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We conduct an analysis of the concomitant, competing phenomena at play in the formation
of long filamentary structures from a stream of hot, very viscous and cohesive liquid as it
is blown by a fast, cool air stream. The situation is relevant to a broad class of problems,
namely volcanic glass threads or fibers formed when small particles of molten material
are thrown into the air and spun out by the wind into long hair-like strands (called Pele’s
hair), to the process of prilling, the manufacture of glass fibers, and the formation of coke
in furnaces and combustion chambers.
The air stream blowing on the molten material both breaks up the liquid into fragments
stabilized by capillarity, and cools the liquid down to solidification. There are, in this
problem, four characteristic times. First, a deformation time of the liquid masses, setting
the rate at which drops elongate into ligaments. Then, two timescales set the time
of capillary breakup of these ligaments, one prevailing on the other depending on the
relative weight of inertia on viscous slowing (that point is illustrated by an original
experiment). Finally, a solidification time of the ligaments. Thin solid strands will only
form when solidification occurs before capillary breakup. We have discovered that this
condition is likely to apply when the liquid is strongly viscous, as for clinker in the cement
industry, considered here as a generic example. We formulate recommendations to remove
(or enhance) the formation of these objects.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Pele’s hair (named after Pele, the Hawaiian goddess of volcanoes) is a geological term primarily used by volcanologists
for volcanic glass threads or fibers formed when small particles of molten material are thrown into the air and spun out by
the wind into long hair-like strands (Fig. 1). The diameter of the strands is typically a fraction of a millimeter, and they can
be as long as meters [1–4].

The phenomenon is also known in the context of prilling. A prill is a small aggregate of a material, most often a dry
sphere, formed from a melted liquid [5]. The material to be prilled is a solid at room temperature and ideally a low viscosity
liquid when melted. Prills are formed by allowing drops of the melted prill substance to congeal, freeze or evaporate
a solvent in mid-air after being dripped from the top of a prilling tower, possibly through a counter current of air. Melted
material may also be atomized and then allowed to form smaller prills that are useful in cosmetics, food, and animal feed.
The process is known to form undesirable thin strands, named angel hair in this context, when the initial viscosity of the
liquid is too high.
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Fig. 1. Top: Lava fountaining in Hawaiian type volcanoes: Exploding lava bubbles (tephra) are torn into thin glassy threads, so-called Pele’s hair (Nyiragongo
volcano, Congo, January 2011). Middle: Pele’s hair refers to extremely long sub-millimetric threads of brownish colored basalt glass (sideromelane and
tachylite). Note that a ligament was in the process of breaking up into drops as it has solidified. Bottom: Millimetric drops, named achneliths (also known
as Pele’s tears) are often found attached to one end of individual threads. The longest dimension of specimen is 9 mm.

Clinker, a mixture of limestone (calcium carbonate CaCO3) and clay (silica SiO2 with an admixture of alumina Al2O3),
is the major component if cement. The mixture is melted in an oven at high temperature (1450 ◦C) into a liquid of high
viscosity, and high surface tension. Because it is more easily transported in its solid phase when it is conditioned in small
(millimetric) pellets than in heavy ingots, it has been found convenient to atomize the stream of liquid clinker at the exit of
the oven by a fast cold air jet. This process has two purposes, first to atomize the liquid at the desired size, then to cool the
stable drops down to the freezing temperature, in order to obtain solid pellets, which are further collected. However, it has
also been noticed that in this course of events, long thin threads were occasionally formed. These are, for obvious sanitary
reasons, undesirable.

In other applications such as the preparation of cotton candy (candyfloss), or the manufacture of glass fibers, they are on
the contrary the desired objects, whose features need to be controlled.

Aiming at understanding why and how these long filamentary objects occur and are formed, we give below a scaling
analysis of the concomitant breakup and solidification phenomena at play, leading to orders of magnitude estimates for the
lengths and time scales involved in this problem. We also provide recommendations for removing them in the particular
case of blown clinker, which we take as a generic example.
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Fig. 2. A centimetric in length water ligament stretched in a fast (� 70 m/s) air stream blowing parallel to the liquid bulk surface, breaking up as it detaches
from the bulk.

