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The theory of vegetation patterns presented rests on two hypotheses: (i) the self-
organization hypothesis that attributes their cause to interactions intrinsic to vegetation
dynamics; (ii) the complementary self-assembly hypothesis that attributes their large spatial
scale to the proximity of their dynamical conditions with a critical point. A non-local
version of the F–KPP equation allows us to formulate these hypotheses in terms of
individual plant properties. Both general and parsimonious, this formulation is strictly
quantitative. It only relies on structural parameters that can be measured with precision
in the field. Quantitative interpretation of observations and of the predictions provided by
the theory is illustrated by an analysis of the periodic patterns found in some Sub-Sahelian
regions.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Avant-propos

C’est une des conférences de Paul Clavin à Bruxelles, événements scientifiques et humains toujours mémorables, qui
nous a fait connaître l’équation F–KPP, ou équation de Fisher–Kolmogorov, Petrovsky, Piscounov, comme paradigme des ondes
chimiques et des fronts de flamme [1,2]. Introduit initialement en dynamique de population, c’est dans son domaine d’o-
rigine qu’on retrouvera ici ce paradigme, mais sous une forme non-locale. Cette formulation, comme sa version classique,
combine simplicité et puissance explicative. L’image riche et clarifiée qu’elle renvoie des phénomènes d’auto-organisation de
la végétation, se révèle aussi prédictive et quantitative.

1. Introduction

When in 1950, he discovered the first known vegetation patterns (cf. Fig. 1), Macfadyen concluded in regard to their
origin as follows:

“The study of the first two patterns, of which I have been able to find no previous recognition, is not conveniently pigeon-holed
under any one accepted branch of knowledge, and the phenomena are thus awkward to classify. They are manifestly within the
province of botany and ecology; the essential background concerns geomorphology and meteorology; the causes as I believe, must
be investigated by physics and mathematics.”

At the time, this was a profoundly insightful statement. The first investigation by mathematics however, a computer
simulation based on a cellular automata model, only appeared after forty five years [4]. Two years later, suggested by the
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Fig. 1. Vegetation bands and arcs discovered by Macfadyen (British Somaliland, 1950) [3]. Width of vegetated bands: 70 m; width of bare soil bands: 300 m.

F–KPP paradigm and the self-organization hypothesis, a time and space continuous evolution equation modeling the non-local
interactions specific of vegetation communities was proposed [5]. Its study showed that pattern formation could originate
from interactions intrinsic to the vegetation dynamics, so-called facilitation and competition, rather than from extrinsic,
environmental causes considered plausible at the time. By now, this prediction has been vindicated by numerous field
investigations.

That the gap in time separating the discovery and first theoretical studies of vegetation patterns was so large, is
somewhat surprising. At least in part, it reflects a prudent mistrust, widespread in the field of vegetation ecology, for
mathematical treatments, the simplifications that these treatments require and the interpretations deduced from them. This
is a domain where the notion of system is fuzzy, where phenomena are interconnected and cannot easily be pulled apart,
where mathematics and modeling are weakly constrained by fundamental physical principles. The idealizations that models
propose are thus easy to put into question if there is a lack of quantitative confrontation with reliable field data. On the
other hand, population behaviors, and vegetation patterns in particular, are non-linear phenomena. There is little chance in
succeeding, only by field observations and/or hopefully clever intuitive reasonings, to understand, even only qualitatively,
the spectrum of observed behaviors or possible phenomena. Mathematics and modeling are for such exploration indispens-
able. In fact, they constitute the only dependable tools available. Our aim below is not to present the non-local F–KPP theory
as an ultimate truth but to show that its predictions are as close an approximation to the truth as needed within the limit
of what quantitative measurements on the terrain have been able to establish.

2. Self-organization, non-local F–KPP equations and the modeling of interactions dependence upon plant structure

The number of models associating vegetation patterns and self-organization has now multiplied. Often, quite different
phenomenology and treatments are adopted. They may be broken up into three categories1:

(i) The non-local F–KPP approach: it focuses on the relationship between the structure of individual plants and the
facilitation–competition interactions existing within plant communities. The biomass density is defined at the indi-
vidual plant level; the modeling calls for no other state variable [5–7].

