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This work undertakes a numerical study of turbulent incompressible flows in lid-driven
cubical cavities using Large Eddy Simulation and two sub-grid scale models, i.e., the WALE
(Wall-Adapting Local Eddy-viscosity) model and the corresponding dynamic sub-grid model
(DSGS). In the process of using DSGS, an optimal value of constant CW of the WALE model
was determined for a pre-set Reynolds number Re = 104. The computed numerical results
showed very good agreement with those Direct Numerical Simulation (DNS) results and
with the experimental measurements found in the literature. Optimal values of CW were
determined afterwards with the DSGS model and they were proposed for the analysis of
higher Reynolds number turbulent flows. At the end, a power law correlation between CW

and Re was proposed for the range 104 � Re � 3 × 104.
© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Numerical simulations of turbulent flows are of great interest in a multitude of engineering applications in industry. It is
well known that for high Reynolds number turbulent flows, the extended range of turbulent scales is of concern. The small
scales are of the order of the Kolmogorov length scale and the largest scales are of the order of the domain dimensions.
Direct Numerical Simulation (DNS) cannot solve high Reynolds turbulent flows due to the large amount of computational
information generated by the large range of scales. Owing to this drawback, DNS is normally restricted to low and moderate
Reynolds number flows.

Another approach capable of predicting turbulent flows is the Reynolds Averaged Navier–Stokes (RANS), based on the
Reynolds decomposition of the instantaneous flow variables into a mean and fluctuating components. During the last three
decades, many researchers have embraced the RANS avenue as an alternative to simulate a variety of turbulent flows [1–4].
The disadvantage inherent to the RANS turbulence model stems from the fact that the turbulent fluctuations are eliminated
by means of a time averaging process during which all the spectra effects are lost.

The Large Eddy Simulation (LES) methodology introduced by Smagorinsky [6] is another tool to simulate turbulent
flows [5]. LES, situated between highest degrees of DNS and RANS, is expressed by the partition of the large eddies struc-
tures and sub-grid scales structures using a grid filter. Large-scale flow motions are explicitly computed, while small-scale
flow motions are modeled with a sub-grid scale (SGS) model. LES is superior to DNS in terms of computational cost, and
better than RANS in terms of accuracy and data availability.

Several SGS models have been utilized by a group of researchers: Smagorinsky’s model [6], the dynamic SGS model
initially proposed by Germano et al. [7] and reformulated by Lilly [8], the WALE model developed by Nicoud and Ducros [9].
In addition, other relevant SGS models can be found in Refs. [5,10,32,33].
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In this work, we undertake the formulation, implementation and application of a numerical algorithm for three-
dimensional turbulent flows in a lid-driven cubical cavity at relatively high Reynolds number. The adopted methodology
is based on the finite volume method, coupled with a full-multigrid acceleration and LES. A computational code to simulate
transient, incompressible, three-dimensional flows was developed [11,12] using the projection method [13]. Herein, two
different SGS models were implemented, namely the WALE model [9] and the dynamic model [5,14].

The three-dimensional flow in a lid-driven cubical cavity has been studied experimentally [15,16] and numeri-
cally [17–22]. Statistical studies on the mean velocities, turbulence intensities and Reynolds stresses are performed and
compared with those obtained numerically and experimentally by other authors. The model and methodology are first vali-
dated for Re = 104. Then, a correlation between the optimal constant CW that appears in the WALE SGS model is determined
and proposed for the range 104 � Re � 3 × 104.

2. Governing equations

2.1. Filtered equations

The unsteady Navier–Stokes equations for incompressible flows are:
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where ui , p, ρ , and ν denote the velocity, the pressure, the density and the kinematic viscosity, respectively.
The LES equations are obtained by applying a filtering operation. The definition of a filtered variable is defined by:
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where V is the volume of filtering and G is the filter function. After filtering Eqs. (1)–(2), the LES continuity and momentum
equations take the form:
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where the sub-grid scale stresses are given by:

τi j = uiu j − ūi ū j (6)

Invoking the Boussinesq approximation, the SGS stresses are related to the eddy viscosity νT and the large scale strain rate
tensor S̄ i j by means of the following expression:

