlab [15] softwares. The mesh sizes and their distributions used for
the forward problems are different from that which were used to perform Data Completion and RG approach.

5.1. Traversing rectangular crack

In this example a rectangular 3 × 6 mm crack is considered. The crack is emerging at the top, the bottom and at the
xz-face (for y = 7 mm) of the solid. It is located at the middle of the solid following the x-axis. The data completion
was carried out on the holed solid with a hole diameter of 3 mm. The forward problem was modelled by 4384 hexahedral
and prism finite elements with quadratic Lagrangian interpolation: 10 230 degrees of freedom. Whereas the data completion
problem was modelled by 2208 hexahedral and prism finite elements with quadratic Lagrangian interpolation: 6150 degrees
of freedom.

The boundary conditions are: the first yz-face Γbl is clamped whereas on the second yz-face Γbr a displacement follow-
ing the x-axis is prescribed: ux = 0.01, u y = 0 and uz = 0. The Cauchy data, free traction and displacements, are prescribed
on the patches denoted by Γm , as shown in Fig. 7. The cylindrical boundary of the hole is Γu where the Neumann boundary
condition η has to be identified.

When the data completion was achieved, the computation of the displacement jump [[ũx]] is performed by considering a
cylindrical domain containing the crack front and which is larger than the hole of Ω1, such that the boundary ΓL is inside
the subdomain Ω1 and Γu 	= ΓL , as show in Figs. 2b and 7. This avoids to use directly the identified data on Γu , and the
integral computation in (8) is performed on the boundary ΓL .

Figs. 4, 5 and 6 show the computed displacement jump [[ũx]]. The first, Fig. 4a, shows the displacement jump computed
with the reference model whereas the second, Fig. 5a, shows that computed after data completion process using the Cauchy
data on Γm . The displacement jump represented in Fig. 6a was obtained after data completion process by considering
Dirichlet Cauchy data on Γm are noisy (5%). Remark that the Dirichlet Cauchy data was already noisy before adding 5%
of white noise, this is due to the numerical noise resulting from the data completion process. Figs. 4b, 5b and 6b show
the cross-section of displacement jump in the yx-plane. The crack front is identified by means of the truncation formula
Iγ = H(|[[ũ]]| − δ). The scalar δ is chosen such that the identified domain γ is a simply connected area. For this example
we follow the following procedure: for each M × N value the displacement gap (12) is analysed, then the oscillations are
truncated so that (12) represents a simply connected area, this is shown in Figs. 4b, 5b and 6b by the dashed lines. The
procedure is stopped when the oscillations of height frequencies become too important and do not allow us to identify a
simply connected area.

The reader can observe that, even with noisy Cauchy data, the identified crack front is in good agreement with the
reference one.

5.2. Emerging elliptic crack

In this trial, an elliptic front crack is considered as shown in Figs. 1 and 3. Fig. 7 shows the domain used to perform the
data completion. The boundary Γbl is clamped while on Γbr the following displacements are imposed: ux = 0.01, u y = 0
and uz = 0. The crack is 2 mm long and 3 mm deep. Notice that the inner cylindrical boundary Γu is that where the Neu-
mann boundary condition is identified, while the boundary ΓL is that where the RG defined by (8) is computed following.
The forward problem was modelled by 6317 tetrahedral finite elements with quadratic Lagrangian interpolation: 30 891 de-
grees of freedom. Whereas the data completion problem was modelled by 5120 tetrahedral finite elements with quadratic
Lagrangian interpolation: 26 304 degrees of freedom.

Figs. 8, 9 and 10 show the displacement jump [[ũx]] obtained, respectively, with the reference model and after the data
completion process without noise and then with 2% of noise rate. The elliptic crack front is identified by means of the
truncation formula Iγ = H(|[[ũ]]| − δ). The scalar δ is chosen again such that the identified domain γ is a simply connected
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Fig. 4. Displacement jump [[ũx]] across the crack of the reference solution. The dashed lines show how the truncation was done.

Fig. 5. Displacement jump [[ũx]] across the crack of the data completion solution obtained with free noisy data. The dashed lines show how the truncation
was done.

Fig. 6. Displacement jump [[ũx]] across the crack of the data completion solution obtained with noisy data (5%). The dashed lines show how the truncation
was done.
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Fig. 7. Domain where the data completion was performed.

area. For this example we follow the following procedure: for each M × N value the displacement gap (12) is analysed, then
the oscillations are truncated so that (12) represents a simply connected area, this is shown in Figs. 8b, 9b and 10b. The
procedure is stopped when the oscillations of height frequencies become too important and do not allow us to identify a
simply connected area.

The reader can observe that in this case the identified crack front is in good agreement with the reference one. However,
in this case, adding 5% noise to the Cauchy data besides the numerical noise due to the data completion process, do not
allow the front crack identification.

Fig. 10b depicts the identified domain with a noise level of only 2% on the Dirichlet Cauchy data on Γm . It is therefore
clear that regularisation procedures are needed in order to improve the results. Note that the noise on Cauchy data induces
a stronger noise on the data used in the reciprocity gap step, even on low order modes: in Fig. 10b the overall shape is well
recovered whereas the crack area is underestimated, meaning that the error is distributed almost equally on all modes used
in the reconstruction of the jump.

6. Conclusions

In this Note, only tangential displacement on the part Γm is used because this situation is the more generally encountered
when the measurements involve only one DIC. With stereoscopic devices involving two cameras, the full displacement field
is available, and the same approach can be used with obvious modifications, this situation is more favourable for the first
step of the method (data completion problem) because of the associated increase of data quality and amount.

No regularisation has been used here because of the small number of modes used in the reconstruction of the displace-
ment jump on the crack plane. It appears nevertheless that the ill-posedness of the Cauchy problem [16] affects also the
first reconstruction modes of the displacement jumps even if it could have been thought that the computation of RG in the
second step of the proposed method involves integrals of the product of the data on Γu with values of the trace and traction
vector of smooth fields vmn with small values of m and n, and then the products of noise induced high period oscillations
in the data with almost non-oscillating field would be almost zero.

Regularisation can be introduced by smoothing up the given or produced fields at the three following steps: first on
the measured data on Γm , secondly on the trace and traction vector on Γu once the Cauchy data is solved, finally on the
reconstructed jump [[ũx]] before using the truncating procedure leading to the crack domain identification. In each situation,
we will use the following regularised L2 projection, reading for example for the identified [[ũx]] function:

[[ũx]]r
MN = arg min

w∈H1(Γu)

∫
ρ

([[ũx]]MN − w
)2

dρ + ε
√

R H

∫
ρ

√
∇w2 + α2 dρ (15)

Contrary to the Tikhonov–Phillips regularisation method, this (approximate) total variation semi-norm regularisation
method [17] is well suited to damp out the oscillations induced by the limited number of terms in the series while respect-
ing the zones with strong gradients that are crucial for the identification of details in the crack front geometry.
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Fig. 8. Displacement jump [[ũx]] across the elliptic crack of the reference solution. The parameter δ is chosen such that γ is simply connected.

Fig. 9. Displacement jump [[ũx]] across the elliptic crack of the data completion solution obtained with free noisy data. The parameter δ is chosen such that
γ is simply connected.

Fig. 10. Displacement jump [[ũx]] across the elliptic crack of the data completion solution obtained with noisy data (2%). The parameter δ is chosen such
that γ is simply connected.
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