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Two mechanisms control combustion noise generation as shown by Marble and Candel
(1977) [1]: direct noise, in which acoustic waves propagate through the turbine stages
and indirect noise, in which vorticity and/or entropy waves generate noise as they are
convected through turbine stages. A method to calculate combustion-generated noise has
been implemented in a tool called CHORUS. The method uses the large eddy simulations
of the combustion chamber obtained with the unstructured solver AVBP developed at
CERFACS (Schønfeld and Rudgyard, 1999 [2]) and analytical models for the propagation
through turbine stages. The propagation models (Cumpsty and Marble, 1977 [3]) use the
compact row hypothesis to write matching conditions between the inlet and the outlet
of a turbine stage. Using numerical simulations, the validity of the analytical methods is
studied and the errors made quantified.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Deux mécanismes sont responsables de la génération de bruit de combustion : le bruit
direct, dans lequel les ondes acoustiques se propagent à travers les étages de la turbine et
le bruit indirect, dans lequel les ondes de vorticité ou entropiques génèrent du bruit quand
elles sont convectées. Une méthode pour calculer le bruit de combustion a été mise en
place dans l’outil CHORUS. La méthode utilise des simulations aux grandes échelles (LES)
pour la chambre de combustion, avec le code AVBP developpé au CERFACS (Schønfeld et
Rudgyard, 1999 [2]), et des méthodes analytiques pour la propagation des ondes à travers
les étages de la turbine. Le modèle est validé avec des simulations numériques.
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Fig. 1. Sketch of the configuration studied.

1. Introduction

The contribution of combustion noise to the total acoustic emissions of the aircraft has increased in commercial airplanes
as the noise generated by other sources such as jet and fan noise has been reduced. This noise reduction must continue to
meet the increasingly restrictive regulations imposed by international organizations such as ICAO.

Two mechanisms of combustion noise generation were identified by Marble and Candel [1]: direct and indirect combus-
tion noise. In the first one, acoustic waves generated in the combustion chamber propagate through turbine stages to the
outlet of the engine. In the second mechanism, noise is generated in the turbine stages by entropy waves convected from
the combustion chamber. Marble and Candel proposed a simple one-dimensional analytical tool to study the propagation of
waves through a nozzle. The two mechanisms of combustion noise generation have been the focus of recent studies [4–6],
showing that indirect noise cannot be neglected and that the propagation of acoustic and entropy waves should be taken
into account to compute correctly the contribution of combustion to the global noise.

Cumpsty and Marble [3] developed an analytical method, similar to the one-dimensional model of Marble and Candel,
to study the propagation of waves in a two-dimensional configuration, allowing a more detailed study of the effects of the
propagation of waves through the turbine stages. Using this analytical method, a tool named CHORUS has been built at
CERFACS to perform the post-processing of the numerical simulations performed using AVBP code [2] and the propagation
of noise and entropy waves through fixed and rotating blades of the turbine to compute the combustion noise generated at
the outlet.

The analytical theory used for the propagation of waves is explained in Section 2 and the methodology to compute
combustion noise is discussed in Section 3. A validation of the analytical theory is proposed in Section 4. Conclusions are
presented in Section 5.

2. Analytical model for the propagation of waves through a turbine

The analytical model proposed by Cumpsty and Marble [3] deals with the propagation of acoustic and entropy waves
through turbine stages assuming a two-dimensional configuration. Using the compact blade-row hypothesis, matching con-
ditions can be written between the inlet and the outlet of the turbine stage. Fig. 1 shows a sketch of the configuration
used here: an infinitely thin blade row acts as an interface between two regions of uniform flow. Vector w represents the
mean flow velocity (with module w and an angle θ̄ with the axial direction), and k is the wave vector: the direction of
propagation of the considered wave (similarly with module k and angle ν).

The two-dimensional steady flow upstream and downstream of the blade row can be described with four variables: the
modulus of the steady velocity w , its angle θ̄ , the mean pressure p̄ and the mean density of the flow ρ̄ . It is assumed
that the steady flow is perturbed by small fluctuations. These fluctuations can be described with four primitive variables:
the entropy perturbation s′ , the mean speed perturbation w ′ , the pressure fluctuation p′ and the perturbation on the mean
flow angle θ ′ .