(ii) The reaction–diffusion approach: it emphasizes the influence on vegetation patches of water transport by below ground
diffusion and/or above ground run-off. The biomass density is defined at the patch level. Together with the water
concentration below ground and/or in some surface ground layer, it constitutes the set of state variables [8–13].

(iii) The stochastic approach: it focuses on the “constructive” role of environmental randomness as a source of noise induced
symmetry breaking transitions triggering pattern formation. These transitions occur when the variance of environmental
noise increases while its average value remains constant [14,15].

It is beyond our scope to further compare these three approaches and the models proposed within the framework of each
of them. We want to take stock of the first one, the non-local F–KPP approach. Its spirit strives to be both general and
parsimonious in view to lend itself to mathematical analysis. Its ambition is to furnish transparent expressions that describe
how the spatial organization of plant communities depends on simple plant characteristics, like the crown and rhizosphere
size, and to provide in this way both theoretical insight and testable predictions.

1 The literature mentioned is meant to point out research direction choices and is in no way exhaustive.
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Fig. 2. (a) Sub-Sahelian periodic gapped landscape of bare spots distant from approximately 50 m (South-West Niger, shrub species Combretum micranthum
G. Don). The average crown radius is approximately 1.75 m. (b) Excavated rhizosphere. Roots penetrate to ca. 40 cm depth but their spread can exceed the
crown radius by one order of magnitude (reproduced from [16]).

To introduce non-local F–KPP equations and define notations, let us first write the classical (local version) F–KPP equation
of population dynamics in a slightly more general way than usual by adding the linear term −μb(r, t) to its right-hand side;
b(r, t) represents the population density at a given point in space r and time t , μ is the population loss/gain ratio, i.e., the
quotient of the biomass density characteristic decay rate divided by its characteristic growth rate (doubling time). In terms
of normalized variables, it then reads:

∂tb(r, t) = b(r, t)
[
1 − b(r, t)

] − μb(r, t) + ∇2b(r, t) (1)

The first term, on the right-hand side, expresses that local growth only depends upon local population density: it is ex-
ponential when density is low (cf. first factor) and vanishes at high density when resources are consumed as rapidly as
renewed (cf. second logistic factor). The Laplacian on the right-hand side, amounts to admit that the individuals of the
population are animals whose displacements are a simple random walk (Brownian motion).

We consider communities within which, as shown in Fig. 2, and as it is often the case in drylands, a single species ac-
counts for most of the biomass. Being interested in stationary in time, periodic in space, non-uniform biomass distributions,
the major ingredient that needs to be incorporated in (1) is the modeling of non-local interactions that plants exert up to
some effective distance from the point at which they are located: when confronted with drought, they strive to increase
their water resources by spreading their roots over a greater territory. Fig. 2(b) is an example showing that in a shallow
soil context, this lateral spread may extend beyond the radius of the aerial structure (crown) by an order of magnitude. In
terms of structural plasticity, this is an extraordinary performance. However, whereas the lateral expansion of the roots al-
lows for greater water uptake, it significantly increases the degree of competition between neighboring plants. This modifies
the natural balance between competition and the positive facilitation feedback which favors vegetation development by the
accumulation of nutrients in the neighborhood of the plants, the reciprocal sheltering of neighboring plants against climatic
harshness, and the provision of shade, which improves the water budget in the soil [17,18]. Keeping unmodified the formal
mathematical structure of (1), we rewrite it as

∂

∂t
b(r, t) = f1(1 − f2) − μ f3 +

∫
ΦD

(∣∣r′∣∣2
/L2

D

)
b
(
r + r′, t

)
dr′ (2)

where the f i , with i = 1,2,3, are positive functions expressing how the vegetation distribution near the locus r influences,
at this point, the processes of growth ( f1), resource uptake ( f2), and population loss ( f3). The integral with a Gaussian
kernel ΦD is a source term meant to represent more realistically than a Laplacian the biomass gains due to seed dispersion
and germination. Plants and seeds do not walk randomly. More respect should be paid to this fact, in spite of the desire for
idealization and mathematical simplicity.2 Before we further precise the terms appearing in (2), two other important points
should be mentioned.