τi j − 1
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2.2. WALE sub-grid scale model

Nicoud and Ducros [9] developed an advanced sub-grid scale model that takes into consideration both the strain and
the rotation rate of the smallest resolved turbulent fluctuations. Taken information from DNS, Wray and Hunt [23] stated
that the energy is concentrated in the streams and energy dissipation is significant in eddies and convergence zones. Incon-
testably, the common Smagorinsky model does not justify the contribution of the latter, which are zones where vorticity
predominates irrotational strain. The model developed by Nicoud and Ducros [9] has two main advantages: (1) the viscosity
tends to zero (of order O (y3)) in the vicinity of a wall and (2) the viscosity does not need information for the position
and direction of the wall. This last characteristic is especially meaningful when dealing with complex geometries and/or
unstructured grid. For this particular model, named WALE (Wall-Adapting Local Eddy-viscosity), the eddy viscosity νT is
expressed by:

νT = (CW Δ)2 OP1

OP2 + ε
= (CW Δ)2|N̄i j| (8)

where CW is the WALE constant model, Δ is the characteristic length scale representing the cell size, and ε = 10−6. Besides,
the other participating quantities are:
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in which
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In reference to isotropic or weakly anisotropic grids, the magnitude of Δ is computed through Δ = (ΔxΔyΔz)1/3 as as-
sumed by Deardorff [24]. Owing that the present study revolves around anisotropic grids, Deardorff’s form was corrected
incorporating the proposition suggested by Scotti et al. [25].

2.3. Dynamic SGS model

Germano et al. [14] presented a dynamic SGS model (DSGS), wherein the model coefficient is calculated during the
simulation relying on the application of two different filters. In addition to the grid filter G , a test filter

{

G is applied. The
test filter width

{

Δ is larger than the grid filter width Δ, usually

{

Δ = 2Δ. First, the grid filter and the test filter are applied
to the momentum equation (2):
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where Tij represent the sub-test stresses given by:
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The test filter is then applied to the filtered equation (5):
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ūi

{
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Let us model both τi j and Tij by the same functional form within the framework of the WALE model. That is:
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Using the trio of Eqs. (14)–(16), we subsequently obtain:
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In order to solve for CW , we minimize the square of the error Eij defined by:
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Correspondingly,
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The dynamic coefficient C2
W (x, y, z, t) is thereby obtained by the expression:
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At this stage, an important feature worth stressing is that the coefficient calculation is based on the local information.
However, the values for CW must usually be limited in order to prevent destabilizing negative viscosity as cited in [26].
Developing a dynamic version of the WALE model was also discussed in [35]. The authors studied the case of an isothermal
turbulent channel flow. Their study illustrates how the dynamic procedure combined with the WALE fails to correctly model
the mean velocity. It leads to very high values of the WALE constant near the wall and to an over prediction of the turbulent
viscosity in the buffer-layer. The authors proposed a cure to this problem using an appropriate dynamic WALE model. For
our numerical simulations, we just chose to clip the model constant as commonly used in practice. The following criterion
was then imposed: 0 � CW � 0.50. It should be pointed out that several methods can be used to avoid clipping the local
dynamic constant. For relevant studies on the topic one can refer to Refs. [36,37].
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Fig. 1. Geometry of lid-driven cubic cavity problem (left) and the 643 grid distribution (right).

3. Numerical procedure

The unsteady Navier–Stokes equations are discretized using staggered, non-uniform control volumes. A projection method
attributed to Achdou and Guermond [13] is used to adequately couple the momentum and continuity equations. An inter-
mediate velocity is first computed and later updated to comply with mass continuity. In the intermediate velocity field, the
old pressure is used. A Poisson equation, with the divergence of the intermediate velocity field as the source term, is then
solved to obtain the pressure correction and afterward the real velocity field. The time evolution terms are discretized with
an implicit second-order Euler scheme utilizing(

∂ui

∂t

)n+1

= 3un+1
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i + un−1
i

2Δt
(21)

