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In this article we review two classical bifurcation problems: the instability of an axisym-
metric floating body studied by Archimedes, 2300 years ago and the multiplicity of images
observed in curved mirrors, a problem which has been solved by Alhazen in the 11th cen-
tury. We will first introduce these problems in trying to keep some of the flavor of the
original analysis and then, we will show how they can be reduced to a question of ex-
tremal distances studied by Apollonius.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Symmetry breaking bifurcations have received a great deal of attention in the past decencies. Linked to the lost of
stability of a symmetric equilibrium, examples of bifurcations are found in many areas of physics and of other sciences. For a
long time, the study by L. Euler [1] of the buckling of a vertical elastic beam, was believed to be the first rigorous bifurcation
analysis. Surprisingly enough, recently, the nonlinear community [2] has rediscovered the second book of Archimedes on
floating bodies [3]. In the first book on floating bodies, Archimedes introduces his famous law of buoyancy. In the second
book, he is studying the stability of a paraboloid of revolution, floating in a fluid. For Joseph-Louis Lagranges: “This book
is one of the most striking monument of Archimedes genius. It contains the theory of stability of floating bodies to which
little was added by contemporary scientists”.

Bifurcations are closely related to the mathematics of singularities, as it was strongly emphasized by the works of
R. Thom on “Catastrophs”. Christian Huygens in his “Optics” was the first [4] to describe the singularities of light rays
and introduced the important concept of envelopes of families of curves. Envelop of the normals to a curve, its evolute, was
discovered, although not recognized as such, by the great geometer Apollonius in his fifth book on “conic” [5]. In this book,
he studied the minimum and maximum distances from arbitrary points to the curve. Extrema turn out to be normals to the
conic passing through the point. Apollonius finds that the number of extrema changes as a function of the position of the
point. For the French mathematician Michel Chasles, book V of Apollonius is “the monument of the genius of Apollonius . . .
one can recognize there the germ of the theory of the envelopes of normals to a conic”.

For centuries geometrical optics has been enough to describe correctly almost all optical phenomena. Optics prior to
the 11th century was mainly concerned with the problem of finding mirrors and lenses which will efficiently light a fire at
distance and the understanding of multiple images observed in a curved mirror. Geometrical optics constitutes a predilection
ground for the study of singularities of curves [6], particularly with the question of caustic [7] which turns out to be the
evolute of wavefronts. The first example of bifurcation in this domain is due to Ibn al-Haytham (Alhazen in Latin) [8,9].
Let M be a circular mirror in two dimension, A a point which represents the source and a point B which represents the
observer. The problem apparently set by Ptolemee and solved by Alhazen is the following: how many light rays go from A
to B with a single reflexion on M?
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Fig. 1. Geometry of the floating parabolic body.

In this article we will discuss the three problems of bifurcation: the stability, the vertical position of an axisymmetric
floating body, the Apollonius problem of the normals to a conic, and the “Alhazen billiard” problem. We will then show
that the two problems of physics, in hydrostatics and in optics, can be understood qualitatively and quantitatively using the
evolute of a particular curve, reducing them to a generalization of the problem of Apollonius.

2. The stability of floating bodies

Book II on floating bodies is concerned by the vertical stability of a segment of a paraboloid of revolution lighter than
the fluid in which it is immersed. This book is divided into 10 propositions. In Proposition 8 Archimedes gives the condition
of instability of the vertical position of the paraboloid and computes the angular value of the stable equilibrium position
as a function of two dimensionless parameters, the ratio of densities of the fluid and the solid and the ratio of the two
characteristic lengths of the paraboloid. In this section we reproduce the result of Archimedes, in the simpler case of a two
dimensional parabolic body.

Let R ST be a right segment of a parabola (see Fig. 1). In the Archimedes terminology, S is its vertex and ST its base.
SN , where N is the middle of RT , is called the axe of the segment. Let us also consider the oblique segment of the parabola
AC B . Its vertex C is defined as the point of the parallel of its base AB which “touches” the parabola, i.e. which is tangent
to the parabola. The axe of the oblique segment of parabola is C M where M is the middle of AB . Following Archimedes,
we will use two of his results.