The analytical model of Cumpsty and Marble [3] used by Leyko et al. [7] firstly analyzes the propagation of the pertur-
bations in the upstream and downstream regions of the blade row to yield the acoustic, entropy and vorticity waves as a
function of the primitive variables s′/C p , w ′/c̄, p′/γ p̄ and θ ′ . Matching conditions are finally written for the fluctuating
primitive variables between both sides of the blade row.

2.1. Wave decomposition upstream and downstream of the blade row

The linearized Euler equations (LEE) in a steady uniform flow can be used in the upstream and downstream regions to
describe the propagation of the acoustic waves, namely

D
(

ρ ′ )
+ ∂u′

+ ∂v ′
= 0 (1)
Dt ρ̄ ∂x ∂ y
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where the material derivative is written,

D

Dt
= ∂

∂t
+ w · ∇ = ∂

∂t
+ ū

∂

∂x
+ v̄

∂

∂ y
(5)

with ū = w cos θ̄ and v̄ = w sin θ̄ the axial and circumferential components of the mean velocity. The fluctuating variables
u′ and v ′ are the velocity perturbations in the x and y directions respectively. They can be related to w ′ and θ ′ through

u′

ū
= w ′

w
− θ ′ tan θ̄ ,

v ′

v̄
= w ′

w
+ θ ′/ tan θ̄ (6)

Eqs. (1)–(4) describe the propagation of the waves in a uniform two-dimensional steady flow. In this region any wave φ

can be written in the form

wφ = Aφ exp
[−i(ωt − kφ · x)

]
(7)

where Aφ represents the amplitude, ω the angular frequency and kφ the wave vector associated with the wave, which can
be expressed as a combination of the axial and circumferential components,

kφ · x = kx,φx + ky,φ y, with kx,φ = kφ cosνφ and ky,φ = kφ sinνφ (8)

where ν is the angle of the propagating wave, and k is the modulus of the wave vector k, as shown in Fig. 1. For simplicity,
the wave vector will be scaled with the mean sound speed and the frequency, giving the dimensionless wave vector, K =
kc̄/ω (with the mean sound speed c̄).

Eqs. (1)–(4) can be used to relate, for each wave, the wave vector with the angular frequency and the mean Mach
number.

2.1.1. Entropy wave
The entropy wave, ws = s′/C p , can be written in the wave form using Eq. (7) giving

ws = s′

C p
= As exp

[−i(ωt − ks · x)
]

(9)

Using Eq. (4), the dispersion equation reads

Ks M cos(νs − θ̄ ) − 1 = 0 (10)

The dispersion equation can be used to obtain the axial component of the wave vector (the propagation speed), as a
function of the circumferential component, the frequency and the mean flow Mach number and direction.

The entropy wave does not generate pressure or velocity perturbations, therefore, the fluctuation of primitive variables
(s′/C p , w ′/c̄, p′/γ p̄ and θ ′) generated by the entropy wave is⎧⎪⎪⎨

⎪⎪⎩
s′/C p

w ′/c̄
p′/γ p̄

θ ′

⎫⎪⎪⎬
⎪⎪⎭

s

=

⎧⎪⎪⎨
⎪⎪⎩

1
0
0
0

⎫⎪⎪⎬
⎪⎪⎭ ws (11)

2.1.2. Vorticity wave
The vorticity wave is written as

ξ ′ = ∂v ′

∂x
− ∂u′

∂ y
(12)

From Eqs. (2) and (3), the equation for the propagation of the vorticity wave reads

D

Dt

(
ξ ′) = 0 (13)

The dispersion equation for the vorticity wave is obtained as for the entropy wave, namely



134 I. Duran et al. / C. R. Mecanique 341 (2013) 131–140
K v M cos(νv − θ̄ ) − 1 = 0 (14)

To first order, no pressure or entropy fluctuations are associated to this wave. Using Eq. (4) it can be seen that there is
no density fluctuation. Eq. (1) can be reduced to

