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In the work presented in this Note, an Indirect Turbulence Model (ITM) is proposed to
derive the mean velocity profiles in wall-bounded flows in hydraulically smooth channels
having a very wide rectangular cross section. The analytical expression of the mean velocity
distribution is given. The connection between the velocity distribution parameters and
Reynolds’ number is indicated. The thickness of the viscous sublayer is evaluated. The skin
friction coefficient is computed, and the analytical expression of the turbulent viscosity
coefficient is provided.
The validity of the proposed model is verified with reference to the velocity distributions,
available in the literature, obtained with Direct Numerical Simulation (DNS) of Navier–
Stokes’ equations.
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r é s u m é

Un modèle de turbulence a été développé pour représenter la distribution de la vitesse
moyenne locale dans un écoulements bidimensionnel turbulent. Le modèle proposé
permet de décrire la distribution de la vitesse moyenne (en fonction du nombre de
Reynolds) dans un canal lisse à section rectangulaire très large. Le modèle permet aussi
d’évaluer l’épaisseur de la sous-couche visqueuse, la viscosité turbulente et le coefficient
de frottement local.
Le modèle proposé a été vérifié avec succès en utilisant les distributions de la vitesse
disponibles dans la littérature et obtenues par intégration numérique directe des équations
de Navier–Stokes (DNS).

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The mean velocity profile in wall-bounded turbulent uniform flows is usually divided into different regions: the layer
close to the solid wall (viscous sublayer) is connected to the overlap layer through a buffer layer; the outer layer, located
around the channel axis, finally characterizes the flow field in which the velocity distribution is mainly affected by the
geometrical shape of the cross section (see, e.g., [1,2]).
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Fig. 1. Definition sketch of the flow configuration and coordinate system.

In the zones close to the solid walls of hydraulically smooth channels, some expressions have been proposed that are able
to reproduce the mean velocity distribution for 0 � y+ � 20 [3–5], where y+ = yuτ ρ/μ is the non-dimensional quantity
introduced to represent the distance from the solid wall, which is defined by the distance from the wall y, the dynamic
viscosity μ, the density ρ and the friction velocity uτ ; this latter variable defined by the relationship uτ = (τ0/ρ)0.5 with
τ0 as the wall-shear stress.

The mean velocity distributions in the overlap layer are normally represented with Prandtl’s logarithmic law u+ =
(ln y+)/k + b (see, e.g., [6–8]), or with power laws such as u+ = cy+α (see, e.g., [9–11]), where u+ = u/uτ is the non-
dimensional velocity, which is defined by the mean velocity u and the friction velocity uτ ; k is the von Kármán constant,
and b, c and α are parametric quantities.

However, in the overlap layer, the mean velocity distribution shows a trend that is not fully in line with the logarithmic
law, nor with the power law [12,13]. This observation has persuaded some authors to propose expressions for the veloc-
ity profile that are more complex than the logarithmic and power laws and based on asymptotic expansions of suitable
turbulent quantities [14–18].

The velocity distribution in the buffer layer defined by 5 < y+ < 70 has been obtained by Gersten and Herwig [19] using
an Indirect Turbulence Model (ITM) that assumes that the distribution of mean shear stresses (viscous or turbulent) in the
cross section is known.

L’vov et al. [20] have proposed a turbulence model whose application makes it possible to deduce the mean velocity
distribution in cross sections of smooth wall-bounded turbulent flows.

In the work presented in this Note, an Indirect Turbulence Model (ITM) is proposed to derive the mean velocity profiles in
wall-bounded flows in hydraulically smooth channels having a very wide rectangular cross section. The analytical expression
of the mean velocity distribution is given. The connection between the velocity distribution parameters and the Reynolds
number is indicated. The thickness of the viscous sublayer is evaluated. The skin friction coefficient is computed, and the
analytical expression of the turbulent viscosity coefficient is provided.