(1) In the “Quadrature of the Parabola”, Archimedes shows that the surface of a parabolic segment ABC is equal to 4
3 of

the surface of the inscribed triangle ABC .
(2) In the book II “On Equilibrium of Planes”, Archimedes shows that the center of mass of the parabolic segment ABC , P ,

is such that C P = 3
5 C M .

In the following the right segment R ST represents the parabolic floating body whose density is ρp . The oblique segment
AC B represents the immersed part of the body, when its base AB does not cut the base RT (Archimedean condition).

The first condition for equilibrium is given by the Archimedes law (book I “On Floating Bodies”) which reads simply

ρ f S AC B = ρp S R ST

where S ABC stands for the surface of the parabolic segment ABC or the triangle ABC and ρ f is the density of the fluid. Let
H be the axe of the parabolic body and 2R its base. When the body is tilted by an angle θ , the abscissas of the extrema A
and B of the base of the immersed segment are then given by

Ax = −Rρ
1
3 + e

Bx = Rρ
1
3 + e

where e = R2

2H tan θ is the abscissa of M . This result ceases to be correct outside the interval [−θa, θa], where θa corresponds
to the tilt such that B coincides with T , tan(θa) = 2 H

R (1 − ρ1/3). The second condition for equilibrium is the cancellation of
the torque. It occurs when the center of thrust P is aligned on the same vertical with the center of mass G of the floating
body. The center of mass of the parabolic body is given by

G =
(

0,
3

5
H

)
and the center of mass of the immersed part G by

P =
(

e,
H

2
e2 + 3

Hρ
2
3

)

R 5
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Fig. 2. Bifurcation curve. The vertical position of the body is unstable above this curve.

Since AB represents the horizontal plane in the titled geometry, the condition simply reads

�P G. �AB = 0

Introducing the aspect ratio of the floating body η = H
R , the values of the equilibrium tilt read

p = 0, p± = ±
√

2

5

(
6η2(1 − ρ

2
3
) − 5

) 1
2

where p = tan θ represents the slope of the base. The tilted equilibria exist if

η > ηc =
(

5

6(1 − ρ
2
3 )

) 1
2

ηc(ρ) is an increasing monotonic function of ρ with a lower bound ηc(0) =
√

5
6 (see Fig. 2). When H <

√
5
6 R , θ = 0 is the

only possible equilibrium position of the body in the interval [−θa, θa]. The question of the stability reduces to the study of
the sign the restoring torque τ = �P G. �AB as a function of the tilt around the equilibria.

τ = pρ2/3 R2(2(6η2(1 − ρ2/3) − 5) − 5p2)

10η

Tilted equilibria are stable and their basins of attraction given by [−θa,0] for θ− and [0, θa] for θ+ when they exist and
[−θa, θa] for θ = 0 when they do not exist. The case where the floating body is upside down can be analyzed in the same
way.

In book II “On Floating Bodies”, Archimedes solves the stability problem in the case of paraboloid in Proposition 8 for the
body in normal position and in Proposition 9 when it is upside down, under the condition that the fluid does not touch the
base of the body. This restriction is due to the fact that, in the three dimensional case, the application of the Archimedes
law implies to find a solution which cannot be obtained by a compass and a ruler [2]. All the analysis relies on Euclid’s
Elements and his own results.

