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The Flame Describing Function (FDF) framework, developed for the nonlinear instability
analysis of combustors, has been validated more recently in a generic configuration
comprising an upstream manifold, an injection unit and a flame tube. This system featuring
a wide variety of dynamical phenomena, is used here to explore a new range of self-
sustained flame oscillations. Depending on the geometry, the system exhibits stable or
variable amplitude limit cycles. In the first case, oscillations have an essentially constant
amplitude and are well retrieved with the FDF framework, whereas in the second case,
limit cycles feature different types of amplitude unsteadiness and require some further
consideration. The present article is concerned with one type of unstable oscillation in
which a regular period modification occurs in the presence of two modes, leading to
frequency heterodyning. It is found from the FDF analysis that such oscillations sustained
by two modes may occur when there is an overlap between modes corresponding to super
and subcritical bifurcations. An additional condition which has to be fulfilled to obtain this
behavior is inferred from experiments.
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r é s u m é

La méthode de l’équivalent harmonique (FDF), développée pour l’analyse non-linéaire des
instabilités de combustion, a été récemment validée dans une configuration générique
comportant un élément d’alimentation, un dispositif d’injection et un tube à flamme.
Ce système caractérisé par des comportements dynamiques très variés, est utilisé pour
analyser une nouvelle gamme d’oscillations de flamme. Suivant la géométrie, le système
fait apparaître plusieurs types de cycles limites. Dans un premier cas, les oscillations ont
une amplitude approximativement constante. Dans un second cas, l’amplitude du cycle
limite varie de façon instationnaire. L’étude traite d’un régime d’oscillation de ce dernier
type impliquant deux modes et induisant une modification régulière de la période faisant
aussi apparaître un hétérodynage de fréquence. Cette situation peut être envisagée dans
le cadre de la méthode FDF lorsque les taux de croissance de deux modes, correspondant
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à des bifurcations supercritique et sous-critique, se chevauchent. Une deuxième condition
nécessaire à ce comportement est déduite à partir des expériences.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Dynamical flame modeling constitutes a key component in the prediction of thermo-acoustic oscillations. It has already
been shown that the flame response can be characterized with a Flame Transfer Function (FTF) and that this provides an
initial insight in the combustor dynamics. However, the oscillation time history and amplitude level cannot be deduced from
a linear analysis. In addition, it is well known that unstable combustion may occur even if the system is predicted to be
linearly stable. Issues in linear analysis are illustrated for example in the case of a generic unconfined flame configuration [1]
or in a more complex situation of a premixed turbulent combustor [2]. Data gathered in this last case are used to determine
unstable ranges of a gas turbine and predict staging effects. In general linear analysis provides indications on the unstable
range and reveals benefits of geometrical and operating parameter changes but it is also found that there is a gap between
instability prediction and experiments confirming that flame nonlinearity needs to be taken into account.