The validity of the proposed model is verified with reference to the velocity distributions, available in the literature,
obtained with Direct Numerical Simulation (DNS) of Navier–Stokes’ equations.

Comparisons with the turbulence model of L’vov et al. [20] and with the experimental correlations proposed by Dean
[21] are finally performed.

2. Indirect turbulence model

Consider the uniform flow of a Newtonian viscous liquid in the space bounded by two horizontal and plane surfaces
that are hydraulically smooth, indefinitely wide and located at a reciprocal distance 2h. Take as the origin of an orthogonal
Cartesian coordinate system x, y, z the generic point O of the surface, set at a conventional height zero. The horizontal axis
x is turned in the streamwise direction, the vertical axis y is upwards, and the horizontal axis z is turned such that the
triplet xyz is right-handed (Fig. 1).

With reference to the schematic situation of Fig. 1, the mean quantities are introduced: velocity u, shear stress τv due to
the dynamic viscosity μ, total shear stress τ , and shear stress τt connected to the phenomenon of turbulence. The following
relationships exist:

μ
∂u

∂ y
= τv (1)

∂u

∂x
= 0 (2)

τv = τ − τt (3)

τ =
(

1 − y

h

)
τ0 (4)

where τ0 is the shear stress in y = 0.
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As a consequence, the velocity distribution is then expressed by

u(y) =
∫

1

μ

[(
1 − y

h

)
τ0 − τt

]
dy + u0 (5)

where the integration constant u0 is determined by imposing the no-slip condition

u(0) = 0 (6)

Eq. (5), the solution of the differential problem (1) and (2) completed with Eqs. (3) and (4), is physically legitimate if it
makes it possible to reproduce the velocity mean values shown by experience or deduced through the numerical integration
of fluid dynamics equations. This remark defines the posed problem in the inverse problems category and focuses it on the
search for the turbulent shear stress distribution τt able to reproduce the velocity mean values that characterize the flow of
a viscous fluid in a given physical domain. In defining the values to give to the distribution τt(y), it is necessary to consider
that the symmetry of the system leads to stress values τt(h) = 0 for the axis (y = h). It is well known that for laminar flows
(Re < Rec , where Re is the Reynolds number and Rec is the critical Reynolds number), τt = 0 in the domain [0,h] and that
for the flows characterized by Re → ∞, τt = τ for y > 0. These two extreme distributions can be considered as degenerate
forms of a second-order curve such as

τt + 2Bτt y + C y2 + 2Dτt + 2E y + F = 0 (7)

where the coefficients B , C , D , E , and F depend on the flow Reynolds number. Such a dependence defines the validity
limits of Eq. (7) in the finite values field Re > Rec .

From the condition τt(h) = 0, it follows that

F = −Ch2 − 2Eh (8)

3. System identification

The search for the turbulent shear stress distribution τt can be obtained with the identification theory methods. In-
troduced the usual non-dimensional quantities u+ = u/uτ and y+ = yρuτ /μ = ỹ Reτ , where ỹ = y/h and Reτ = y+

max =
hρuτ /μ is Reynolds’ friction number, Eqs. (1), (3) and (7) become

du+

d ỹ
= τ̃v (9)

τ̃v = Reτ (1 − ỹ) − τ̃t (10)

τ̃ 2
t + 2B̃τ̃t ỹ + C̃ ỹ2 + 2D̃τ̃t + 2Ẽ ỹ + F̃ = 0 (11)

where τ̃v = τv
h

μuτ
, τ̃t = τt

h
μuτ

, B̃ = B h2

μuτ
, C̃ = Ch2, D̃ = D h

μuτ
, Ẽ = Eh, and F̃ = −C̃ − 2Ẽ .