3. The Apollonius extremal distance problem

Apollonius was also a mathematician of the famous Alexandrian school whose works were probably done after the
death of Archimedes. He is known as the “great geometer”. His contribution to the theory of conic is considerable. He
wrote 8 books on conic [10–13], the last has been lost. Books V–VII, the most important and original, have been found in
Arabic language only. The first four books represent a compilation of what was known at that time on conic. In book V [5],
Apollonius solves what it can be called the “problem of extremum distance”. There the normals to the conic are studied
per se. This work has been considered by many mathematicians as a precursor of the theory of curvature developed later
by Huygens and Newton. It implicitly contains elements of the singularity theory. Let A be a point in the plane (see Fig. 3).
What points M on the conic correspond to the local extrema of the distance AM? Apollonius analyzes this question for
all types of conic and discovers a curve in the plane where, when the point A crosses it, the number of solutions to the
extremal distance problem changes from n to n − 2 (n = 4 for the ellipse and n = 3 for the parabola and the hyperbola).
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Fig. 3. Apollonius extremal lines. AN1, AN2 and AN3 are the extremal lines from the point A. N1 and N3 are minima while N2 is a maximum.

This curve turns out to be the envelope of the normals to the conic, or the evolute of the conic, i.e. the set of the centers
of curvature of the conic [6]. In the following we discuss the case of the parabola.

Let P be a parabola whose parametric equation is given by

x = s, y = s2

Let A = (X, Y ) be a point in the plane. The distance between A and an arbitrary point M = (x, x2) on the parabola is given
by

� = (
(X − s)2 + (

Y − s2)2) 1
2

Extrema of � are such that the derivative of � with respect to s vanishes.

�′ = d�

ds
= 2s(s2 − Y ) + (s − X)√

(s2 − Y )2 + (s − X)2
= 0

This condition leads to the cubic equation

Φ(s; X, Y ) ≡ 2s3 + (1 − 2Y )s − X = 0

In his analysis Apollonius first considers the case where the point A belongs to the axis of the conic. In our case A = (0, Y ).
The equation becomes

s
(
2s2 + 1 − 2Y

) = 0

In addition with the trivial solution s = 0, two other solutions exist when Y > 1
2

s± = ±
√

2Y − 1√
2

These non-symmetric solutions bifurcate from the symmetric one (s = 0) when Y = 1
2 . Are they maxima or minima? When

Y > 1
2 the only extremum is A S where S is the vertex of the parabola and it is clearly a minimum. The qualitative changes

not only break the symmetry but also lead to a change of the nature of the trivial extremum, which becomes a maximum,
with the appearance of two minima, symmetric one of the other.

When A is not on the axis, the equation is a general cubic equation which can have one or three real solutions. Two
solutions appear or disappear through a tangent bifurcation, i.e. when the cubic at the point where it vanishes has a
zero derivative, i.e. Φ ′ = 0. In the plane the two equations (Φ = 0 and Φ ′ = 0) lead to a curve X(s), Y (s), the locus of a
bifurcation where the number of extrema changes from 1 to 3.

X(s) = −4s3, Y (s) = 1

2

(
6s2 + 1

)
This curve, first studied by Huygens, is the semi-cubic parabola

y = 1

2
+ 3

4
(2x)

2
3

This curve turns out to be the locus of the center of curvature of the parabola (see Fig. 4). Let us also remark that the
equation �′ = 0 is equivalent to
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Fig. 4. Evolute of the parabola. From the point A, we search for the tangents to the evolute ( AT1, AT2, AT3). Ti ANi , for i = 1,2,3 are the normals. The
dashed line corresponds to the maximum. The circle centered in T with radius T N is the osculating circle at the point N .

�t. �AM = 0

where �t = (1,2s) is the vector tangent to the parabola. This shows that extrema of the distance are normals to the parabola.
Book V of Apollonius is indeed dealing with the general problem of normals. Before him minimal lines were used to
construct the tangents to the conic. Apollonius has a very different approach, considering the tangent as the limit of a
secant in book I. Thus he devotes book V to study not only minimal but also maximal lines.