∂u′

∂x
+ ∂v ′

∂ y
= 0 (15)

and using the wave form of Eq. (7) for the vorticity wave, the resulting velocity field can be written as

u′

c̄
= −i

ξ ′

ω

sin(νv)

K v
,

v ′

c̄
= i

ξ ′

ω

cos(νv)

K v
(16)

Using Eq. (6) these fluctuations can be written in terms of w ′ and θ ′ , namely

w ′

c̄
= −i

ξ ′

ω

sin(νv − θ̄ )

K v
, θ ′ = i

ξ ′

ω

cos(νv − θ̄ )

M K v
(17)

Using the non-dimensional form of the vorticity wave, w v = ξ/ω, the fluctuations of the primitive variables generated
by this wave are

⎧⎪⎪⎨
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2.1.3. Acoustic waves
As entropy and vorticity fluctuations are described by independent fluctuations, the acoustic waves generate a pertur-

bated field which is irrotational and isentropic. Eqs. (1)–(4) can be combined to give the governing equation for the acoustic
perturbations

[(
D

Dt

)2

− c̄2
(

∂2

∂x2
+ ∂2

∂ y2

)](
p′

γ p̄

)
= 0 (19)

Using the waveform of Eq. (7) for the acoustic wave,

w± =
(

p′

γ p̄

)
±

= A± exp
[−i(ωt − k± · x)

]
(20)

the dispersion equation follows,

(
1 − K±M cos(ν± − θ̄ )

)2 − K 2± = 0 (21)

where K± is the module of the non-dimensional wave vector. As the acoustic dispersion equation has two solutions, the
subscript (±) stands for the acoustic perturbation propagating upwards (+) and downwards (−). The equation can be
written as a function of the axial and circumferential components (Kx and K y) using Eq. (8),

(1 − Kx,±M cos θ̄ − K y,±M sin θ̄ )2 − K 2
x,± − K 2

y,± = 0 (22)

When solving for Eq. (22), Kx can be either real or complex valued. The real values are acoustic waves propagating
without attenuation through the mean steady flow. Instead, complex values correspond to evanescent waves that cannot
propagate in the flow considered. Solving for Eq. (22) yields the condition

(1 − K y M sin θ̄ )2 − (
1 − M2 sin2 θ̄

)
K 2

y < 0 (23)

For a given mean flow, this relation gives a critical value of K y = c̄ky/ω. This shows that for any circumferential acoustic
mode ky there exists a cut-off frequency above which the acoustic waves will not propagate.

The fluctuation of primitive variables generated by the wave can be obtained from Eqs. (1)–(4) knowing that the wave is
isentropic,⎧⎪⎪⎨
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2.1.4. Transformation matrix
The primitive fluctuating variables are written as a function of the four waves in a matrix form by adding the contribution

of each wave, namely⎧⎪⎪⎨
⎪⎪⎩

s′/C p

w ′/c̄
p′/γ p̄

θ ′

⎫⎪⎪⎬
⎪⎪⎭ = [M] ·

⎧⎪⎪⎨
⎪⎪⎩

ws

w v

w+
w−

⎫⎪⎪⎬
⎪⎪⎭ (25)

where the matrix [M] is given by the combination of Eqs. (11), (18) and (24),

[M] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 −i sin(νv−θ̄ )
K v

K+ cos(ν+−θ̄ )

(1−K+M cos(ν+−θ̄ ))

K− cos(ν−−θ̄ )
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0 0 1 1
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K v M
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K− sin(ν−−θ̄ )
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⎤
⎥⎥⎥⎥⎦ (26)

2.2. Matching conditions through the blade row

Since the blade row is assumed to be axially compact, the upstream and downstream flow can be related through
matching conditions. These conditions are obtained using the mass, energy and entropy conservation. As energy is not
conserved through rotating blades, the study of the stator vane and of the rotor blade should be done separately.