Put λ1 = 2B̃ ỹ + 2D̃ and λ2 = C̃ ỹ2 + 2Ẽ ỹ + F̃ , solving Eq. (11) for τ̃t (with the condition 0 � τ̃t � Reτ ) yields the symbolic
expression

τ̃t = −λ1

2
−

√
λ2

1

4
− λ2 = �(B̃, C̃ , D̃, Ẽ, ỹ) (12)

With Eqs. (10) and (12), Eq. (9) becomes

du+

d ỹ
= [

(1 − ỹ)Reτ − �(B̃, C̃ , D̃, Ẽ, ỹ)
]

(13)

Integrating this equation with the no-slip condition (6) gives [22,23]

u+ = (ϕ1 + ψ1/2)y+/Reτ + ϕ2
(

y+/Reτ

)2 + ϕ3ψ3 + ϕ4 ln(ψ2) (14)

where

ψ1 =
√

P1
(

y+/Reτ

)2 + P2 y+/Reτ + P3 (15)

ψ2 = (P2/
√

P1 + 2
√

P3 )/
{(

2P1 y+/Reτ + P2
)
/
√

P1 + 2ψ1
}

(16)

ψ3 = ψ1 − √
P3 (17)

ϕ1 = Reτ + D̃ (18)

ϕ2 = (B̃ − Reτ )/2 (19)
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Fig. 2. Mean velocity profiles deduced with the proposed model (—); mean velocity obtained with the DNS technique (!) [25–27]. The plots are shifted
vertically by 10 units. The symbol H indicates Hellinger’s distance (see Section 4).

Fig. 3. Mean velocity profiles deduced with the proposed model (—); mean velocity obtained with the DNS technique (!) [28–30]. The plots are shifted
vertically by 10 units.

ϕ3 = (
√

P1 P2)/
(
4P 3/2

1

)
(20)

ϕ4 = (
P 2

2 − 4P1 P3
)
/
(
8P 3/2

1

)
(21)

P1 = B̃2 − C̃ (22)

P2 = 2(B̃ D̃ − Ẽ) (23)

P3 = D̃2 + C̃ + 2Ẽ (24)

The relationships between the coefficients that define the velocity distribution (14) and Reynolds’ friction number are
expressed as

B̃ = Reτ (1 − f1) (25)

C̃ = Re2
τ − B̃Reτ

f2
− Re2

τ + 2B̃Reτ (26)

D̃ = − 1

Reτ

(
Re2

τ − B̃Reτ

f3
+ Re2

τ

)
(27)

Ẽ = Re2
τ − B̃Reτ + Re2

τ − B̃Reτ + D̃Reτ (28)

f4
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Fig. 4. Mean velocity profiles deduced with the proposed model (!); mean velocity obtained with the turbulence model of L’vov et al. [20] (—). The plots
are shifted vertically by 10 units.

Fig. 5. Turbulent shear stresses deduced with the proposed model (—); turbulent shear stresses obtained using the DNS technique (!). The plots are shifted
vertically by 0.3 units and horizontally by −0.05 units. Reτ = 110,150,180,300,393,587,650,934,1020,2003.

with

f1 = (
3.655Re2

τ + 25 704.994Reτ − 55 013.808
) · 10−6 (29)

f2 = (
6.991Re2

τ + 39 476.172Reτ + 2 873 405.419
) · 10−6 (30)

f3 = (−7.490Re2
τ − 49 231.626Reτ + 556 178.423

) · 10−6 (31)

f4 = (−23.766Re2
τ − 82 908.798Reτ − 4 325 049.776

) · 10−6 (32)

These results have been obtained with methods based on the theory of optimal control [24], using the velocity distribu-
tion available in the literature that has been deduced with the numerical procedure DNS for Reτ = 110,150,300,650, and
1020 [25–27] (Fig. 2).

4. Model validation and results analysis

The validity of the proposed indirect turbulence model has been verified with reference to the numerical results deduced
with the DNS technique for Reτ = 180,393,587,934, and 2003 [28–30] (Fig. 3). The good agreement between the velocity
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Table 1
Hellinger’s distance H(τ̃tDNS||τ̃tITM) between
the DNS and theoretical turbulent shear data.