The way that normals change as one moves along the curve is the key to understand its curvature. Let a general curve Γ

be given parametrically by

x = f (s), y = g(s)

and a point A = (X, Y ) not located on Γ . The equation which gives the extremal lines is then given by

Φ(s; X, Y ) = f ′( f − X) + g′(g − Y ) = 0

where f ′ and g′ are the derivatives of f and g respectively, showing explicitly that the extremal lines are normals of Γ . At
the bifurcation where the number of extrema changes, Φ ′ = 0. The resulting curve E , the envelope of the normals is given

x = f f ′′g′ − f f ′g′′ + f ′2 g′ + g′3

f ′′g′ − f ′g′′

y = −g f ′′g′ + f ′(gg′′ + g′2) + f ′3

f ′g′′ − f ′′g′

The distance R of the normal from the envelope E to the corresponding point of the curve Γ , given by

R = ( f ′2 + g′2)3/2

( f ′′g′ − f ′g′′)
is the radius of curvature of Γ . It shows that E is the locus of the centers of curvature of Γ . It is also called the evolute
of Γ .

4. Distorting mirrors

The ancients mathematicians were fascinated by the curved mirrors. On the one hand they realized that the curved
mirrors could light a fire at a distance and on the other hand they were puzzled by the deformation of their own image on
such mirrors. In the “Timée”, Platon describes the reversal of image when the curvature of the mirror is either horizontal
or vertical. His explanation relies on the visual rays emanating from the eyes which reflect on the surface of the mirror.
Although the physics of the visual rays is wrong, thanks to the principle of reversibility of light, its geometrical analysis
is correct. The theory of visual rays imposed itself until Alhazen. The question of the multiple images observed in curved
mirror can be reduced to the simple mathematical question of finding the rays which, from a point A, a punctual source,
pass by a given point B , the observer, after a single reflection on the mirror (see Fig. 5). This problem is also known as the
“Alhazen” billiard problem. For A and B given the problem reduces to a quartic equation, that Alhazen succeeds to solve
using the intersection of two conic sections, a circle and a hyperbola.

The mirror M is given by the parametric equation

M = (sin s,− cos s)
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Fig. 5. Geometry of the Alhazen problem.

Let A = (xA, y A) and B = (xB , yB). We first consider the simple case where A and B are on the same diameter (xA =
y A = 0) (see Fig. 5). A given ray AM reflects on the mirror and cut the vertical axe in B . From the figure we see that

s = (α + β)/2

and

tanα = H M

H A
, tanβ = H M

H B
, tan s = H M

HC
H M = sin s, H A = cos s + y A, H B = cos s + yB , HC = cos s

For s close to 0 we can linearize the previous expressions (Gauss paraxial approximation). It leads to the Descartes conjugacy
relation for a spherical mirror

1

1 + y A
+ 1

1 + yB
= 2

This relation allows us to compute yB for a given y A in the paraxial approximation. It does not solve the Alhazen problem
in which one searches for rays, that is values of s, for y A and yB given. For s close to zero, at the quadratic leading order
approximation (cos s = 1 − s2

2 + O (s4) and tan s = s + O (s3), tanα = α + O (α3), tan β = β + O (β3)), the Descartes relation
becomes

1

1 − s2

2 + y A

+ 1

1 − s2

2 + yB

= 2

1 − s2

2

or equivalently

(y A + yB)s2 = 2(y A + 2y A yB + yB)

This quadratic equation has solutions s±

s± = ±
√

2(y A + 2y A yB + yB)

(y A + yB)

which exist if yB > − y A
1+2y A+ and (y A + yB) > 0 or yB < − y A

1+2y A
for (y A + yB) < 0. The bifurcation occurs when yB = yc =

− y A
1+2y A

. When yB < yc , for (y A + yB) > 0, the only ray which solves the Alhazen problem, close to s = 0 is s = 0. When
yB > yc , for (y A + yB) > 0, two other solutions appear. They break the symmetry of the problem. From the observer B
three images of A are seen on the mirror (0, s−, s+). Bifurcation occurs when yB < yc , for (y A + yB) < 0. For paraxial rays
close to s = π , the critical value of yB is yc = − y A

1−2y A
.