2. Molten silicates: highly viscous and cohesive liquids

As it exits the oven of a cement factory, clinker is a hot liquid, with unusual properties: it is extremely viscous (a thou-
sand times more than water), and cohesive (like mercury), properties that this material shares with molten soda-lime
glasses, and volcanic tephra [4].

– Initial temperature: θ0 = 1450 ◦C;
– Solidification temperature: θs = 700 ◦C;
– Viscosity at θ0: η = 2500 × 10−3 Pa s (two thousand times that of water);
– Surface tension: σ = 0.5 N/m (nearly ten times that of water, like mercury);
– Density: ρ = 2300 kg/m3;
– Thermal diffusivity: κ = λ/ρC p = 3 × 10−6 m2/s.

It is atomized by a fast cold air jet whose transverse size is much larger than that of the clinker stream (of the order of ten
centimeters), trickling down from a pipe in a cross flow, and which therefore atomizes and disperses in a nearly infinitely
diluted fashion. The useful air stream features are:

– Velocity: u � 100 m/s;
– Temperature: 40 ◦C;
– Density: ρa � 1 kg/m3;
– Kinematic viscosity: νa � 10−5 m2/s;
– Thermal diffusivity: κa � 10−5 m2/s (Pr =O(1)).

3. Initial fragmentation and kinematics

The liquid clinker effluent is, in most practical conditions, first violently atomized by an air stream, which then will
also cool it. The same phenomenon occurs with lava, explosively atomized at the exit of a volcano (see Fig. 1). Indeed,
the large air inertia ρau2 overcomes easily the liquid cohesion, via a series of instabilities (see [3] for a review on the
destabilization of a liquid jet in a cross flow) ending when the liquid lumps have a sufficiently small size d0 so that capillary
confinement σ/d0 (owing to Laplace law) equilibrates inertial destabilization, namely [6]

d0 ∼ σ

ρau2
(1)

thus setting the largest admissible liquid drop diameter after the primary instabilities have chopped off the liquid effluent
(see [7] for a detailed discussion in a related context, including the resulting fragment size distribution). We concentrate in
situations dominated by a mean permanent velocity difference u seen by all the particles, irrespective of their size, and do
not consider scale-dependent velocity spectra, which would suit more to turbulent fields (see [8–11]). As long as it remains
attached to the liquid bulk, a spheroidal liquid lump further stretches in the flow in the form of a ligament (as seen in
Fig. 2) with length 	(t) and diameter d(t) such that its initial volume d3

0 is conserved,

	(t)d(t)2 ∼ d3
0 (2)

at a rate given, at short times by (see [12–14,7])
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Fig. 3. Sketch of the boundary mayer development past a ligament of size d, and of system of coordinates {r, z}. The ligament is stretched in the z direction.

	(t) = d0(1 + γ t)2 with γ = u

d0

√
ρa

ρ
(3)

so that

d(t) = d0(1 + γ t)−1 (4)

The elongation rate γ is based on the destabilizing stream velocity u minored by the factor
√

ρa/ρ reflecting the efficiency
of the transfer of momentum from the gas to the liquid phase. Since ρa/ρ � 1, the initial stretching velocity of the liquid
ligaments is much smaller than u. Viscous stresses in the liquid are subdominant in the initial deformation phase.