Reτ H

110 5.50 × 10−2

150 8.91 × 10−2

180 1.35 × 10−1

300 1.50 × 10−1

393 1.33 × 10−1

587 1.35 × 10−1

650 1.23 × 10−1

934 1.08 × 10−1

1020 4.69 × 10−2

2003 1.21 × 10−1

Fig. 6. Turbulent shear stresses deduced with the proposed model for Reτ = 110,150,180,300,393,587,650,934,1020,2003.

Fig. 7. Thickness of the viscous sublayer ỹ = δ(Reτ ) deduced with the proposed model.

distribution deduced with the adopted approach and the one obtained with the DNS technique is testified to by the values
taken from Hellinger’s distance, defined as

H
(
u+

DNS

∣∣∣∣u+
ITM

) =
Reτ∑
+

{[
u+

DNS

(
y+)]0.5 − [

u+
ITM

(
y+)]0.5}2

(33)

y =0
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Table 2
The average and the maximum error between the DNS and theoretical mean velocity data in the range δ < ỹ � 1.

Reτ δ Maximum error Average error

110 2.91 × 10−2 0.80% 0.49%
150 1.60 × 10−2 4.87% 1.14%
180 1.21 × 10−2 3.52% 0.46%
300 6.05 × 10−3 3.82% 0.88%
393 4.51 × 10−3 4.09% 0.83%
587 3.08 × 10−3 2.32% 0.67%
650 2.84 × 10−3 4.02% 0.56%
934 2.05 × 10−3 5.21% 0.58%

1020 1.91 × 10−3 4.79% 0.70%
2003 1.04 × 10−3 4.68% 0.33%

Fig. 8. Maximum turbulent shear stress deduced with: proposed model (– –); turbulence model of L’vov et al. [20] (—); DNS technique (!) for Reτ =
110,150,180,300,393,587,650,934,1020,2003.

Fig. 9. Location of the maximum turbulent shear stress deduced with: proposed model (– –); turbulence model of L’vov et al. [20] (—); DNS technique (!)
for Reτ = 110,150,180,300,393,587,650,934,1020,2003.

where u+
DNS(y+) is the velocity distribution computed with the DNS technique and u+

ITM(y+) is the velocity distribution
obtained with the proposed indirect turbulence model. Hellinger’s distance is a good indicator to evaluate how the two
velocity distributions resemble each other [31–33].

Fig. 4 shows the comparison of the mean velocity profiles deduced with the adopted approach with the one obtained
with the turbulence model of L’vov et al. [20] for Reτ = 393,587,934, and 2003.
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Fig. 10. Mean bulk velocity (normalized by friction velocity) U +
m deduced with the proposed model (—) and with the DNS technique (!) for Reτ =

110,150,180,300,393,587,650,934,1020,2003.

Fig. 11. Mean centerline velocity (normalized by friction velocity) U +
c deduced with the proposed model (—) and with the DNS technique (!) for Reτ =

110,150,180,300,393,587,650,934,1020,2003.

Fig. 5 shows the distribution of the stresses τ̃t( ỹ) deduced with the adopted approach and the one obtained with the
DNS technique. The agreement between the DNS and theoretical turbulent shear data is testified to by the values taken
from Hellinger’s distance H(τ̃tDNS||τ̃tITM) (Table 1). The analysis of Fig. 6 highlights the fact that the turbulent shear stress
computed with the proposed model takes nil values near the wall in a region referred to as the viscous sublayer, whose
thickness ỹ = δ is a function of Reτ (Fig. 7).

The average and the maximum error between the DNS and theoretical mean velocity data in the range δ < ỹ � 1 are
reported in Table 2.

The maximum turbulent shear stress, as well as the location of the maximum turbulent shear stress, deduced with the
proposed model are in agreement with the one obtained using the DNS technique and the turbulence model of L’vov et al.
[20] (Figs. 8 and 9).