When A and B are not on a same diameter, the problem reduces to a quartic equation. Alhazen and later Huygens
succeeded to construct the solution as the intersection of a hyperbola and the circle of the mirror. A′ = (x′

A, y′
A) and

B ′ = (x′
B , y′

B) (see Fig. 5) now represent the points inside the circle. To make the notation simpler, we will suppress the
prime on letters A′ and B ′ . We could let xA = 0 without loss of generality, but the price to pay is to get a formula which
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Fig. 6. The Alhazen–Huygens hyperbola and the solutions of the Alhazen problem for A = (−0.3,0.5) and B = (0.1,−0.6).

will not be unchanged when we permute A and B . We first solve the intermediate problem to find the curve M = (x, y)

such that MC bisects the angle AM B , for A, B and C given. For the moment C represents an arbitrary point situated
between A and B such that the angle AMC is smaller than the angle AM B . We have

tanα = x − xA

y − y A
, tanβ = x − xB

y − yB
, tan s = x

y

The condition of bisection, α+β = 2s, leads to the relation between x and y. After some elementary algebraic manipulations
we end up with the cubic equation(

y2 − x2)(xA yB + xB y A) + (
y2 + x2)(x(y A + yB) − y(xA + xB)

) + 2(xA xB − y A yB)xy = 0

The solutions of the Alhazen problem are then the intersections of this curve with the circle

x2 + y2 = 1

or equivalently the intersections of the circle with a hyperbola(
y2 − x2)(xA yB + xB y A) + 2(xA xB − y A yB)xy + x(y A + yB) − y(xA + xB) = 0

In the case where both A and B are on the y axis, the hyperbola is degenerated and becomes two lines x = 0 and y =
y A+yB
2y A yB

. The intersections of these lines with the circle give the solutions (see Fig. 6). The intersection with the vertical line
leads to s = 0 and s = π as expected. The intersection with the horizontal line exists if

−1 <
y A + yB

2y A yB
< 1

as shown before.
We next show that the floating body problem and the Alhazen problem can be reduced to the problem of finding the

normals of some curve and their envelope.

5. The metacentric curve: the evolute of the buoyancy curve

In the limit ρ = 0, the parabolic body floats at the fluid surface. This limit corresponds to a physical situation where
the body is lying on a hard and flat surface. The Archimedes thrust becomes, in that case, the reaction of the support. The
reaction is vertical, normal to the parabolic profile. At equilibrium, the center of mass of the body must be on a normal to
the parabola. The question of equilibria then reduces to the Apollonius problem. The parametric equation of the parabola
reads

M =
(

t,
H

R2
t2

)

The Cartesian equation of the envelope of the normals of the parabola is given by

y = R2

+ 3
(2H Rx)

2
3

2H 4H
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Fig. 7. A “floating body” in the limit ρ = 0. The object has been made by Jean-Luc Filippi.

Fig. 8. In red on the figure we have represented the buoyancy line. In blue, the envelope of the flotation line. From the center of mass G one looks for the
tangent to the evolute of the buoyancy line (T A). T AN is normal to the buoyancy line and represents the vertical direction at this equilibrium position. Its
perpendicular, tangent to the envelope of the flotation line AB represents the flotation line corresponding to this equilibrium.

If the parabolic body is not homogeneous, its center of mass is an arbitrary point G = (XG , YG). When G is above the
envelope of the normals, we do have three equilibria, one unstable, corresponding to the largest distance from the horizontal
plane and two others stable. Bifurcation occurs when the center of mass is on the evolute of the parabola (see Fig. 8). Below
the envelop we have a single, stable equilibrium. If the parabola is homogeneous, G = (0, 3

5 H). Stability is insured if the

center of mass is below the minimum of the semi-parabola yM = R2

2H , that is when η = H
R <

√
5
6 , as we have shown before.