First, let us emphasize that the biomass density b(r, t) refers to individual plants rather than to vegetation patches. The
surface element S on which this density is defined, supposed to be uniform for that definition to make sense, is of the
order of magnitude of the size of a mature plant. It should be kept in mind, that when the biomass density at a given
point r tends to zero or one, the probability that the surface element S centered on r be occupied by a mature plant tends
to zero or one. The effective radius La of S is in general much smaller than the characteristic length of vegetated patches.
Feedbacks between neighboring space domains of size S concern thus in the first place mature plant-to-plant interactions.

2 This remark applies as well to the integro-differential modeling of propagation adopted in [7] as to the straightforward Laplacian modelings adopted in
most reaction–diffusion approaches devoted to vegetation patterns.
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Allowing for self-feedback effects, especially for self-competition, seems a questionable idealization from a biological point
of view. How its elimination at the level of surface element S can be implemented, and the impact that this elimination
has, is the object of Section 5 devoted to the modeling of competition void domains.

Second, in Eq. (2), a priori, there are three distinct processes where plant-to-plant interactions could appear. Only two
kinds of interactions however come into play, facilitation and competition. The distance at which competition effectively
operates is of the order of rhizosphere size. It inhibits vegetation development, and in accord with well known conditions
that must be met for the self-organization hypothesis to be plausible, thus operates at a distance considerably greater than
the positive facilitation feedbacks mediated by the crown. This fact however does not determine which of the three functions
f i is associated with facilitation, which is associated with competition and which, since only two feedbacks are involved, can,
without significant loss, be put equal to b(r, t), i.e., its value in F–KPP equation (1). Mathematically, six cases are possible.
Considering them in detail would be tedious; not all of them are plausible from a biological point of view; furthermore, for
some of them, pattern formation is anyway always impossible. It is sufficient for the following to mention two cases that
have been the object of theoretical studies previously and that, interestingly, describe different biological situations. Let us
call them the weak competition case and the aggressive competition case.3 Facilitation is modeled by f1 in both cases, meaning
that it enhances biomass growth. In the weak case, competition inhibits the uptake of resources, it concerns f2, but has no
influence on biomass loss, i.e., plant mortality. In the aggressive case on the contrary, competition concerns f3, operates by
enhancing plant mortality and leaves resource uptake unaffected. Presenting these situations as separate alternatives may
be an idealization. Reality could be somewhere in between so that competition influences both resource uptake and plant
mortality. It turns however out that weak competition better than aggressive competition explains recent field data on the
variation of patterns wavelength with aridity, an aspect that will be the subject of a separate publication. In Section 3 and
following, we shall therefore focus our discussion on the weak competition case,

∂

∂t
b(r, t) = f1(1 − f2) − μb(r, t) +

∫
ΦD

(
r′)b

(
r + r′, t

)
dr′ (3)

that associates facilitation and competition, respectively with f1 and f2.
The first two terms of Eq. (3) correspond to the mathematical structure considered in the first model studied [5]. Beside

the addition of the integral term, further elaboration however is indispensable. As before, we represent in f1 and f2 the
effect of interactions by a mean-field integral of the biomass density distribution,

f i = f i

(
b(r, t),

∫
wi

(∣∣r′∣∣/Li
)
b
(
r + r′, t

)
dr′

)
, i = 1,2 (4)

whose kernel wi(r′/Li) decreases with distance. But we no longer admit that the parameters L1 and L2 controlling this
decrease are constant. This simplification neglects their variation in the course of plant development and turns out to be too
crude (for a more detailed discussion see [7]). The most convenient remedy, which avoids the complication of introducing
supplementary variables, is to represent the age classes of the community, by putting

Li = L0
i b

(
r + r′, t

)p
, i = 1,2 (5)

where p is a positive constant. This allometric ansatz has already been used [13,7]. It expresses in a simple manner that
wide-ranging interactions are due to mature plants whose presence at a given point is unlikely if its biomass density tends
to zero. The contribution of such points in the integral of (4) is negligible.