The agreement between the DNS and theoretical data is also verified with reference to: mean bulk velocity, normalized
by the friction velocity, defined as U+

m = ∫ 1
0 u+ d ỹ (Fig. 10); mean centerline velocity, normalized by the friction velocity,

U+
c (Fig. 11); skin friction coefficient based on mean bulk velocity Um , C f (Um) = τ0/

1
2 ρU 2

m (Fig. 12); skin friction coefficient
based on the centerline velocity Uc , C f (Uc) = τ0/

1
2 ρU 2

c (Fig. 13); Reynolds’ number based on the mean bulk velocity Um

and the full channel width, Rem = 2hUmρ/μ (Fig. 14).
The skin friction coefficient C f (Um) computed with the proposed model is also in agreement with Dean’s suggested

correlation of C f = 0.073Re−0.25
m [21] (Fig. 15).
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Fig. 12. Skin friction coefficient C f (Um) deduced with the proposed model (—) and with the DNS technique (!) for Reτ = 110,150,180,300,393,587,650,

934,1020,2003.

Fig. 13. Skin friction coefficient C f (Uc) deduced with the proposed model (—) and with the DNS technique (!) for Reτ = 110,150,180,300,393,587,

650,934,1020,2003.

The application of the proposed model makes it possible to obtain the analytical expression of the turbulent viscosity
coefficient μ̃ defined by the relationship

μ̃
du+

d ỹ
= τ̃t (34)

From Eqs. (12) and (13), it follows that

μ̃ = �(B̃, C̃ , D̃, Ẽ, ỹ)

(1 − ỹ)Reτ − �(B̃, C̃ , D̃, Ẽ, ỹ)
(35)

Fig. 16 shows the viscosity coefficient distributions μ̃ deduced with the proposed model.
The mean velocity distribution computed using the parametric equation (14) shows a trend that is not in line with the

Prandtl’s logarithmic law, and consequently the proposed model does not allow to evaluate the von Kármán constant. In
fact, contrary to the logarithmic law, the diagnostic function g(y+) = y+ du+/dy+ [34] deduced using Eq. (13) does not
assume constant values in significant portions of the flow field (Fig. 17). This result is in conformity with the observations
of Zanoun et al. [35], according to which the logarithmic law is a good representation of the mean velocity distribution in
the overlap layer for Reτ > 2000.
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Fig. 14. Reynolds’ number (based on the mean bulk velocity) Rem deduced with the proposed model (—) and with the DNS technique (!) for Reτ =
110,150,180,300,393,587,650,934,1020,2003.

Fig. 15. Skin friction coefficient C f (Um) deduced with the proposed model (—) and with the Dean’s correlation (– –) [21].

Fig. 16. Turbulent viscosity coefficient μ̃ deduced with the proposed model for Reτ = 110,150,180,300,393,587,650,934,1020,2003.
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Fig. 17. Diagnostic function g(y+) = y′ du+ dy+ [34] deduced with the proposed model for Reτ = 110,150,180,300,393,587,650,934,1020,2003.
The plots are shifted vertically by 0.5 units.

5. Conclusions

This short Note is inspired by the works of Di Nucci et al. [22,23]. In these works, the parametric equation (14) has been
proposed to represent the mean velocity distribution in wall-bounded flows in hydraulically smooth channels having a very
wide rectangular cross section.

After giving a predictive character to Eq. (14) by specifying the connection between the velocity distribution parameters
and the Reynolds number, this work evaluates the thickness of the viscous sublayer, provides the analytical expression of
the turbulent viscosity coefficient, gives the skin friction coefficient.

In the range 110 � Reτ � 2003, the validity of the proposed model has been verified with reference to the velocity
distributions, available in the literature, obtained with Direct Numerical Simulation (DNS) of Navier–Stokes’ equations.
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