This idea extends when ρ �= 0 (see Fig. 8), as was first shown by Bouguer [14], Euler [15] and more generally by Charles
Dupin [16]. The buoyancy center describes a curve as the parabolic body tilt(

e,
3

Hρ
2
3 + H

2
e2

)

5 R
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Fig. 9. Equilibria of the parabolic body for ρ = 0.34 and η = 1.4. The black curve represents the buoyancy line, the red curve represents the metacentric
curve and the blue line is the envelope of flotation. Ei and Fi represents the equilibria. We have explained the construction of one of the symmetry
breaking solution E+ . From the center of mass G one draws the tangent GT+ to the evolute of the metacentric curve. Its perpendicular, tangent to the
envelope of the flotation line, represents the actual flotation line AB for this equilibrium.

This curve is simply the floating body parabola translated vertically. We check that its tangent at point P (see Fig. 1) is
parallel to the flotation line by computing the slope of this curve, tan θ = 2eH

R2 . We conclude from this that equilibria are
such that the center of mass of the body should be on a normal of the buoyancy center line. This brings us back to the
problem of Apollonius. The envelope of the normals of the buoyancy center line, the so-called metacentric curve is then
given by the semi-cubic parabola

x = −4e3 H2

R4

y = 3e2 H

R2
+ 3

5
Hρ2/3 + R2

2H

Multiple solutions occur when the center of mass of the body is above the minimum of this curve yC = 3
5 Hρ2/3 + R2

2H , that
is when

H

R
>

√
6

5

√
1 − ρ2/3

as it was shown in the first section. Another curve of interest is the envelope of the flotation line(
e, Hρ2/3 + e2 H

R2

)

It also turns out to be the same parabola vertically shifted. The two envelopes are then used to graphically solve the problem
of equilibria of the floating body when the flotation line does not touch the base of the parabolic floating body. When the
body is not homogeneous, as it was assumed before, let G = (XG , YG) be its center of mass. From G we search for the
tangents to the metacentric curve. They correspond to equilibria and they indicate the vertical directions. The tangents of
the envelope of the flotation lines, normal to these directions, are then the actual flotation lines of the body at equilibrium.
A similar analysis can be done when the body is upside down, that is when its base is completely immersed. The buoyancy
line is again a parabola. When the flotation line touches the base, the buoyancy curve has a higher degree. The complete
buoyancy curve is a closed differentiable curve (see Fig. 9).

This previous analysis, summarized in Fig. 9, solves the problem for all inclinations of the body. P. Bouguer and L. Euler
introduced the basic idea of the metacenter but their theory was restricted to symmetric bodies and small inclinations.
Charles Dupin in 1822 gave a very general theory of the stability of arbitrary three dimensional body, by introducing the
surface of buoyancy and its evolute.
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Fig. 10. The mirror is drawn in blue, the orthotomic wavefront in red. We have sketched the construction of one ray (R1), solution of the Alhazen problem
for y A = 0.4.