A simple guess for f i would be its immediate identification with the mean-field integral, i.e., to put

f i =
∫

wi
(∣∣r′∣∣/Li

)
b
(
r + r′, t

)
dr′ (6)

It is hoverer easy to show [5] (at least for Gaussian or exponential kernels) that plugging this, still linear, expression in
(3) cannot give rise to the spatial structures we are looking for. The functions f i , or at least one of them, must be non-
linear with respect to the density. Replacing in (6), b(r + r′, t) by b(r + r′, t) + Λb(r + r′, t)2 is a possibility. Its price is
the introduction of a “cooperativity” parameter, Λ, not directly accessible to measurement. This drawback is avoided in the
modeling below, where all parameters, i.e., p, L0

1, L0
2, are accessible by simple measurements concerning directly individual

plant structure [19].
Since f1, f2 must be positive definite functions, that one of them must be non-linear and that environmental conditions

are supposed isotropic, we set

f1 = b(r, t)
1

2π
exp

(∫
w1

(∣∣r′∣∣/L1
)
b
(
r + r′, t

)
dr′

)
(7)

f2 =
∫

w2(|r′|/L2)b(r + r′, t)dr′∫
w2(|r′|/L2)dr′ (8)

3 This terminology was not used before; it is meant to draw attention here to a distinction that becomes more important in the light of recent data.
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and let L1 and L2 be given by (5). In agreement with field determinations [19], we assume that the kernels wi are expo-
nentially decreasing functions of r′:

wi
(∣∣r′∣∣/L1

) = exp
(−∣∣r′∣∣/Li

)
, i = 1,2 (9)

For uniform vegetation distributions Eqs. (7), (8) simply become

f1 = b(t)exp
[
L02

1 b(t)(2p+1)
]
, f2 = b(t) (10)

When the uniform mean-field density b(t) is small, mature plants are on the average too far apart to interact, the influence
of small (young) plants being essentially negligible, both f1 and f2 tend towards their value in the absence of interac-
tions, i.e., b(t) as in the classical F–KPP equation. When the mean-field density increases so that mature plants get close,
interactions become important, but the averaging effect of integration cancels out the long range interactions associated
with competition; the uniform mean field f2 = b(t) is unaffected by their presence. For facilitation, on the contrary, whose
operation range is small, the averaging effect of integration is less efficient so that the uniform mean-field expression of f1
still keeps the trace of the existence of interactions.

Let us take the radius La of S as space unit, define the dimensionless parameters:

e1 = L0
1/La, e2 = L0

2/La, σ = LD/La, ε = (
L0

1/L0
2

)2
(11)

and put the kernel of the source term in (3) equal to the Gaussian function

ΦD
(∣∣r′∣∣2

/σ 2) = d

π
exp

(−∣∣r′∣∣2
/σ 2) (12)

where d is a constant. Using expressions (7)–(12), putting μ̃ = μ−dσ 2, Eq. (3) then becomes, for spatially uniform systems:

d

dt
b(t) = b(t)

[
1 − b(t)

]
exp

(
e2

1b(t)2p+1) − μ̃b(t) (13)

The stationary states of (13), representing uniform vegetation covers, are (i) the bare soil state b0 = 0, and (ii) the curve
b ∈ [0,1] solution of

μ̃ = (1 − b)exp
(
e2

1b2p+1) (14)

Let us remark in passing that if one puts d = 0 and e2
1 = Λ, the loss/gain ratio μ̃ becomes μ̃ = μ, and (13), (14) become

the evolution and stationary states equations of uniform systems in the aggressive competition case.4