This point was recognized in early studies and most notably in the area of liquid rocket combustion instability. Studies
of unsteady ducted flames typical of afterburner configurations also indicated that nonlinearity was responsible for am-
plitude saturation observed in experiments [3]. It was shown in a simpler configuration that energy could be transferred
to harmonics as the amplitude of oscillation increased [4]. The flame nonlinearity was considered for example by Dowl-
ing [5] to explain the saturation of oscillations observed by Langhorne [6] in the case of a flame anchored on a central bluff
body placed in a ducted low-Mach-number premixed flow. The analysis relied on the Describing Function (DF) methodol-
ogy borrowed from control theory in combination with a representation of flame gain saturation when the flow reversed.
An improved kinematic model for the flame was later devised [7] and the describing function analysis was carried out
providing successful predictions of the unstable amplitude and frequency. The describing function also designated as the
“harmonic equivalent” is well suited to processes which are essentially linear but comprise a nonlinear component. It uses
a quasi-linear response function to define the nonlinear element by only considering the first harmonic component in the
output. It was shown more recently that a unified framework using a “Flame Describing Function” (FDF) [8] provides reli-
able predictions of frequency and amplitude of self-sustained combustion oscillations. This was demonstrated on a multiple
flame burner initially considered in [1]. The model accounts for the nonlinearities of the flame in both gain and phase.
It was shown that the FDF could be used to determine the growth rate of various modes of oscillation as a function of
amplitude. It was then possible to determine a bifurcation diagram providing the frequency and amplitude of the different
oscillations observed experimentally by changing the size of the feeding manifold. The experiment reported in [8] also re-
vealed hysteresis and triggering points which were well retrieved by calculations. More recently, the FDF method has been
used to determine the regimes of instability of a turbulent swirling flame [9] and predict the amplitude levels of limit
cycle oscillations. In this latter study, the bifurcation parameter was the flame tube but this configuration, characterized by
an upstream Helmholtz resonator, did not feature triggering or hysteresis. The FDF was used in [10] to predict triggering
in a generic system comprising an upstream manifold, a multiple injection system and a flame tube. It was also shown
that the frequency evolution with the amplitude could be retrieved. However, further examination of experimental results
indicated that certain parametric ranges were not well rendered with the FDF methodology. Problems arise when the limit
cycle amplitude cannot be considered constant but evolves as a function of time. In some cases the amplitude modulations
are irregular giving rise to “Galloping limit cycles” (GLCs), a term borrowed from civil engineering [11] to define cable os-
cillations with varying amplitude. In the present case the limit cycle amplitude is modulated in a more regular fashion and
the oscillation is sustained by two modes and will be designated in what follows as TMLC (Two Modes Limit Cycle). This
behavior was not observed in the unconfined situation investigated in [8] but TMLCs arise in the generic system considered
in the present study in a limited range of the bifurcation parameter.

In the analysis and calculation of thermo-acoustic coupling it is generally assumed that the amplitude and frequency
are fixed. It is known however that limit cycles are not always locked on an amplitude at a fixed frequency. This is for
example found in the premixed laboratory combustor used by Sterling [12] where quasi-periodic oscillations were identified
and linked to the interaction of two acoustic eigenmodes. More recent experimental investigations in a multiple flame
combustor equipped with a perforated plate comprising seven orifices have also revealed variable amplitude limit cycles
[13,14] which were uncovered by examining different combustion chamber lengths.

The present work complements our previous investigation of a multiple injection combustor [15]. It specifically deals
with TMLCs appearing in this system in which the multiple flame region is confined in a tube. This variable amplitude
oscillation state, which can be qualified as “buzzing-blown” combustion due to its auditive signature, is analyzed in the
special case where two different modes coexist. The test rig is briefly presented in Section 2. Experimental results are
reported in Section 3. The situation is examined with the FDF framework in Section 4. It is shown that TMLCs arise in
a region where the domains of instability of two modes overlap.
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Fig. 1. Experimental setup and diagnostic devices used to characterize self-sustained instabilities.

2. Burner geometry and operating conditions

The experimental setup used in the present work is sketched in Fig. 1. Except for a thickened perforated plate, it features
the elements used in our previous investigations [10,15]. An adjustable feeding manifold length L1 of diameter D1 = 0.07 m
allows injection of a methane/air mixture. This premixture flows through a piston used to change the feeding manifold
length L1 and delivers the fresh stream through a peripherically holed flat head. Flames are anchored on a perforated plate.
The thickness of this plate is l = 15 mm and there are N = 421 holes of diameter dp = 2 mm. A confinement tube of length
L2 = 0.10 m and diameter D2 = 0.13 m encloses the combustion region. Regimes of combustion are characterized at limit
cycle by means of velocity and pressure measurements. Heat release rate fluctuation is estimated by measuring free radicals
emissions. The mass flow rate is set here to ṁ = 4.71×10−3 kg s−1 for an equivalence ratio of φ = 1.03, providing a thermal
power of 13.3 kW. This flow induces a bulk velocity of Ub = 3.1 m s−1 in each perforated plate channel.

Three microphones are used for pressure measurements. The first one M1 is located 24.5 cm away from the burner axis.
The second M2 is connected to a waveguide which is plugged in the same section as a hot wire located 3 cm below the
perforated plate. Microphone M3 is also connected on a waveguide to scan the pressure evolution in the flame region. Free
radical light emission is measured by a photodiode equipped with an OH∗ filter. This sensor placed at a distance from the
flame tube collects the light radiated by the flame region.