2.2.1. Stator vane
For the stator vane the conservation equations used by Cumpsty and Marble read

(
ṁ′

ṁ

)
1
=

(
ṁ′

ṁ

)
2
,

(
T ′

t

Tt

)
1
=

(
T ′

t

Tt

)
2
,

(
s′

C p

)
1
=

(
s′

C p

)
2

(27)

These equations are completed with the Kutta condition at the outlet of the blade (θ ′
2 = 0), which can be written in a more

general form as

θ ′
2 = βθ ′

1 (28)

Subscripts 1 and 2 represent the flow upstream and downstream of the blade row as shown in Fig. 1. These equations
should be written as a function of the primitive variables chosen before (s′ , p′ , w ′ and θ ′). This gives

(
ṁ′

ṁ

)
= p′

γ p̄
+ 1

M

w ′

c̄
− θ ′ tan θ̄ (29)

(
T ′

t
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)
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1 + (γ − 1)

2
M2

[
(γ − 1)

p′

γ p̄
+ s′

C p
+ (γ − 1)M

w ′

c̄

]
(30)

Using Eqs. (27)–(28), and writing them as a function of the primitive variables using Eqs. (29)–(30), the jump conditions are
obtained, which may be written in a matrix form,

[E1] ·

⎧⎪⎪⎨
⎪⎪⎩

s′/C p

w ′/c̄
p′/γ p̄

θ ′

⎫⎪⎪⎬
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1
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⎧⎪⎪⎨
⎪⎪⎩

s′/C p
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θ ′

⎫⎪⎪⎬
⎪⎪⎭

2

(31)

with [E1] and [E2] defined as

[E1] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

−1 1
M1

1 − tan θ̄1

μ1
γ −1 μ1M1 μ1 0

0 0 0 β

⎤
⎥⎥⎥⎥⎦ , [E2] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
−1 1

M2
1 − tan θ̄2

μ2
γ −1 μ2M2 μ2 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (32)

where μ = 1/[1 + (γ − 1)M2/2].
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2.2.2. Rotor blade
For the rotor blade, the energy equation is no longer conserved through the interface. Instead, the rothalpy can be used

as a conserved variable through the turbomachine. The rothalpy is defined as

I = ht − U v (33)

where ht is the specific total enthalpy, U is the rotating speed of the blade and v is the circumferential component of
the absolute speed. For the rotating speed, a different value will be considered at the inlet and at the outlet for sake
of generality, though in most applications U1 = U2. The conservation of rothalpy can be easily shown using the energy
equation and the Euler equation for turbomachines, namely

�ht = τ = �(U v) = U2 · v2 − U1 · v1 (34)

Considering small perturbations, a generalized form of the energy equation can be written as

I ′1
Ī1

= I ′2
Ī2

(35)

with

I ′

Ī
= h′

t − U v ′

ht − U v̄
=

h′
t

ht
− U v̄

ht

v ′
v̄

1 − U v̄
ht

(36)

and defining the parameter ζ as

ζ = U v̄

ht
(37)

Eq. (36) can be re-written,

I ′

Ī
= 1

1 − ζ

[
T ′

t

T t
− ζ

(
1

M

w ′

c̄
+ θ ′

tan θ̄

)]
(38)

It can be seen that for U = 0, ζ = 0 and the conservation of the total temperature used for the stator is recovered.
Eq. (35) therefore replaces the second equation of Eq. (27) when considering rotating blades.

2.3. Solution of the equations

The matrix system is used to solve the problem imposing the correct boundary conditions. These are, in the subsonic
case, w+ , ws and w v at the inlet, and w− at the outlet of the blade row. The waves coming from the combustion chamber
must be first decomposed in modes K y and in frequencies ω. The propagation equations are solved for each pair (ky , ω).
For a given pair (ky , ω), the dispersion equations can be used to obtain the value of the wave vector K for each wave. Using
this information, the matrix M can then be calculated on both sides of the blade row.