6. The caustic: the evolute of the wavefront

The analogy between light and sound waves has been proposed by Robert Hooke in his “Micrographia” in 1665 [17]. In
particular he introduced there the important idea of wavefronts but he failed to explain the sine law. He indeed assumes
that the rays and the wavefront in the refracted medium make a particular angle, computed in order to satisfy the refraction
law and furthermore was led to suppose, as Descartes and Newton later, that the velocity of light was higher in the medium
denser than the air. In 1672 a Jesuit, Ignace-Gaston Pardies was able to show his works on refraction to Huygens [18].
Huygens wrote in his notes “Refraction, how explained by Pardies . . . compared with water waves . . . light travels in circles
and not instantaneously . . . This explanation fits the experiments on sines . . . ”. Pardies died in 1673 at the age of 39 and
his manuscript has been lost. In 1673 Huygens again expressed his admiration for Pardies treatise in a letter addressed
to Oldenburg, the secretary of the Royal Society. Huygens was indeed looking for a more general principle which would
naturally lead to the orthogonality of the wavefront and the rays in the refracted medium. Furthermore he was puzzled by
the phenomenon of double refraction, in which he knew that one of the two wavefronts was not orthogonal to the rays.
He discovers around 1677 that the wavefront at any instant conforms to the envelope of wavelets emanating from every
point on the wavefront at the prior instant. In the ordinary case the wavelets are ordinary spheres, while they are ellipsoids
of revolution in the case of extraordinary waves. Let w = (x(s), y(s)) be an ordinary wavefront in two dimensions and a
point B outside W . The problem to find the values of s which lead to rays passing through B reduces to the Apollonius
problem of extremal lines. It is obviously equivalent to the Fermat principle. Normals of the front which cross B are the
solutions searched. In order to solve the Alhazen problem, we need to know the wavefront generated by the reflection
on the mirror of a circular wave emitted by the source A. A very elegant solution to this problem has been proposed by
Adolphe Quetelet [19] in 1827. Consider a point M = (sin(s),− cos(s)) on the circular mirror and its tangent �t(s). The virtual
image of the point A on the mirror at point s is a point w(s) symmetric of A with respect of the tangent. As s varies, w(s)
describes a virtual wavefront of the reflected ordinary circular waves emitted by A. This curve is known, after Adolphe
Quetelet [19] as the orthotomic curve of the circle with respect to A.

�O W = �O A − 2
(
( �O A − �O M).n̂

)
n̂

where �O W = (x(s), y(s)), �O A = (xA, y A), �O M = (sin(s),− cos(s)) and n̂ is the normal n̂ = (− sin(s), cos(s)).
Without loss of generality we can choose xA = 0. The orthotomic of the circle with respect to A is given by (see Fig. 10),

x = 2
(
sin(s) + y A sin(2s)

)
y = 2

(
cos(s) + y A cos(2s)

)
The wavefront is a closed convex curve for |y A | < 1/2. It looses its convexity at s = 0 for negative y A and at s = π for
positive y A when |y A | > 1/2. Inflexion points of the wavefront then lead to the phenomenon of caustic at infinity (see
Fig. 11). The bifurcation set in the plane is given by the evolute of the wavefront
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Fig. 11. For y A = −0.4 the wavefront is convex. For y A = −0.8 it has inflection point which leads to caustic asymptotic to lines. This phenomena is well
known and has been terms as “caustic to infinity”. It occurs for example in the case of the rainbow formation.

Fig. 12. The Quetelet construction of the orthotomic.

x = y2
A(3 sin(s) − sin(3s))

2(1 + 2y2
A + 3y A cos(s))

y = −2y A + y2
A(3 cos(s) − cos(3s))

2(1 + 2y2
A + 3y A cos(s))

In the case of point B on the vertical axe, the bifurcation takes place for s ≈ 0 or s ≈ π . For s ≈ 0, a the leading order in s
the evolute becomes

x = O
(
s3)

y = − y A

2y A + 1
+ O

(
s2)

The bifurcation then occurs when yB = − 1+y A
2y A

. Similarly when s ≈ π , the bifurcation occurs for yB = − y A
1−2y A

. (See Fig. 12.)

7. Conclusion

We have reviewed in this article two classical physical bifurcation problems, the instability of axisymmetric floating
bodies and the multiplicity of the images seen in a curved mirror. We have tried to keep some flavors of the original works
although our analysis uses elementary calculus. We have shown that these problems could be reduced to the calculation of
the evolute of a particular curve, the buoyancy curve in the case of a floating body and a particular virtual wavefront in the
case of optics. The analogy between the two problems is related to their variational nature. In hydrostatics, at equilibrium,
the floating body extremalizes its potential energy. In optics, the rays which solve the Alhazen problem extremalize the
optical path.
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Fig. 13. Laurie Chiara is photographed in front of a hyperbolic mirror. We see its three images on the mirror. Note that the central image is reversed. On the
ground we clearly see two caustics. The yellow one is due to a light spot in the room. The white one is produced by the flash of the camera. The position
of Laurie inside the white caustic explains the existence of the three images.
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