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The interaction between a piezoelectric screw dislocation and an elliptical inhomogeneity
in piezoelectric composite material which contains an electrically conductive confocal rigid
line is studied, especially analyzing the shielding effect of a piezoelectric screw dislocation
near an elliptical inhomogeneity. By applying the complex variable method, the analytical
solution to the elastic field and the electric field, the field intensity factors at the tip of
the rigid line are derived. The image force acting on the piezoelectric screw dislocation
is calculated by using the generalized Peach–Koehler formula. Accordingly, the location
and the orientation of the dislocation, the material properties upon the shielding or anti-
shielding effect on the stress intensity factors, as well as the effects of the rigid line and
the electroelastic properties of the piezoelectric materials on the image force are discussed.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Piezoelectric materials are widely used in modern technology such as sensors, micropositioner, electro-mechanical actu-
ator and high power sonar transducers as a result of the intrinsic coupling behavior [1–5]. However, the presence of various
defects, such as dislocations, cracks and inclusions, can greatly influence their characteristics and coupling behavior. So it
is important to investigate the electro-elastic fields as a result of the presence of defects and inhomogeneities in these
quasi-brittle solids. The intensity of the electro-elastic fields near the tip of the crack or anti-crack (rigid line) in piezo-
electric materials could be characterized by a factor depending on geometric shapes, loading conditions and the material
properties, etc. Above the factor are known as the field intensity factors, which may include the stress intensity factor (SIF)
of the elastic fields and the electric displacement intensity factor of the electric fields. The field intensity factors can be
used to be an indicator to if the crack will propagate or not. When the field intensity factors are greater than the critical
field intensity factors, the crack will propagate. Here the critical field intensity factors are determined by the experiment,
and relate to many parameters, such as temperature, plate thickness, strain velocity, etc. There are many articles [6–12] in
which the electro-elastic coupling behavior of the inhomogeneity and dislocation in piezoelectric materials has been deeply
researched in recent years. The schistose rigid inclusion can be formed inside reinforcement due to chemical composition
segregation during the crystallizing process in the piezoelectric materials. Fang and Li [13] considered the problem for the
electro-elastic interaction between a piezoelectric moving dislocation and interfacial collinear rigid lines under combined
longitudinal shear and in-plane electric field. Then Fang [14] investigated the interaction between a screw dislocation and
an elliptical inclusion with interfacial rigid lines in piezoelectric solids. Wu and Du [15] discussed the elastic field and
electric field of a rigid line in a confocal elliptic piezoelectric inhomogeneity embedded in an infinite piezoelectric medium
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Fig. 1. The model in physical plane.

under the remote anti-plane shear and in-plane electric field, and analyzed the characteristics of the elastic field and elec-
tric field singularities at the rigid line tip. However, the interaction of a piezoelectric screw dislocation with a rigid line
in a confocal elliptic inhomogeneity has not been studied due to the complexity of the calculation. In the current paper,
the electro-elastic coupling interaction between a piezoelectric screw dislocation and an elliptical inhomogeneity, and the
shielding effect of a piezoelectric screw dislocation on the rigid line are studied by using the complex variable method of
singularity principal analysis, conformal mapping, analytic continuation and Cauchy singular integral.

2. Statement of the problem and solution

Consider an infinite piezoelectric matrix containing an elliptical cylindrical inhomogeneity with an electrically conductive
confocal rigid line which is infinitely long in the z-direction and free of force, under in-plane electrical loads. Both the
matrix and the inhomogeneity are assumed to be transversely isotropic with an isotropic xoy-plane. A piezoelectric screw
dislocation b = {bz bϕ}T is located at arbitrary point z0 in the matrix.

For the present problem, out-of-plane displacement and in-plane electric field need to be considered, so that there
are only non-trivial displacement w , strains γxz and γyz , stresses τxz and τyz , electrical field components Ex and E y ,
electric potential ϕ and electric displacement components Dx and D y in the Cartesian coordinates. All components are only

functions of x and y. Introducing the vector of generalized displacement U =
{

w
ϕ

}
, the generalized strains Y x =

{
γxz

−Ex

}
,

Y y =
{

γyz

−E y

}
and generalized stresses Σx =

{
τxz

Dx

}
and Σ y =

{
τyz

D y

}
can be written with an analytical function vector f (z) =

{ f w(z) fϕ(z)}T , where z = x + iy is the complex variable.

U = Re
[

f (z)
]

Y x − iY y = f ′(z) Σ x − iΣ y = M f ′(z) (1)

where M =
[

C44 e15
e15 −d11

]
, C44, e15 and d11 are the elastic, piezoelectric and dielectric constants, respectively.