3. Vegetation critical point and the complementary self-assembly hypothesis

In Fig. 3(a), the stationary states of (14) are plotted in terms of μ̃ for p = 0. In Fig. 3(b), p = 1/3, is the value determined
by field measurements for the patterns of Fig. 2(a). It is noteworthy that whatever e1 and p, all curves b cross the bifurcation
point (b = 0,μ − dσ 2 = 1) where the bare soil solution b0 changes stability. At this point, if p = 0, the slope dbs/dμ̃ varies
with e1 while it is independent from e1 if p = 1/3. In fact, for any p > 0, it is equal to the slope equal to −1 of the (green)
straight line bs = 1 − μ̃ representing communities without interactions (e1 = 0). Biologically, this makes sense because as
b tends to zero, vegetation becomes sparsely distributed, mature plants are rare and, hence, interactions become negligible.
Facilitation then has no effective influence. It is therefore clear that hysteresis, if it appears, should do so via a critical point
corresponding to a density bc that lies above the abscissa axis b = 0, and not via a transcritical bifurcation point located
on the abscissa axis b = 0. For p = 0, the slope of the curve b at its intersection with b = 0 (bare soil) is negative when
e1 < e1c , infinite for e1 = e1c and positive for e1 > e1c . In other words, when p = 0, hysteresis appears on the abscissa axis
under conditions where the biomass density is zero, where, as mentioned, interactions are non-existent and where edaphic
dependent parameters, like μ, should not influence dynamics. One can only conclude from this that setting p = 0 is a crude
approximation to be avoided. This is certainly so at low biomass density, like in the course of a desertification process. The
existence of age classes inside the community plays then a role that can no longer be overlooked.

In (b, e1, μ̃)-space, the coordinates of the critical point are:

bc = 2p

1 + 2p
, e1c = 1

bp
c
, μ̃c = bcebc

2p
(15)

This result is in fact the central, prediction of the approach of vegetation patterns based on the non-local F–KPP equation.
A first important aspect of (15) is practical and immediately evident: the sole knowledge of the allometric constant p

4 With a redefined dimensionless time scale, which is of no importance as far as uniform stationary states are concerned.
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Fig. 3. Uniform stationary solutions (14) vs μ̃ for the values of e1 and p indicated. (For interpretation of the references to color, the reader is referred to
the web version of this article.)

Fig. 4. Eigenvalues of Fourier modes as a function of k for p = 1/3, d = 0 and the values of ε indicated.

suffices to evaluate the coordinates (15). This phenomenological dimensionless constant integrates numerous functional
processes, couplings and environmental edaphic influences. It constitutes their combined, global expression at the level
of plant development. A more complete, more detailed description of these intricate interconnections rapidly becomes
impenetrable to any feasible mathematical analysis. Furthermore, from the point of view of experimental measurements,
quite a number of pertinent factors are probably still unknown, poorly identified and/or extremely difficult to quantify on
the terrain. Evaluating the allometric constant p, though it may require arduous work under difficult terrain conditions,
is in comparison technically simple and, as we shall show in the next section, yields unambiguous, remarkably predictive
information.

But there is a second even more important property of (15) that is specific of the non-local F–KPP equation in the weak
competition case. It is illustrated by Fig. 4 that summarizes the linear stability properties of the critical point (15) with
respect to the Fourier modes of an arbitrary infinitesimal fluctuation (cf. (A.2)). One sees that at

ε = εsa ≡ 1 + 2p

1 + 4p
(16)

i.e., for ε = 5/7 ≈ 0.714 when p = 1/3 and in the absence of seed dispersion (d = 0), the critical point becomes a point of
tri-marginal stability where two unstable space periodic modes coalesce at the same time that their wave number vanishes.
In other words, for all ε < εsa there exists a finite band of unstable modes whose lower cut-off is k = 0. Assuming that
the intrinsic dynamics of vegetation patterns proceeds close to this point is the complementary self-assembly hypothesis.5 It
is complementary to the self-organization hypothesis because it solves the most puzzling property of vegetation patterns,
namely, that their characteristic length (wavelength) is in general orders of magnitude larger than the size of a plant. What
makes the critical point (15) and Eq. (3) especially interesting in that respect, as we shall see in the next section, is that
there is no need therefore to introduce other parameters than those already defined so far.