4. The thermal problem

The liquid is initially very hot, and therefore cools in the air blowing on it. The blowing velocity is given by the contrast
between the stretching velocity u

√
ρa/ρ and u itself, and it therefore of order u. A boundary layer thus forms around the

stretching ligament (see Fig. 3), with thickness

δ =
√

νad0

u
(5)

For the ligament to cool, heat must be transported radially through the liquid, and then cross the boundary at its surface.
Which step is the limiting one? The answer to this question amounts to consider the relative magnitude of the heat con-
duction times in the liquid bulk d2

0/κ , and in the thermal sheared boundary δ2
θ /κa (where δθ = δ Pr−1/3 ≈ δ, see e.g. [15]

since Pr = νa/κa =O(1) in gases). Obviously conduction in the liquid is the slowest process,

d2
0

κ
	 δ2

κa
(6)

since

ud0

νa
	 κ

κa
= O

(
10−1) (7)

The removal of heat at the ligament surface is indeed extremely efficient. However, diffusion takes place on a moving
substrate in the ligament, which is continuously stretched, and thus compressed radially as it cools. Therefore, the real
problem to analyze is a stretching enhanced diffusion process in the ligament. Indeed, the characteristic time of the ligament’s
diameter shrinking γ −1 is shorter also than d2

0/κ , the ratio of which forming a Péclet number

Pe = γ d2
0

κ
(8)

which is much larger than unity in the present case. On a moving substrate, the heat conservation equation is

∂tθ + u ·∇θ = κ∇2θ (9)

and simplifies if written in a moving frame {r, z} whose axes are aligned with the directions of maximal compression and
stretching of the elongating ligament where u = {(ḋ/d)r,−2(ḋ/d)z}, according to

∂tθ + (ḋ/d)r∂rθ = κ∂r(r∂rθ)/r (10)
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Fig. 4. Evolution of the temperature field within a compressed slab for successive times τ = 10−4 (the initial top hat profile), 0.1,0.5,1,2,4.

where the (vanishingly small) longitudinal temperature gradient ∂zθ has been discarded, expressing that temperature gra-
dients are essentially zero along the stretched direction z of the ligament, and concentrate in the radial direction r. This
equation, where stretching appears through the apparent elongation rate (ḋ/d) only, is solved in closed form (see [16],
and references therein), by making use of the following transformations

ξ = r

d(t)
, and τ = κ

t∫
0

dt′

d(t′)2
(11)

leading to a pure diffusion equation in these units of time and space

∂τ θ = (∂ξ θ)/ξ + ∂2
ξ θ (12)

Willing to avoid Bessel functions, we consider for technical simplicity the two dimensional version of the problem, strictly
valid for a slab, the underlying physics being obviously identical

∂τ θ = ∂2
ξ θ (13)

whose solution, starting from a uniformly hot ligament at temperature θ0 relative to its cooling environment is [17]

θ

θ0
= 2

π

∞∑
n=0

(−1)n

n + 1
2

cos

[(
n + 1

2

)
πξ

]
e−(n+ 1

2 )2πτ (14)

with

τ ∼ (γ t)3

Pe
with Pe 	 1 (15)

The temperature profiles for different successive times are displayed in Fig. 4. The maximal temperature in the ligament in
r = 0 decays as

θ(ξ = 0, τ ) � θ0
4

π
e−πτ/4 (16)

and the ligament has solidified when this temperature has decayed down to the solidification temperature θs . More precisely,
the viscosity of the melt increases sharply as its temperature decays toward θs (see for instance [18]). We simply consider
that the ligament is a solid when its core temperature is θs , and was a standard viscous liquid before, giving

τs ∼ ln(θ0/θs) (17)

and thus providing finally the solidification time ts as

γ ts ∼ (
Pe ln(θ0/θs)

)1/3
(18)

This time is essentially fixed in order of magnitude by the time it takes for the ligament to deform γ −1, the intrinsic
diffusive properties of the liquid being embedded in the Péclet number through a weak (1/3) power law correction.
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Fig. 5. Dispersion curve for Oh = 0.05 (thick line), 0.2,1,5,100 (thin line).