Another set of experiments has been used to characterize the flame response subjected to harmonic velocity perturba-
tions of different amplitudes. The flow is excited by a loudspeaker placed at the bottom of the burner. It modulates the flow
from 0 to 1300 Hz in a relative amplitude range (urms/Ub) swept from 6 to 77% where Ub indicates the bulk flow velocity
in the perforation. Loudspeaker efficiency bounds the amplitude and frequency range covered in these experiments. Never-
theless, thanks to the forced flame response measurements and the burner self-sustained combustion oscillations, the flame
response is interpolated and extrapolated in missing areas. This flame response linked to a set of Flame Transfer Function
at different amplitudes is designated as the Flame Describing Function (FDF). It is defined as the ratio of the relative heat
release rate fluctuations to the relative velocity fluctuations:

F(ωr, urms/Ub) = Q̇ ′/ ¯̇Q
urms/Ub

= G(ωr, urms/Ub)eiϕ(ωr ,urms/Ub) (1)

where ωr indicates the angular forcing frequency and urms the root mean square velocity fluctuation measured by LDV at
0.7 mm above one hole of the perforated plate.

3. Experimental analysis

The system described in Section 2 is now used to obtain the bifurcation diagram of self-sustained combustion oscillations
for a confinement tube length L2 = 0.10 m by varying the feeding manifold length L1 between 0.11 m and 0.77 m. The
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Fig. 2. Frequency evolution by increasing the feeding manifold length L1 for the L2 = 0.10 m flame tube. The six first acoustic eigenmodes calculated
without an unsteady flame and different temperatures in each cavity are drawn with dashed lines. The feeding manifold temperature is fixed to T1 = 300 K,
while the flame tube is set to T2 = 900 K. Top graph (a) represents the main frequency appearing on the velocity signal spectrum (◦). Lower graph (b)
shows the other frequencies found in multiple frequency cases. Two black circles (•) are used in the case of sidebands frequencies (first band of variable
amplitude limit cycles) whereas only one circle shows the presence of another mode in the second multiple frequency band. The small arrows indicate the
lengths studied and mentioned in the text.

experimental exploration consists of increasing L1 by steps of 1 cm. Once the maximum extension has been reached the
length of the upstream manifold is reduced from L1 = 0.77 m to 0.11 m. Regimes of combustion oscillation are either stable
or unstable. In the unstable case, a frequency and amplitude are deduced from pressure, velocity and heat release rate
records. In the stable case, the flame does not oscillate and a low level of noise is mainly generated by the fresh stream
flowing into the duct.

Oscillatory combustion regimes present different types of limit cycles. One may distinguish two groups. The first features
stable oscillation amplitudes which have already been documented in previous articles [8–10,16]. In the second group, one
finds GLCs where the oscillation exhibits either regular or irregular envelope modulations. These modulations result from the
presence of multiple frequencies which are revealed by a spectral analysis of the signals. One surprising issue is that there
is some variability in the limit cycles. The sound signal which is perceived under such conditions has the general character
of a “buzzing” but with some irregular quasi-periodic low frequency modulations and it is designated as “buzzing-chugged”
combustion.