The advection terms are discretized with an explicit scheme, i.e.,
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The diffusion terms are treated implicitly and the SGS stresses are discretized with a semi-explicit scheme:
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The finite-volume method devised by Patankar [27] is employed to discretize the Navier–Stokes equations. The advec-
tive terms in the momentum equation are discretized using a QUICK third-order scheme proposed by Leonard [28]. The
discretized momentum equations are eventually resolved using the red and black successive over relaxation method RBSOR
(Leonard [29]), while the Poisson pressure correction equation is solved using a full multi-grid method [30,31]. The numer-
ical methodology was implemented with a FORTRAN program. The convergence of the numerical results is established at
each time step according to the following criteria:√√√√( ∑

I, J ,K

(ui)
m
I, J ,K −

∑
I, J ,K

(ui)
m−1
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where m represents the iteration level.

4. Results and discussion

4.1. Validation of numerical method

A benchmark test, configured in the form of a lid-driven cubical cavity is illustrated in Fig. 1. Being simple in geometry
while exhibiting complex flow behavior, this problem constitutes an ideal setting to benchmark the developed LES computer
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Fig. 2. Comparisons of the mean U (left) and W (right) velocity profiles between the present numerical and experimental results for Re = 104 and different
values of CW .

code. The Reynolds number is based on the cavity top wall and the impressed lid velocity leading to Re = u0 L
ν . On the basis

of Re = 104, numerical calculations were performed in a cubic domain (D = H = L), containing a total of 64×64×64 nodes,
which are shown in Fig. 1. For completeness, the grids were built using a tangent hyperbolic formulation.

The smallest space intervals chosen in the three coordinate directions are localized near the moving and stationary walls
to capture the growth of the velocity boundary layers adjacent to them. For Re = 104, the largest dimensionless time step
to ensure convergence and stability was set at Δt = 2.0 × 10−3.

The velocity boundary conditions are:

• z = 1: at the moving top wall (u = 1, v = w = 0)

• x = 0, x = 1, y = 0, y = 1, z = 0: no slip (u = v = w = 0) at the stationary walls.

The statistical analysis of the turbulence quantities was performed taking the velocity field data corresponding to central
horizontal and vertical lines in the plane of symmetry (y = 0.5). The dimensionless mean velocity components on the two
lines defined previously were calculated with the following expressions: U = 〈ū〉 and W = 〈w̄〉, where 〈ū〉 and 〈w̄〉 are
mean velocity components in the x- and z-directions, respectively.

Taking into account the Reynolds hypothesis, the instantaneous velocity can be separated into its mean value and a
fluctuating part. Consequently, this may be written as follows: ūi = 〈ūi〉 + ū′

i , where ū′
i is the fluctuating part.

The turbulence intensities are defined by the following dimensionless expressions:

Urms = 10
√〈(

ū′)2〉
and Wrms = 10

√〈(
w̄ ′)2〉

(25)

The dimensionless Reynolds stress components are given by:

U W = 500
√〈

ū′ w̄ ′〉 (26)

Note that the two constants 10 and 500 in the previous expressions were used to amplify the values of the turbulence
intensity and Reynolds stress in order to get a suitable graphical representation [16].

Simulations were first carried on with the WALE sub-grid scale model and with a value of CW = 0.50 as proposed
in [9]. Note that in [9], the physical problem corresponds to turbulent pipe flow. Data for the present statistical analysis of
turbulence were obtained storing the values of all variables corresponding to the centerlines in the horizontal and vertical
directions at the symmetry plane; this was done for each time interval.

Fig. 2 displays the dimensionless average velocity components U and W at the centerlines of the symmetry plane. As
seen here, the obtained solutions are not in very good agreement with the experimental results of Prasad and Koseff [16].
Another test was then done with a lower value of WALE’s constant, say CW = 0.30. Under these circumstances, better results
are observable in Fig. 2 demonstrating that the results strongly depend on the value of the constant CW . As reported by
Bricteux et al. [34], the WALE model has an over dissipative behavior in strong vortical flows. Since lid-driven cavities are
dominated by large scales vortices, it is probably the reason for the mitigate results observed in Fig. 2.

In order to determine the most appropriate value of the coefficient CW , we used the DSGS model, which was defined
and developed in Section 2. From the standpoint of CPU time, this model is relatively expensive. Hence, simulations were
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Table 1
Time/iteration on single processor
using different models on a 643 grid.