For a single blade row, Eq. (31) can be written as a function of the waves using Eq. (25),

[E1] · [M1]︸ ︷︷ ︸
[B1]

·

⎧⎪⎪⎨
⎪⎪⎩

ws

w v

w+
w−

⎫⎪⎪⎬
⎪⎪⎭

1

= [E2] · [M2]︸ ︷︷ ︸
[B2]

·

⎧⎪⎪⎨
⎪⎪⎩

ws

w v

w+
w−

⎫⎪⎪⎬
⎪⎪⎭

2

(39)

The fourth column of matrices [B1] and [B2] should be permuted (and changed signs) in order to have a matrix system
with the imposed waves on the right hand side of the equations and the unknowns on the left hand side. The resulting
matrices, named [Ain] and [Aout] give the system of equations,

[Aout] ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ws
2

w v
2

w+
2

w−
1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= [Ain] ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ws
1

w v
1

w+
1

w−
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(40)

which can be inverted to obtain the out-coming waves.
For the case of multiple blades, the phase-shift of the waves through the blade-row spacing is taken into account. This

is done through the matrix [T], in which the diagonal terms are the phase-shift of the waves given by exp[+ikx,φ · L],
where L is the distance between rows and φ is the considered wave. Consider Vi

u and Vi
d the vector of waves upstream and

downstream the i-th blade row. Eq. (39) relates both sides through
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Fig. 2. Schema of the procedure of CHORUS to calculate the noise generated by the combustion chamber.

[
Bi

1

] · Vi
u = [

Bi
2

] · Vi
d (41)

The downstream vector of waves can be related to the following blade row through Vi+1
u = [Ti] · Vi

d . Combining the
successive stages of the considered turbine, a relation between the inlet and the outlet waves of the turbomachine can be
written in a matrix form and finally permuted to obtain a system of equations as in Eq. (40), which can be inverted to
obtain the out-coming waves.

3. Methodology of CHORUS

The method developed to compute combustion noise is based on LES of the combustion chamber, combined with an-
alytical methods to propagate the waves through the turbine stages and to obtain the acoustic power at the outlet of the
aero-engine as done in [8]. To combine the numerical simulations with the analytical model, a post-processing of the prim-
itive variables at the outlet of the combustion chamber has to be performed. The method can be divided in six steps as
shown in Fig. 2.

The primitive variables are first extracted from the LES at an outlet plane, at a distance of about one chord upstream
from the High Pressure Turbine. These primitive variables are, in a 3D configuration, p′ , s′ and w′ , which are then projected
in a polar coordinate system and averaged in the radial direction of the annular combustion chamber to obtain a two-
dimensional set of fluctuating primitive variables. An angular Fourier transform (FT) followed by a Fourier transform in the
time domain are performed to decompose the fluctuations in harmonic modes. The Welch method [9] is used to perform the
Fourier transform over time: the temporal signal is split in N segments with an overlapping region. This allows a smoothing
of the signal in the frequency domain. Using the dispersion equations for each wave (Eqs. (10), (14) and (22)), and Eq. (25)
the Cumpsty and Marble method described in Section 2 is then applied to obtain the waves at the outlet of the aero-engine.

4. Validation of the analytical model

The analytical model is based on two main hypotheses. First the blade geometry is considered to be two-dimensional.
Secondly, the model considers the blade spacing to be short and the blades to be axially compact compared to the wave-
length of the perturbations. This last hypothesis is the most restrictive and is valid for the low frequency range only. Even
though combustion noise is significant mainly at low frequencies, it is interesting to analyze the range of validity of the
model in a simple case. To do so, numerical methods will be used to simulate the propagation though a simple stator row.
A two-dimensional configuration will be used, neglecting therefore the possible three-dimensional effects.

In a first stage only plane waves are considered as shown in [7]. The numerical solver AVBP [2] is used to compute the
propagation of 2D waves through a simple stator vane and a rotor blade (shown in Fig. 3) separately. A third order in space
and fourth order in time scheme are used (TTG4A) to minimize dispersion and dissipation. A large turbulent Prandtl number
is used in order to minimize dissipation of entropy waves by the turbulent structures downstream of the rotor blade. The
mean Mach number of the rotor is illustrated in Fig. 4, showing an inlet Mach number of 0.653 and an outlet Mach number
of 0.36.

The pulsated waves are imposed using NSCBC boundary conditions (Poinsot and Lele [10]). Several discrete frequencies
are imposed in the same simulation. The pulsated wave follows the function

f (t) =
N∑

sin(2π f0kt) (42)

k=1
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Fig. 3. Sketch of the computational domain for the rotor.

Fig. 4. Mean Mach number through the rotor blades.