The configuration used in the present work with a short flame tube exhibits variable amplitude limit cycles in two ranges
of length L1. Fig. 2 shows the frequency evolution obtained by increasing the feeding manifold length L1 from 0.11 m to
0.77 m. Two graphs display the frequencies corresponding to the major components in the velocity spectrum for each
feeding manifold length L1. The upper graph (Fig. 2(a)) shows the main frequency of the limit cycle whereas the lower
graph (Fig. 2(b)) indicates the next most important spectral components in the multiple frequencies cases. When these
spectral components are close sidebands of the central frequency the two sideband frequencies are indicated. Otherwise,
the lower plot only shows the frequency of the second most important component. An examination of Fig. 2(b), indicates
the range of lengths L1 corresponding to TMLCs, which is embedded between L1 = 0.52 m and 0.64 m. As L1 is increased
from its initial value of 0.11 m, oscillations appear around the first mode and remain in the vicinity of this mode until
L1 = 0.15 m. The system then reaches a stable band from L1 = 0.16 m to 0.24 m. At L1 = 0.25 m the system features a new
unstable range around the second mode. This single mode oscillation persists until L1 = 0.51 m. A first range of variable
amplitude limit cycles is found for L1 = 0.40 m and 0.41 m. In this interval the signal is regularly modulated as shown
in Fig. 3, for L1 = 0.40 m. The pressure spectrum features two side peaks located near the main frequency. This side band
situation is marked by two black circle symbols plotted in Fig. 2(b). Phase space reconstruction provides some additional
insight on the oscillation behavior. The time series analysis [16] requires an embedding dimension de and an optimal time
delay τ which are then used to plot the trajectories in phase space. The “False Nearest Neighbours” method provides de .
As explained in [17], the time delay τ may be chosen by examining the signal autocorrelation function and finding the
time value where it drops to zero. For L1 = 0.40 m one finds τ = 7 periods of the sampling frequency ( f s = 16 384 Hz),
i.e. almost one quarter of the main frequency period found at 600 Hz. The embedding dimension is estimated to be de = 4.
It indicates the need to track the phase portrait in a four-dimensional space. Nevertheless, it would be difficult to follow
the trajectory in a such dimension. In this case, it is standard to consider a three-dimensional phase space. In addition,
the rate of “false neighbours” is not so high with de = 3. The “False Nearest Neighbours” technique relies on the points
evolution into the phase space when the dimension is progressively increased. When these points are “false neighbours”,
they move one from another with the increment. This gives a percentage of moving points decreasing along the dimension
growth. A rate of 10% is assumed to give the pattern exhibiting the proper dynamical behavior. In the present case, the use
of three dimensions is a compromise between the difficulty to read the phase space reconstruction of higher value and the
fact that the rate of false nearest neighbours falls to 20% when de = 3. One obtains a ring like structure confirming that the
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Fig. 3. Pressure evolution recorded by microphone M2 (top) for L2 = 0.10 m and L1 = 0.40 m. The spectrum (left) and phase space reconstruction (right)
are displayed below. Acoustic eigenmodes calculated without the flame but by assuming different temperatures in each cavity are drawn as vertical lines
below the pressure spectrum.

Fig. 4. Pressure evolution recorded by microphone M2 (top) for L2 = 0.10 m and L1 = 0.58 m. The spectrum (left) and phase space reconstruction (right)
are displayed below. Acoustic eigenmodes calculated without the flame but by assuming different temperatures in each cavity are drawn as vertical lines
below the pressure spectrum.

amplitude is modulated with a certain steadiness. This pattern features a flat ring which indicates that the frequencies of
the different amplitudes are close. In the case of big differences this ring would have not been flat.

Beyond L1 = 0.51 m, the third mode arises until L1 = 0.77 m. This oscillation features multiple frequencies for L1 =
0.52 m to 0.64 m as is well illustrated by analyzing the signal recorded for a particular value of L1 = 0.58 m belonging
to this range (Fig. 4). The pressure oscillates at a frequency corresponding to the third mode fm3 = 690 Hz. Its amplitude
is modulated with a period which is equal to three times that corresponding to the fundamental frequency fc = fm3. The
spectrum reveals the presence of modes 2 and 3. One also finds a low frequency at 234 Hz which corresponds to the differ-
ence between fm3 − fm2. In the present case this gives rise to a period tripling phenomenon observed in the pressure record
where one finds that three fundamental periods are necessary to recover the same signal value. Phase space reconstruction
is obtained with the methodology described previously. The embedding dimension de = 4 while the optimal time delay
τ = 6 periods of the sampling frequency f s , corresponding to 25.3% of the fm3 frequency period. A three-dimensional space
is used once more and the reconstruction exhibits three circular patterns corresponding to three amplitude levels induced
by the period tripling characterizing this case. The phase space reconstruction allows to confirm a different behavior in
comparison to the one analyzed before with L1 = 0.40 m. Indeed with L1 = 0.58 m, the circular patterns are not on the
same plane. It reveals that the frequency changes largely with the amplitude compared to the previous case. This analysis
is especially useful for the other lengths L1 where the spectrum is not always as clear as the one presented here. It allows
one to delineate different circular patterns and helps to clarify the system dynamics.