Model Time (s)

UDNS 0.750
SGS 1.99
DSGS 5.27

Fig. 3. Time evolution of the space averaged coefficient CW .

undertaken on a smaller grid size consisting of 48 × 48 × 48 nodes. The coefficient model was then calculated by means
of Eq. (21). Table 1 lists the CPU times for one iteration using different models on a single processor, 3.0 GHz Sun Ultra 40
workstation. The SGS model requires approximately 166% more time compared to the UDNS, while the DSGS model takes
almost 165% more clock-time compared to the SGS model and 600% compared to the UDNS.

Fig. 3 shows the time evolution of the space averaged value of CW over the computational domain for Reynolds number
Re = 104. The time averaged value of 〈CW 〉 in the interval 500 � t � 1000 gave a value of an optimal WALE constant
Copt

W = 0.1297. It is important to notice that averaging 〈CW 〉 in a shorter interval, i.e., 500 � t � 600 also gives a very close

value: Copt
W = 0.1291. Hence, in order to evaluate Copt

W with the DSGS model, there is no need for long integration times.
Fig. 4 displays the results performed on a 64 × 64 × 64 grid using the SGS model with the evaluated optimal coefficient

Copt
W = 0.13 (obtained with the DSGS model on a 48 × 48 × 48 grid). In this figure are presented the dimensionless mean

square root values at the centerlines of the symmetry plane (Urms and Wrms), and the dimensionless Reynolds Stresses
(UW). Results are compared to experimental measurements in [16], numerical simulations with DNS [18] and LES [22]. The
excellent agreement lends credibility to the present methodology for predicting turbulent flow characterized by Re = 104.

4.2. Flow structure for Re = 104

On the left part of Fig. 5, we plotted the instantaneous velocity vector field at the x–z midplane in the lid-driven cavity.
We recall that the top lid is moving from left to right at a given velocity u0. A main primary vortex near the cavity center
is clearly seen in the figure. The plotted vectors clearly reveal the presence of secondary eddies near the bottom corners
namely called upstream and downstream secondary eddies. An upper secondary eddy is also observed on the left of the lid.

The right part of Fig. 5 exhibits the instantaneous vector field in the y–z plane at a location near the downstream wall,
specifically x = 0.84. Two pairs of Taylor–Gortler–like (TGL) vortices and lower corner vortices are well formed, precluding
the possibility of a two-dimensional flow. Note that the mechanism causing the TGL vortices is due to the unstable concave
free shear layer that separates the primary vortex from the downstream secondary eddy. The right part of Fig. 5 also brings
forth the presence of corner eddies that originate from the no-slip condition imposed by the presence of the end-wall.
These visualizations of TGL and corner vortices are in good agreement with the observations in [16].

Some iso-surfaces of x-direction vorticity are plotted in Fig. 6. The iso-surfaces are plotted near the downstream wall at
same location as in Fig. 5, x = 0.84. Here again, the transitional behavior of TGL and the corner vortices are palpable.

4.3. Optimal WALE constants prediction for higher Reynolds numbers

By increasing the Reynolds number up to 2 × 104, the numerical results explode after a dimensionless time of about 800
even by largely decreasing the time steps. This is certainly due to the boundary velocity imposed on the cavity lid. Indeed,
the unit velocity induces severe discontinuities along the two top edges. In order to remove these defects, we used the
same high degree polynomial velocity profile employed by Leriche and Gavrilakis [18]:

u(x, y, L) = u0

[
1 −

(
2x − L

)18]2[
1 −

(
2y − L

)18]2

(27)

L L
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Fig. 4. Comparisons of rms U and W velocity profiles (top) and Reynolds shear stress profile (bottom) for Re = 104 between present and DNS, LES and
experimental results found in the literature.

Fig. 5. Instantaneous velocity vectors at x–z midplane (left) and y–z plane at a location near the downstream wall (right).
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Fig. 6. x-vorticity iso-surfaces near the downstream wall.

Table 2
Time steps and optimal values of CW related to the Reynolds number.