5 It may be called that way because physically it amounts to assuming that vegetation patterning can be understood as being an aggregative phase
transition in which vegetated domains and bare soil separate like two fluids that become immiscible (cf. [7] for a more complete discussion).
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Fig. 5. Crown radius histogram: number of plants as a function of crown size for 750 individuals of C. micranthum above 1.5 m height measured in a plot
of 0.4 ha representative of the Niger site seen in Fig. 2 (reproduced from [16]).

4. Interpretation and predictions in terms of plants structural parameters

Let us explain the method of quantification applied on the representative Sub-Sahelian gapped pattern of Fig. 2(a).
Reliable data that suit the theory presented above are available for that system. They establish that the structure and devel-
opment of the crown and rhizosphere of Combretum micranthum nicely fit with the assumption that interactions decrease
exponentially with distance. Measurements of the pertinent structural parameters furnish the values [19]:

p ≈ 1/3, L0
1 ≈ 0.81La, L0

2 ≈ 1.27La (17)

For the structural ratio defined as ε = (L0
1/L0

2)
2, this yields the value:

ε ≈ 0.41 (18)

Fig. 5 shows the frequency histogram of the crown radius of the plants. The most probable and average values, respectively
LM and L A , read:

LM ≈ 1.25 m, L A ≈ 1.75 m (19)

Tentatively, we equate La , the radius of the surface element S considered as spatially uniform and earlier introduced as such
to define the biomass density b(r, t), with the most probable crown value, i.e., we put La = LM . Taking into account that
the wavelength of the pattern (average distance between gaps in Fig. 2(a)) is 50 m, 5 quantities, namely, p, La , L0

1, L0
2, λ,

have now known values, fixed by straightforward field measurements. The number of parameters to manage in the non-
local F–KPP equation of weakly competitive vegetation (see Eq. (A.1) in Appendix A for its explicit expression) is 6, namely,
μ, p, e1, e2, d, σ . The self-organization hypothesis furnishes for this purpose the usual two equations that determine the
conditions for which the crossing of the imaginary axis by a real eigenvalue ωk , solution of Eq. (A.2), triggers the onset of a
pattern having for wavelength λ = 2π/k:

ωk = 0,
∂ωk

∂k
= 0 (20)

But as it happens, we have to ask for more than a bifurcation point and marginal stability, we want λ to be very large
compared to plant size, i.e., the wave number k must tend to zero. The keystone of the theory, as explained at the end
of the preceding section, is to make use therefore of the complementary self-assembly hypothesis. Accordingly, we assume
that for k = 0, the third equation(

∂2ωk

∂k2

)
k=0

= 0 (21)

holds. The interpretation of field data can then proceed as follows. Regarding conditions at which patterning first appears
(the transition from uniform vegetation cover to a gapped pattern) we can admit, as a first approximation, that the facilita-
tion range e1 and the competition range e2 are given by the coordinates of the critical point. Replacing in (15) the known
value p = 1/3 of the allometric parameter, we find that

e1 =
(

5
) 1

3

≈ 1.36 (22)

2
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Fig. 6. (a) At b = 0 the value of σ diverges while for b ≈ 0.444 it vanishes; (b) plot of the function of b whose zero corresponds to uniform stationary
solutions of (A.1). The root b ≈ 0.430 corresponds to the marginal stability point for the emergence of patterns having wave number (25).