In a nutshell, this configuration exhibits stable and variable amplitude limit cycles. In the first band of unstable oscillation
amplitudes, between L1 = 0.40 m and 0.41 m, the signal is regularly modulated and this corresponds to the presence of
two side-peaks around the central frequency. In the second band pertaining to L1 = 0.52 m to 0.64 m, two modes are
simultaneously present and generate a frequency difference which in the range of observation produces a period tripling
phenomenon. The study is now focused on this second kind of limit cycles sustained by two modes (TMLCs).
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Fig. 5. Burner and symbol convention used for the analytical model.

4. Theoretical interpretation

It is natural to seek an explanation for oscillations of the type described previously. We focus on unstable oscillations
sustained by two modes which are probably the most commonly observed in practice. To this purpose we use the FDF
framework to determine the growth rates of specific modes of oscillation. The analysis relies on the nonlinear dispersion
relation derived by combining an acoustic network description of the system with a flame response represented by a family
of transfer functions corresponding to different amplitude levels (the Flame Describing Function).

The model of the system is sketched in Fig. 5. A reflection coefficient defines the inlet and outlet of the combustion
system. This can be represented as an acoustic network as in many studies of combustion instability (see [18,19]). A model
of the perforated plate, used to anchor small conical flames, is also considered with a dynamical relation adapted from
Melling [20] to link the pressure difference and the flow velocity in each channel. By considering boundary and matching
conditions of the upstream manifold and flame tube one obtains the following matrix:

⎛
⎜⎝

1 −|R1,0|eiφ1,0 0 0
0 0 |R2,L2 |eiφ2,L2 eik2 L2 −e−ik2 L2

A1eik1 L1 A2e−ik1 L1 −1 −1
Beik1 L1 −Be−ik1 L1 C1 C2

⎞
⎟⎠

⎛
⎜⎜⎝

A+
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A−
2

⎞
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where A1, A2, B, C1 and C2 correspond to:
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[
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rp
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]
, A2 = 1 − iωl
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[
1 + lν

rp
(1 + i)

]
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S2

ρ2c2

ρ1c1

[
1 +

(
T f

T1
− 1

)
Geiϕ

]

C1 = i

(
1 − S1

S2

)
tan(k2l) − 1, C2 = i

(
1 − S1

S2

)
tan(k2l) + 1

In this expression, |R1,0|exp(iφ1,0) and |R2,L2 |exp(iφ2,L2) pertain to the reflection coefficients at the burner inlet and
outlet. The FDF appears as G exp(iϕ) and T f denotes the flame temperature. The perforated plate used as a flame holder
is taken into account with a model due to Melling [20], where lν = (2ν/ω)1/2 stands for the thickness of the acoustic
boundary layer in each channel. The porosity appears as P = Nπr2

p/π R2
1 where rp and R1 respectively designate the

radius of a hole of the perforated plate and the one of the feeding manifold. Its surface area is noted S1 while the one
of the confinement tube corresponds to S2. The determinant of the system must vanish to obtain nontrivial solutions. This
provides a dispersion relation (DR) which depends nonlinearly on the amplitude in a way defined by the FDF. The complex
angular frequency ω = ωr + iωi solution of the DR gives the angular frequency ωr = 2π f and the growth rate ωi of the
oscillation. This solution is computed for each length L1 belonging to the experimental range. This calculation is carried out
for different amplitude levels and it is thus possible to follow the solution as a function of the amplitude. By considering all
the roots of the dispersion relation for a range of amplitudes and for each feeding manifold length L1, it is possible to plot
the bifurcation diagram shown in Fig. 6 which presents growth rate contours calculated for the first three eigenmodes. The
growth rates are displayed with three different colors corresponding to the first three modes as indicated at the top of the
figure. Contours plotted in the three domains provide the growth rates as a function of amplitude for each feeding manifold
length L1. When the growth rate vanishes ωi = 0 s−1 one obtains a boundary contour which possibly defines a limit cycle.
It is interesting to note at this point that there are regions where a single mode prevails and other regions where there is
a modal overlap. When there is an overlap one expects to find a more complex behavior than in the situation featuring an
isolated mode.