Fig. 5. Response of a stator vane to an acoustic perturbation at the inlet. Theory (—), simulation (•).

with N = 50 the number of frequencies pulsed and f0 = 100 Hz the fundamental frequency. The regions at the inlet and
at the outlet of the computational domain are used to perform the post-processing of the solutions and obtain the transfer
functions of the stator. The results are shown in Figs. 5 and 6, corresponding to the upstream and downstream propagating
acoustic waves generated by an acoustic and an entropy perturbation at the inlet respectively.

For the rotor, the results are shown in Figs. 7 and 8, where a downstream propagating acoustic wave is propagated
through the rotor.

Results show a good agreement for the low frequency range both for the stator and the rotor, except for the transmission
of acoustic waves through the rotor. Higher frequencies are less accurately predicted, though it is known that combustion
noise acts mostly in the low frequency range. In the case of the rotor, the transmission coefficient obtained numerically
differs from the analytical one.

5. Conclusions

A methodology to compute combustion noise has been implemented. The method, combining LES with analytical models,
allows the user to calculate the combustion-generated noise at the outlet of the aero-engine. The computed noise is the total
contribution of the different mechanisms generating combustion noise (direct and indirect), but the method differentiates
both mechanisms, making it possible to compute the contribution of each one separately. This makes it possible to compute
the contribution of each noise term in a real combustion-chamber configuration.
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Fig. 6. Response of a stator vane to an entropy perturbation. Theory (—), simulation (•).

Fig. 7. Response of a rotor blade to an acoustic perturbation. Theory (—), simulation (•).

Fig. 8. Response of a rotor blade to an entropy perturbation. Theory (—), simulation (•).



140 I. Duran et al. / C. R. Mecanique 341 (2013) 131–140
References

[1] F.E. Marble, S. Candel, Acoustic disturbances from gas nonuniformities convected through a nozzle, J. Sound Vib. 55 (1977) 225–243.
[2] T. Schønfeld, M. Rudgyard, Steady and unsteady flows simulations using the hybrid flow solver AVBP, AIAA J. 37 (11) (1999) 1378–1385.
[3] N.A. Cumpsty, F.E. Marble, The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise, Proc. R. Soc. Lond.

A 357 (1977) 323–344.
[4] F. Bake, C. Richter, B. Muhlbauer, N. Kings, I. Rohle, F. Thiele, B. Noll, The entropy wave generator (EWG): a reference case on entropy noise, J. Sound

Vib. (2009) 574–598.
[5] M. Leyko, F. Nicoud, T. Poinsot, Comparison of direct and indirect combustion noise mechanisms in a model combustor, AIAA J. 47 (11) (2009) 2709–

2716.
[6] M. Leyko, S. Moreau, F. Nicoud, T. Poinsot, Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock, J. Sound

Vib. 330 (16) (2011) 3944–3958, http://dx.doi.org/10.1016/j.jsv.2011.01.025.
[7] M. Leyko, S. Moreau, F. Nicoud, T. Poinsot, Waves transmission and generation in turbine stages in a combustion-noise framework, in: 16th AIAA/CEAS

AeroAcoustics Conference, 2010.
[8] M. Leyko, Mise en oeuvre et analyse de calculs aéroacoustiques de type SGE pour la prévision du bruit de chambres de combustion aéronautiques,

PhD thesis, INP Toulouse, 2010.
[9] D.G. Childers, Modern Spectrum Analysis, IEEE Press, 1978.

[10] T. Poinsot, S. Lele, Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys. 101 (1) (1992) 104–129.

http://dx.doi.org/10.1016/j.jsv.2011.01.025

	Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades
	1 Introduction
	2 Analytical model for the propagation of waves through a turbine
	2.1 Wave decomposition upstream and downstream of the blade row
	2.1.1 Entropy wave
	2.1.2 Vorticity wave
	2.1.3 Acoustic waves
	2.1.4 Transformation matrix

	2.2 Matching conditions through the blade row
	2.2.1 Stator vane
	2.2.2 Rotor blade

	2.3 Solution of the equations

	3 Methodology of CHORUS
	4 Validation of the analytical model
	5 Conclusions
	References