Using the known value (18) of the structural ratio, fixes the competition range e2 at

e2 = e1√
ε

≈ 2.12 (23)

Three quantities are still to be determined, the uniform stationary biomass density b, the parameters associated with seed
propagation: d and σ . Therefore, we still have at our disposal the two equations (20) provided by the self-organization
hypothesis, Eq. (21) provided by the complementary self-assembly hypothesis, and the still unused field data corresponding
to the pattern wave number. To exploit (21), we replace the expressions (15), (23) in it and put k = 0; solving the expression
so obtained for d yields:

d = 6
bc

σ 4

(
1

ε
− 1 + 4p

1 + 2p

)
ebc ≈ 0.0220 (24)

Dealing with gapped patterns that result from the first patterning transition that destabilizes the uniform vegetation cover
b when aridity increases, we suppose that the wave number of the pattern represented in Fig. 2 is close to the one of the
first mode that becomes unstable. Hence, we set

k = 2π

(
La

λ

)
≈ 0.157 (25)

Replacing (22)–(25) in the second condition (20) and solving for σ yields an expression depending on the biomass density b.
Its graph represented in Fig. 6(a) shows that it is a monotonously decreasing function of b that vanishes for b ≈ 0.444. In
Fig. 6(b) is plotted the function of b obtained by replacing the expression of σ and (22)–(25) in the first condition (20). We
see that it possesses two roots for b ∈ [0,1]. The first one, at b = bc = 2/5 reflects that, at the critical point, bc is a triple
root of (A.2); the second one, at b ≈ 0.430 is the marginal stability point of the wave number k = 0.157 that interests us.

In summary, under the dimensionless form in which they appear in Eqs. (A.1), (A.2) the values of parameters determined
for the gapped pattern of Fig. 2 read6:

k = 0.157, p = 1/3, b = 0.43, d = 0.0220 (26)

e1 = 1.36, e2 = 2.12, σ = 3.61 (27)

It is interesting to convert the quantities (27) in real space unit. Remembering that La has tentatively been put equal to
1.25 m, the most probable value of crown radius LM in the histogram of Fig. 5, they become:

L0
1 = 1.70 m, L0

2 = 2.65 m, LD = 4.51 m (28)

6 Approximation symbol on floating point values is replaced by equality signs for simplicity. Replacing these values in (14) determines the loss/gain ratio
at the marginal stability point: μ̃ = 0.89505.
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Fig. 7. Influence of increasing aridity on fastest growing mode corresponding to the values of b indicated. The red curve (the last curve on the right)
corresponds to the marginal stability point (26), (27).

No room for ambiguity is left in this evaluation. No fitting of data has been performed, no adaptable parameter has been
involved or remains at disposal, no alternative to (28) is in fact possible within the framework of the measurements made
concerning individual plants and of the non-local evolution equation set up on this basis. The result for L0

1 is therefore
worth to be noted. Especially so when compared with the average crown radius measured on the terrain, i.e., L A = 1.75 m
(a relative difference of less than 3%). In other words, for p = 1/3, the prediction of the theory is that the effective range
over which facilitation operates is nothing else than the average plant crown radius. This makes sense both physically and
biologically: at the individual plant level what matters is the most probable value of the crown size, at the population level
what matters is the average value of the crown size. This dichotomy arises because, clearly (see the histogram of Fig. 5) the
crown size distribution is not a Gaussian distribution. Concerning the prediction for LD no quantified field data to compare
with seem to exist. Observations suggest that effective values greater than the crown size are plausible; LD = 4.51 m is the
prediction of the F–KPP theory.

Fig. 7 exemplifies the dependence of the pattern wavelength upon aridity. It shows, as expected, that in the critical region
the community organization is strongly sensitive even to very small aridity increases: a drop of the average uniform biomass
density from 0.43 to 0.4 is sufficient for the patterns to switch from the gapped morphology to the spotted morphology.
Observations that seem to support this behavior have been reported [20] and will be discussed in a paper in preparation.

5. Influence of competition void domains

At the starting point of our approach, there exists a broad consensus in the field of vegetation ecology that recognizes the
existence in plant communities of facilitation and competition effects that play an important role in their organization. These
effects are generally considered as well demonstrated at the population level. If so, one may wonder whether or not these
effects fade away somewhere between the population and individual plant level. Do self-facilitation and self-competition
take place at the individual plant level? The question does not seem to have a simple answer. Positive feedbacks may seem
rather plausible, self-competition of a plant with itself may seem to be a notion that biologically speaking does not make
much sense. We shall not try to enter in this debate which would only lead us to express more or less subjective opinions.
What we can do however, since we have a model, and that is a matter of mathematics involving no subjectivity, is to
explore and to quantify the self-feedback component in this model.