F. Boudy et al. / C. R. Mecanique 341 (2013) 181–190 187
Fig. 6. Growth rate evolution for the L2 = 0.10 m confinement tube and the sweeps of feeding manifold L1 from 0.11 m to 0.77 m. Three colors are used for
each eigenmode. The first is displayed in yellow, the second in blue and the third in red. Scale is given above to graph. Symbols correspond to experiments.
◦ stands for the first mode while � corresponds to the second one and � to the third. Gray triangle symbols depict the sum of the 2 modes values in the
multiple frequency band (L1 = 0.52 m to 0.64 m).

At this point it is useful to examine the experimentally observed amplitudes of oscillation. The first mode amplitudes
are displayed as open circle symbols (◦) while the second mode oscillation amplitudes appear as open square symbols (�).
The third mode is represented by open triangle symbols (�), but in the multiple frequency case it is first necessary to
separate the components corresponding to the different frequencies. This is accomplished by digital filtering of the record
by setting two bandpass filters around the two main frequencies appearing in the power spectrum. This signal filtering is
used to display the two modes amplitudes found in the multiple frequency range between L1 = 0.52 m and 0.64 m. It is
also interesting to calculate the sum of these two amplitudes without taking into account a possible phase shift. This defines
the maximum amplitude which can be reached when the two components are mixed. This amplitude is marked by gray
triangle symbols.

In the region where a single mode prevails one finds that the amplitude evolution observed experimentally by changing
the feeding manifold length L1 can be retrieved theoretically by reading this diagram. There is a reasonable match between
the experimental points and the amplitude found for a vanishing ωi . For these points one expects a stable amplitude limit
cycle which is indeed observed almost everywhere. The first branches of the oscillation amplitude, i.e. mode 1 and mode 2
between L1 = 0.1 m and 0.51 m, are well predicted. The last part between L1 = 0.65 m and 0.77 m is also fairly well
retrieved. There is however a small range of L1 between 0.40 and 0.41 m where the system features a central frequency
and two side bands giving rise to a modulated amplitude at limit cycle. It is possible to show that this particular behavior
is related to the dependence of the boundary reflection coefficient with respect to the amplitude level but this will not be
examined here. For the stable limit cycle cases the real part of ω provides the oscillation frequency corresponding to the
amplitude determined in the bifurcation diagram.

It is now interesting to examine the multiple frequency band between L1 = 0.52 m and 0.64 m. One may first consider
that the oscillation would behave as before and that the limit cycle would correspond to ωi = 0 s−1. If this were so, one
would expect a limit cycle around the second mode between L1 = 0.52 m and 0.58 m followed by a limit cycle around
the third mode between L1 = 0.58 m and 0.64 m. However, as observed in Fig. 4 for L1 = 0.58 m, the oscillation is not
locked on a single frequency. Pressure or velocity records feature two principal frequency components as observed in the
power spectrum. By filtering the pressure or velocity signals, one finds that modes 2 and 3 coexist both with a nearly
constant amplitude. One then finds that mode 3, represented by open triangle symbols (�), stands for 50% – or more –
of the expected oscillation amplitude at ωi = 0 s−1. This is found by processing the signal in the range L1 = 0.55 m to
0.62 m. Mode 2, represented by open square symbols (�), also appears in this range. Its amplitude is found to be equal
to the difference between the value calculated for the limit cycle at ωi = 0 s−1 and the amplitude of mode 3. One can see
in Fig. 6 that the combined amplitude of the two modes (gray triangle symbols) closely matches the limit cycle boundary.
This phenomenon appears in a case where mode 3 features a supercritical bifurcation (is linearly unstable) while mode 2
has a subcritical bifurcation and is nonlinearly unstable in the range of interest. There is an overlap region where mode 3
has a higher growth rate than mode 2. The third mode amplitude dominates that of the second mode but the third mode
does not take over and oscillations at the second mode frequency persist. There is a crossing point in amplitudes which
corresponds to coinciding growth rates of the two modes.