Re 12 000 18 000 24 000 30 000 36 000
Rem 10 200 15 300 20 400 25 500 30 600
Δt 2 × 10−3 1 × 10−3 1 × 10−3 5 × 10−4 2.5 × 10−4

Copt
W (calculated on a 643 grid) 0.132 0.149 0.163 0.175 0.185

Table 3
Smallest and largest space intervals in the three coordinate directions.

Δxmin Δxmax Δymin Δymax Δzmin Δzmax

2.6 × 10−3 3.2 × 10−2 1.0 × 10−2 1.9 × 10−2 2.6 × 10−3 3.2 × 10−2

In this velocity distribution, the mean value over the driving surface results in um = 0.85u0 [18]. Hence, for a Reynolds
number based on the maximum velocity on the lid defined by Re = u0 L

ν , the corresponding mean velocity Reynolds number

is defined by Rem = um L
ν . In Table 2 different values of Re and their corresponding Rem are reported.

In order to solve the optimal WALE coefficient Copt
W for each envisaged Reynolds number, simulations were all performed

on a 64 × 64 × 64 grid. The grid distribution responded to the non-dimensional variable x expressed by:

x(i) = 1

2
+ tanh[( 2i

M − 1)arctan h(αx)]
2αx

(28)

where the boundary values are: x(0) = 0 and x(M) = 1 being αx a stretching parameter. Similar expressions have been gen-
erated for the grid distribution along y and z directions with stretching parameters αy and αz , respectively. The presented
results were obtained with αx = αz = 0.96 and αy = 0.7. The smallest and largest space intervals in the three coordinate
directions are regrouped in Table 3.

The initial flow conditions for each simulation were the final flow state of the right previous run. For each run, sim-
ulations were first performed with the SGS model until establishment of the flow (a total dimensionless time of 1000).
After that, simulations were carried out with the DSGS model. As mentioned in Section 4.1, short integration times are
sufficient to obtain a good approximation for the coefficient Copt

W . The mean values in space of coefficients CW were then
averaged over time inside the intervals 200 � t � 300 or 100 � t � 200 depending on the Reynolds number. Note that for
Re = 3.6 × 104, a total dimensionless time of 100 requires 4 × 105 time step iterations. This necessitates approximately 3
weeks of CPU time.

Computed values of Copt
W for the different Reynolds numbers are reported jointly in Table 2 and in Fig. 7. It is important

to realize that for Rem = 10 200, the value of Copt is very close to one obtained in a grid with the same Reynolds number.
W
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Fig. 7. Optimal WALE model constant versus Reynolds number.

Thus, Copt
W is not very sensitive to the grid size and can be evaluated on a relatively coarse grid by the DSGS model firstly

and secondly using a finer grid with the SGS model. For more details about the effect of the grid spacing and integral scale
on the constant of SGS models, one can refer to [38].

It was also corroborated that Copt
W can be correlated with Reynolds number Re as seen in Fig. 7. Using the least square

method, the optimal value of the constant inherent to the WALE model is expressed by the following correlation:

Copt
W = 7.29 × 10−3Re0.308 (29)

5. Conclusions

The three-dimensional classical problem of turbulent flows in lid-driven cubical cavities was simulated with a finite
volume Large Eddy Simulation methodology in this work. Two sub-grid scale models were implemented, the WALE’s (SGS)
and the corresponding eddy viscosity dynamic model (DSGS). The results with the SGS model are very coherent with
experimental and numerical data from other authors if an appropriate model constant CW is accounted for.

Optimal values of CW were obtained by averaging in time the stored data of the space averaged values of 〈CW 〉 calculated
with the DSGS model. For Re = 104, an optimal value Copt

W ≈ 0.13 was determined. No significant changes were observed

between values of Copt
W obtained on 48 × 48 × 48 and 64 × 64 × 64 grids.

Using the DSGS model on a 64 × 64 × 64 grid, optimal values of CW for relatively high Reynolds numbers in the interval
104 < Re � 3 × 104, were adequately determined. A monomial correlation between Copt

W and Re was determined by the least
square method. This correlation may be very useful for numerical simulations using the SGS model with higher Reynolds
numbers that demand finer grids.
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