In order to facilitate the analysis, we introduce the following function vector

T =
B∫

A

(Σ x dy − Σ y dx) = M Im
[

f (z)
]B

A (2)

where [ ]B
A represents the change in the bracketed function vector from point A to point B along any arc AB (not passing

through interfaces of dissimilar phase).
Introducing the following mapping function [16]

z = ω(ζ ) = c

2

(
Rζ + 1

Rζ

)
Rζ = z

c

[
1 +

√
1 −

(
c

z

)2 ]
(3)

where ζ = ξ + iη, c = √
a2 − b2, R =

√
a+b
a−b , ζ = reiθ . Using the mapping function, the elliptical curve and the rigid line in

the z-plane (z = reiθ ) are mapped onto the concentric circles in the ζ -plane (ζ = ςeiϕ) with radius 1, 1
R , respectively, see

Fig. 1 and Fig. 2.
With the mapping function (3), Eqs. (1) and (2) can be rewritten in the ζ -plane.
The hypothesis of the perfect bonding between the medium S+ and the medium S− implies that
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Fig. 2. The model in transformed plane.

U +
1 (t) = U −

2 (t) T +
1 (t) = T −

2 (t) along the interface |t| = 1 (4)

where the subscripts 1 and 2 represent the regions inhomogeneity S+ and matrix S− . The superscripts + and − denote the
boundary values of the physical quantity as z approaches the interface from S+ and S− , respectively.

According to the Schwarz symmetry principle, the following new analytical function vectors are introduced in the corre-
sponding region

f 1∗(ζ ) = − f̄ 1

(
1

ζ

)
1 < |ζ | < R (5)

f 2∗(ζ ) = − f̄ 2

(
1

ζ

)
|ζ | < 1 (6)

Then the boundary conditions express as[
f 1(ζ ) + f 2∗(ζ )

]+ = [
f 2(t) + f 1∗(t)

]− |t| = 1 (7)[
M1 f 1(t) − M2 f 2∗(t)

]+ = [
M2 f 2(t) − M1 f 1∗(t)

]− |t| = 1 (8)

The generalized analytical function vector in the matrix as

f 2(z) = B ln(z − z0) + f 20(z) z ∈ S− (9)

where B = b
2π i , f 20(z) is holomorphic in the region S− .

Transforming into ζ -plane, we obtain

f 2(ζ ) = B ln(ζ − ζ0) + f 20(ζ ) |ζ | > 1 (10)

where f 20(ζ ) is holomorphic in the region |ζ | > 1.
f 1(ζ ) can be expanded into a Laurent series in the annular region

f 1(ζ ) =
∞∑

k=0

akζ
k+1 +

∞∑
k=0

bkζ
−(k+1) ak and bk are complex constant vectors,

1

R
< |ζ | < 1 (11)

The boundary value problems of Eqs. (7) and (8) can be solved by using the Cauchy integrals, and then we can obtain
the generalized analytical function vectors.

f 1(ζ ) = −2
∞∑

k=0

Λ−1 M2 B

(k + 1)
·
[(

R2ζ

ζ0

)k+1

+
(

1

ζ0ζ

)k+1]
(12)

f 2(ζ ) = B ln(ζ − ζ0) −
∞∑

k=0

B

k + 1
(ζ0ζ )−k−1 + 2

∞∑
k=0

Λ−1 M2 B

(k + 1)
· [R2k+2 − 1

]
(ζ0ζ )−k−1 (13)

where Λ = [(M1 + M2)R2k+2 + (M1 − M2)].



664 C.Z. Jiang et al. / C. R. Mecanique 340 (2012) 661–667
If M1 = M2, the solution on the interaction between a piezoelectric screw dislocation and a finite-length rigid line in
homogeneous piezoelectric material can be calculated

f 1(ζ ) = −
∞∑

k=0

B

(k + 1)R2k+2
·
[(

R2ζ

ζ0

)k+1

+
(

1

ζ0ζ

)k+1]
(14)

f 2(ζ ) = B ln(ζ − ζ0) −
∞∑

k=0

B

(k + 1)R2k+2
(ζ0ζ )−k−1 (15)

If we take M =
[

C44 0
0 0

]
, b → a, then c → 0 and R → ∞, the solutions are reduced to the interaction between a screw

dislocation and a circular inhomogeneity in elastic material,

f 1(ζ ) = −2
∞∑

k=0

[M1 + M2]−1 M2 B

k + 1
·
(

ζ

ζ0

)k+1

(16)

f 2(ζ ) = B ln(ζ − ζ0) −
∞∑

k=0

B

k + 1
(ζ0ζ )−k−1 + 2

∞∑
k=0

[M1 + M2]−1 M2 B

k + 1
(ζ0ζ )−k−1 (17)

which are in agreement with the results in [17].

3. Field intensity factors

The field intensity factors are important parameters of piezoelectric composite material. According to [18], the field
intensity factors at the right tip of the rigid line can be calculated as

K =
[

k3
kD

]
= √

2π lim
ζ→1/R

√
ω(ζ ) − ω(1/R) [τyz D y ]T = 1

iR
√

πc

∞∑
k=0

M1Λ
−1 M2b ·

[
Rk+2

ζ0
k+1

− Rk+2

ζ k+1
0

]
(18)

where k3 is the stress intensity factor, kD is the electric displacement intensity factor.