In addition to the growth rate ωi it is interesting to examine the corresponding values of the angular frequency ωr .
Fig. 7 displays the frequency calculated from the dispersion relation at the limit cycle amplitude predicted by reading the
bifurcation diagram. The frequencies are compared with experimental values plotted as symbols. Open circle symbols (◦)
correspond to the first mode frequencies while the second and the third modes are respectively displayed by means of open
square (�) and open triangle symbols (�). Predictions corresponding to ωi = 0 s−1 are plotted as dark bold lines, whereas
frequencies calculated in the multiple frequency cases are displayed as light gray bold lines. In this last condition, mode 2
and mode 3 frequencies are read at the amplitude where growth rates intersect.
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Fig. 7. Theoretical and experimental frequency at limit cycle. Open circle symbols (◦) are linked to the first mode while the second mode appears as open
square symbols (�) and the third mode as open triangle symbols (�). The dark bold lines represent predictions for ωi = 0 s−1 whereas the gray ones
correspond to the frequencies of the two modes limit cycles.

Fig. 8. Theoretical growth rate trajectories calculated with the FDF for the L2 = 0.10 m confinement tube and L1 = 0.45 m. The dashed line (- -) indicates
the second mode growth rates whereas the bold line (–) corresponds to the third mode.

The multiple frequency cases clearly arise from a combination of two modes. In addition one finds that the frequencies
mix and produce a signal with a difference frequency which is reminiscent of a similar situation found in wireless telecom-
munications where it is designated as frequency “heterodyning”. Heterodyning gives rise to the sum or difference of the
two original frequencies input in a nonlinear system. There are some theoretical calculations indicating the possibility of
double mode oscillations. For example, Culick and his co-workers [21], show that this can happen if two modes exist of
which one is stable and the other is unstable. This is only found for certain ranges of values of the growth rates but has
not been observed in the present experiments and the double mode of oscillation arises when some other conditions are
fulfilled as explained in what follows.

To predict the occurrence of multi-mode oscillations, it is natural to examine growth rate trajectories and derive condi-
tions which gives rise to this behavior. First, it is found that dual mode oscillations appear when there is a modal overlap
i.e. when the regions of positive growth rates of two modes intersect. A detailed examination reveals two types of overlap.
The first type corresponds to two linearly unstable modes as shown in Fig. 6 between L1 = 0.43 m and 0.48 m. In this case,
exemplified in Fig. 8 for L1 = 0.45 m, the second mode dominates over the whole amplitude range. By reading the bifurca-
tion diagram, one expects that the oscillation will be locked on the mode which has the highest growth rate. This is well
observed experimentally and in the corresponding range the second mode of oscillation prevails with an amplitude which
closely matches that determined from the FDF calculation. It is well verified in this case that the third mode does not arise
in the power spectrum. This kind of modal overlap has already been considered in previous calculations and experiments
which all confirm that the mode with the highest growth rate values is dominant. For example, in [15] two linearly unstable
modes exist for a short flame tube of 0.10 m and a feeding manifold length L1 between 0.28 m and 0.38 m (see Fig. 8 in
[15]). In this range, the second mode takes over and oscillations at the limit cycle correspond to a single frequency.

The second type of overlap is found in the present experiments when L1 > 0.48 m, in the range where the second mode
becomes nonlinearly unstable while the third mode is linearly unstable. In this range, the two modes are sustained. The
existence of linearly and nonlinearly unstable modes is a necessary condition for a dual mode of oscillation but this is not
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Fig. 9. Theoretical growth rate trajectories calculated with the FDF. The dashed line (- -) shows the second mode growth rate whereas the bold line (–)
corresponds to the third mode. (a) pertains to calculations from previous work [10] for L1 = 0.54 m and a confinement tube of L2 = 0.10 m. In this case,
the crossing of trajectories leads to a mode switching during the growth of oscillation. (b) is obtained from the present investigation at L1 = 0.52 m with
the L2 = 0.10 m confinement tube. Experiments reveal a dual mode oscillation. The first trajectory crossing ωi = 0 is indicated by means of a vertical line.
Gray arrows at this point represent the tangent lines and provide the signs of the slopes for the two modes.

sufficient. Indeed, previous experiments indicate that when this condition is verified the two modes do not always persist
simultaneously. In the unconfined geometry discussed in [8] and in the confined configuration explored in [10] it was found
that the oscillation begins at the third mode frequency and that as the amplitude increases mode switching takes place and
the second mode prevails. The final outcome is a limit cycle corresponding to a vanishing growth rate of the nonlinearly
unstable mode (ωi = 0 s−1). It is then necessary to find the additional condition which distinguishes situations where a
single mode takes over from that where the two modes are sustained. This is accomplished by examining the growth rate
trajectories obtained by plotting this quantity with respect to the amplitude of oscillation.