5. Ligament breakup, or not

5.1. Basics

Liquid thread breakup is a capillary driven instability which occurs thanks to the near cylindrical shape of the ligaments
(see [3] for an extensive review). When liquid surface tension and inertia are solely at play, the ligament-drops topology
change is completed within a characteristic time given by

tcap ∼
√

ρd3
0

σ
(19)

while if viscous forces dominate over inertia, they slow down the process (without suppressing it) which now occurs on
a typical timescale

tvis ∼ ηd0

σ
(20)

The ratio of these two timescales defines the Ohnesorge number as

tvis

tcap
= Oh with Oh = η√

ρd0σ
(21)

A convenient form of the dispersion relation (when perturbations of the ligament diameter are expanded proportionally to
exp(ikz − iωt)) describing the range of unstable wavelengths and associated growth rate (for a nonstretched ligament) is

(−iω)tcap =
√

1

2

(
x2 − x4

) + 9

4
Oh2x4 − 3

2
Oh x2 with x = kd0/2 (22)

displaying the most amplified wavenumber

kmd0/2 = 1√
2 + 3

√
2Oh

(23)

going to zero like 1/
√

Oh (and thus producing more distant drops along the ligament as viscosity increases), with associated
growth rate

−iω(km)tcap = 1

2
√

2 + 6Oh
(24)

Fig. 5 shows the deformation of the dispersion curve as the Ohnesorge number is varied. In the absence of stretch, the lig-
ament breakup characteristic time thus switches from tcap to tvis as the liquid viscosity increases.

With longitudinal stretch, a similar analysis (see [3]) shows that as long as the deformation time of the ligament γ −1 is
shorter than the relevant instability time tcap or tvis, instability is suppressed (conversely, if γ −1 is larger than the instability
time, destabilization of a continuously stretched ligament occurs within γ −1). The phenomenon is clearly apparent in Figs. 6
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Fig. 6. A volume of water is initially squeezed between two facing solid rods of diameter d0 = 8 mm (Oh = 1.3 × 10−3, tcap = 0.1 s), which are then
separated with an elongation rate γ such that γ tcap = √

We > 1. The pictures are spaced by 25/3000 s. Top: γ = 100 s−1. Bottom: γ = 175 s−1. Note that
the ligament separates from the rods at the same instant of time (fourth image) in both cases, independent of γ .

Fig. 7. Same as in Fig. 6 except that the liquid is now a silicone oil 100 times more viscous than water (and comparable surface tension). The corresponding
breakup time tvis = 1 s is so long that the ligament goes on stretching and never detaches from the rods. If it were hot and liable to solidify, it would have
time to cool and form a solid strand before breaking up: the Pele’s hair.

and 7: a stretched liquid ligament remains smooth as long as its extremities are attached to the separating solid rods pulling
them. However, as soon as the extremities of the ligament have detached from the pulling rods, it is therefore no more
stretched, and destabilizes in a timescale given by its current diameter (hence all the more rapidly that it has been strongly
elongated before).

Remarkably, the time it takes for the extremities to detach is independent of the rate at which the ligament is
stretched γ , and is solely set by tcap (or tvis) as seen in Fig. 6 (or Fig. 7). Indeed, the stretch vanishes at the extremities
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(presumably on an axial distance of the order of the rods diameter), which are pinned at the rods surface. These regions at
the extremities thus evolve on their own, basically insensitive to the rest of the (stretched) ligament.

5.2. Discussion

We have now all the required ingredients to discuss the conditions for the formation of long thin stands: ligaments
will be stretched for a period lasting tcap, or tvis depending on Oh. We will thus have to compare these timescales to the
solidification timescale ts to see if, when and how solid elongated filaments are formed.

In the case of blown clinker, we have

γ tcap ∼ √
We with We = ρau2d0

σ
= O(1) (25)

by definition of the initial maximal admissible fragment diameter d0 ≈ 5 mm. Let us start to construct the ratio of ts to tcap,
we have (taking τs =O(1))

ts

tcap
� Pe1/3

√
We

∼ Pe1/3 (26)

which is, owing to the value of the Péclet number in the present case

Pe = σ√
ρρauκ

= O
(
102) (27)

larger than unity. Indeed,

ts

tcap
≈ 4 (28)

In other words, if the relevant timescale of the capillary instability is tcap, then the stretching ligaments will take too long
to cool, and will breakup into stable drops before they solidify. One expects in that case the formation of solid pellets,
the Pele’s tears, but there will be no Pele’s hair attached to them in that limit.