4. Perturbation stress and image force on the dislocation

One of the major interests in discussing the interaction problem of the piezoelectric dislocation with the inhomogeneity
is the image forces on the piezoelectric screw dislocation. According to the generalized Peach–Koehler formula [19], the
image forces can be written as

Fx − i F y =
[

1

2π

∞∑
k=0

bT M2bζ0
−k−1ζ−k−2

0 − 1

π

∞∑
k=0

bT M2Λ
−1 M2b

(
R2K+2 − 1

)
ζ0

−k−1ζ−k−2
0

]
· 2Rζ 2

0

cR2ζ 2
0 − c

(19)

5. Numerical examples and discussion

It is shown in Eq. (18), that the field intensity factors are directly proportional to b and relevant to the location of the
dislocation ζ0 = r0eiθ when the size of the inhomogeneity and material constants are certain. The stress intensity factor and
the electric displacement intensity factor are all equal to zero as the dislocation lies on x-axis.

As a practical example, we assume that the piezoelectric screw dislocation is b = {1.0 × 10−9 m 0}T , the piezoelectric
matrix is PZT-5H with the electroelastic properties: C (2)

44 = 2.56 × 1010 N/m2, e(2)
15 = 12.7 C/m2, d(2)

11 = 0.646 × 10−8 C/V m.

The inhomogeneity is another piezoelectric material. Let us introduce the shear modulus ratio u = C (2)
44 /C (1)

44 , piezoelectric

coefficients ratio v = e(2)
15 /e(1)

15 and dielectric constants ratio d(2)
11 /d(1)

11 = 1.

The normalized stress intensity factor is k30 =
√

πc

C (2)
44 bz

k3. The variation of k30 with respect to θ with different values of u

for piezoelectric material and elastic material when r0 = 1.5 are depicted in Fig. 1 and Fig. 2, respectively. Fig. 3 shows k30
versus θ with different values of v , and Fig. 4 shows k30 versus r with different values of u when θ = π/3.

It can be found from Figs. 3–6, when a positive screw dislocation is located in the upper half-plane, the stress intensity
factor will be positive (anti-shielding effect); while in the lower half-plane, the stress intensity factor will be negative
(shielding effect). The absolute value of k30 increases with the decrement of u, namely, the shielding or anti-shielding effect
on the stress intensity factor of the rigid line increases with the decrement of the shear modulus ratio. A comparison
of Fig. 3 with Fig. 4 indicates that the piezoelectric properties can enhance the shielding effect of the screw dislocation.
It is also found that the shielding or anti-shielding effect will weaken gradually with the dislocation move away from the
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Fig. 3. k30 versus θ with different u and v = 1.

Fig. 4. k30 versus θ with different u for elastic material.

Fig. 5. k30 versus θ with different v and u = 1.
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Fig. 6. k30 versus r with different u and v = 1.

Fig. 7. Fx0 versus x0/a with different u, v = 1.

interface of the inhomogeneity, and the smaller the shear modulus ratio, the greater the rate of change of the shielding or
anti-shielding effect.

The influence of the different parameters to the image force can be analyzed by using Eq. (19).
If the dislocation lies on the x-axis (z0 = x0), let us define Fx0 = 2π Fx/C (2

44b2
z . Fig. 7 shows Fx0 versus x0/a with differ-

ent u as v = 1. It can be found that the absolute value of Fx0 may be increased acutely from zero when the screw dislocation
approaches the interface of the inclusion. The image force is always positive as u � 1, for which the rigid line and the stiff
inhomogeneity repel the screw dislocation. There exists an unstable equilibrium position of the screw dislocation in the
matrix and the image force equals zero at that point for the case as u > 1.

The variation of Fx0 with respect to u is given in Fig. 8 with different x0/a. We observe that the unstable equilibrium
position of the screw dislocation only appear near the elliptical interface. The influence of the shear modulus ratio on the
image force will decrease acutely as the distance between the screw dislocation and the elliptical interface increases.

6. Conclusions

The problem of the electroelastic interaction between a piezoelectric screw dislocation and an elliptical inclusion con-
taining a rigid line under in-plane electrical loads is dealt with by using of an efficient complex variable method. The
explicit series solutions for the complex potentials of the matrix and the inclusion, as well as the field intensity factors at
the tip of the rigid line are calculated. The generalized Peach–Koehler force acting on the screw dislocation is also given. The
results show that the electroelastic properties of the material, the location and the orientation of the dislocation have large
influence of the shielding or anti-shielding effect on the stress intensity factors of the rigid line. The shielding effect of the
screw dislocation in piezoelectric composite material is better than that in corresponding elastic material. The effect of the
rigid line on the equilibrium position of the dislocation near an elliptical inclusion is significant. An unstable equilibrium
position of the screw dislocation in the matrix can exist when the dislocation near the soft elliptical inclusion.
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Fig. 8. Fx0 versus u with different x0/a, v = 1.
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