An example is given in Fig. 9 which shows two configurations where the trajectory of a linearly unstable mode (LUM)
crosses that of a nonlinearly unstable mode (NLUM). The first case examined in Fig. 9(a) corresponds to experiments re-
ported previously [10] in which mode switching was observed and predicted for different operating conditions. The second
case, shown in Fig. 9(b), pertains to the present investigation for L1 = 0.52 m. The amplitude level where the linearly un-
stable mode (LUM) trajectory crosses the horizontal axis ωi = 0 is plotted as a vertical bold line in these two diagrams.
Two arrows denote the tangent lines to the growth rate trajectories at this particular amplitude level designated as a0. In
the case shown in Fig. 9(a) which gives rise to mode switching, the slope of the third mode (LUM) growth rate is negative
while the slope of the second mode (NLUM) growth rate is positive:

(dωi3/da)a0 < 0 and (dωi2/da)a0 > 0 (3)

In contrast, when the two modes are simultaneously sustained, the growth rate slopes are both negative as illustrated in
Fig. 9(b):

(dωi3/da)a0 < 0 and (dωi2/da)a0 < 0 (4)

The present experiments indicate that when there is a modal overlap involving a linearly unstable mode (LUM) and a
nonlinearly unstable mode (NLUM) and when condition (4) is satisfied the oscillation takes place at the two frequencies. On
the other hand, when condition (3) is satisfied, mode switching takes place and the nonlinearly unstable mode prevails.

By applying the previous criterion it is possible to delineate the region where one expects oscillations at two modal
frequencies. This can be simply done by calculating the growth rate differentials with respect to the amplitude in the region
of modal overlap. The region where the criterion has to be satisfied appears in gray in Fig. 10. For L1 < 0.50 m the first
condition on the existence of linearly and nonlinearly unstable modes is not fulfilled. Condition (4) is satisfied for 0.50 �
L1 � 0.61 m and one expects to find a double mode oscillation. The boundaries of this range nearly match that found in the
experiment which is located between 0.52 m and 0.64 m. Except for this small difference due to uncertainties in the FDF
determination, the criterion stated previously suitably provides the range where two modes are sustained simultaneously.

In summary, it appears that double mode oscillations can be expected when a linearly and a nonlinearly unstable modes
overlap and when in addition condition (4) on the rates of change of the growth rates is satisfied.

5. Conclusion

Thermo-acoustic coupling is investigated in a generic combustion system featuring a feeding manifold, a multipoint
injector and a small length flame tube confining the combustion region. Two classes of limit cycle have been identified. The
first features a nearly stable oscillation amplitude, whereas the second shows an amplitude unsteadiness. These variations
are of different kinds. In the present experiment, two types arise indicating that TMLCs can occur in different parametric
ranges. The present study concentrates on a range of parameters where oscillations are sustained by two modes also giving
rise to frequency mixing. In this range the limit cycle is regularly distorted via a low frequency formed by heterodyning. It
is shown that such a process can be expected by examining FDF calculations. It is first observed that a nonlinear dispersion
relation including a flame describing function provides predicted amplitudes and frequencies which are in good agreement
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Fig. 10. Rates of change (slope) of the growth rates corresponding to mode 2 (dashed line - -) and mode 3 (bold line –). The calculation is carried out in
the region of overlap of the LUM and NLUM. Slope of each mode is determined at the amplitude where the linearly unstable mode (LUM) crosses ωi = 0.
Gray area indicates the lengths where dual mode oscillation has been found in the experiment.

with experimental values for stable limit cycle cases. In the TMLC cases, a double mode oscillation is shown to occur
when two conditions are fulfilled. The first condition is an overlap between a supercritical bifurcation mode (LUM) and
a subcritical bifurcation mode (NLUM). The second condition requires that the slopes of growth rate trajectories of these
two modes have negative signs at the point where the LUM would reach its limit cycle. In contrast when the signs of these
slopes are distinct, i.e. the slope of the NLUM growth rate is positive, mode switching takes place and a single mode prevails
at the limit cycle.
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