Conversely, if the liquid is initially sufficiently viscous so that tvis now sets the instability timescale, which is believable
when

Oh = ηu

σ

√
ρa

ρ
(29)

is larger than unity, as in the case of clinker for which Oh = 10, then

ts

tvis
� Pe1/3

Oh
≈ 0.4 (30)

The conclusion is now opposite. Ligaments take so long to breakup that they have time to cool, and solidify. They do so in
thin strands of diameter

ds

d0
∼ (1 + γ ts)

−1 ≈ 0.2 (31)

roughly five times smaller than the Pele’s tears to which they are attached, consistently, at least qualitatively, with what can
be seen in Fig. 1.

6. Conclusions

We have conducted an analysis of the concomitant, competing phenomena at play in the formation of long filamentary
structures from a stream of hot, very viscous and cohesive liquid as it is blown by a fast, cool air stream, and have examined
the case of molten clinker as a generic example. The air stream both breaks up the liquid into fragments stabilized by
capillarity, and cools the liquid down to solidification.

There are, in this problem, four characteristic times. First, γ −1 which sets the deformation time of the liquid masses
in the mixture, and the rate at which drops elongate into ligaments. Then, two timescales (tcap and tvis) set the time of
capillary breakup of these ligaments, depending on the relative weight of inertia on viscous slowing. Finally, ts is the cooling
time of the ligaments.

Thin solid strands will only form when ts is shorter than the relevant capillary instability time. We have discov-
ered that this condition is likely to apply when the liquid is strongly viscous, as for clinker. Some of the fragments of
Volkhovites [19,20] in Fig. 8 are presumably an interesting marginal case for which ts is of order tvis since they have the
characteristic dumbbell shape of drops which have solidified as they were in the process of detaching.

When they are not desired, namely in the cement industry for example, the only way to remove these long thin objects
is to increase the ratio ts/tvis, and make it larger than unity. To this end, there are several options:
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Fig. 8. Volkhovite (a kind of tektites, 10 000 years old, found near the river Volkhov in Russia) grains of various shapes and colors. Note the dumbbell shape
indicating that most probably, ts/tvis was of order unity when these objects formed. Adapted from [19].

Fig. 9. Products of a submarine explosion: A) and B) Intensely folded limu o Pele fragments only 5 μm thick; C) Thin curved limu o Pele fragment that
stretched beyond the tensile strength of the melt, which pulled apart; D) Selection of Pele’s hair fragments from the summit of Axial Seamount on the Juan
de Fuca Ridge, many are curved and some are tack-welded to themselves. Adapted from [21].

(i) Increase ts by blowing with hot air, but this would require to use an air temperature nearly equal to that of clinker,
namely 1000 ◦C or so, which does not look reasonable.

(ii) Decrease the Ohnesorge number by starting with a less viscous liquid. This option is standardly adopted in the prilling
context: diluting the solution to be atomized with more solvent removes the angel hairs. But this looks difficult in
practice since clinker is as it is and there is no simple way to dilute it.
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(iii) In the same vein, the Ohnesorge number can be decreased by using a slower air stream velocity u. This will also have
the effect of increasing the initial maximal size d0 (which depends strongly on u), and therefore to lead to thicker
stands if they form. Decreasing u from 100 m/s to 50 m/s should already have an effect.

To close, let us mention that these long strands are also transitorily formed in hydromagmatic (see [22] and references
therein) undersea volcanic eruptions (consistent with our analysis pointing out the importance of the factor

√
ρa/ρ in the

Ohnesorge number, much larger when the destabilizing phase is a liquid). The solidification of the lava bubble can be so
fast that it solidifies as thin sheets (called limu o Pele, see Fig. 9, and top Fig. 1 for comparison). However, they are typically
not collected in the resulting fragments, which are coarse brittle shattered after solidification by the repeated wave action
when they are thrown back to the beach. Pele’s hair are indeed fragile objects which do not resist further crushing and
grinding. This maybe also suggests a way to sweep them out in the industry context.
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