We have done that in the case of the interactions associated with competition. Technically, self-competition sneaks into
the model through the mean-field integrals. Getting rid of it can be achieved by excluding from the integration domain
some neighborhood of radius a2 around the position r at which the integral is evaluated. A domain of surface πa2

2 is then
void of competition. The linear stability of uniform vegetation covers can be recalculated under those conditions and the
modified eigenvalue equation is given in Appendix A (cf. Eq. (A.4)). Fig. 8 reports results that demonstrate the sensitivity of
the critical region with respect to the introduction of competition void domains not only from a quantitative point of view,
but also, rather unexpectedly (see Fig. 8(b)), from a qualitative point of view. The situation in the absence of self-competition
clearly becomes rapidly even more rich in complex stability problems than before.
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Fig. 8. Influence of competition void domains on the linear stability: (a) effect on the band of unstable modes of increasing values of a2; red: marginal
stability curve of gapped pattern for a2 = 0. (b) Putting a2 = 2.12 (the value of e2), the marginal stability condition now exhibits a succession of separated
bands of unstable modes (red curve). As d increases stability is progressively restored. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

6. Conclusion

Biologically speaking, the F–KPP approach provides a reliable quantitative description of vegetation patterns in terms of
plant size and development at low and high biomass densities. It highlights the importance of the crown/root ratio, which
reflects the plasticity of plant structures and of the allometric parameter p that governs the range of plant interactions
during development; it strongly supports the conceptual interpretation that vegetation patterning is a phenomenon whose
dynamics has properties similar to those of some phase separation processes. These results are fully supported quantita-
tively, they have been established within a framework of reliable observations and measurements on the field. Reasonable
disagreement on what lies beyond this framework remains possible, but within it the self-organization hypothesis and the
complementary self-assembly hypothesis can be considered as quantitatively tested and vindicated. To that extend the the-
ory of vegetation patterns based on the non-local F–KPP equation is validated and the mechanism of these phenomena is
understood.
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Appendix A

Written in explicit form, taking into account expressions (4), (5), (7)–(12) and putting the unit of space equal to La , the
non-local F–KPP equation (3) describing the spatio-temporal evolution of vegetation in the weak competition case reads:

∂

∂t
b(r, t) = b(r, t)exp

(
1

2π

∫
exp

[
− |r′|

e1b(r + r′, t)p

]
b
(
r + r′, t

)
dr′

)(
1 −

∫
exp

[− |r′|
e2b(r+r′,t)p

]
b(r + r′, t)dr′∫

exp
[− |r′|

e2b(r+r′,t)p

]
dr′

)

− μb(r, t) + d

∫
1

π
exp

(
−|r′|2

σ 2

)
b
(
r + r′, t

)
dr′ (A.1)

Let

δb(r, t) = 1

2π

∫
dk A(k,0)exp(ωkt + ik · r) (A.2)

be the decomposition into Fourier modes of an arbitrary infinitesimal fluctuation perturbing a uniform stationary state
solution b of Eq. (14); A(k,0) is the initial amplitude of the wave vector of modulus k ≡ |k|. We replace b(r, t) = b + δb(r, t),
in Eq. (A.1), only retain the terms linear in A(k,0). Hence, the Fourier mode k is unstable if its eigenvalue

ωk = − b exp(e2
1b2p+1)

(1 + k2e2
2b2p)3/2

+ e2
1b2p+1[1 + 2p + k2e2

1b2p(1 − p)](1 − b)exp(e2
1b2p+1)

(1 + k2e2
1b2p)5/2

− dσ 2[1 − exp
(−σ 2k2/4

)]
(A.3)

is positive.
Eigenvalue value equation governing the linear stability of uniform vegetation covers in the absence of self-competition:
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ωk =
(

− b(A1(k) + A2(k))

(e2bp + a2)(1 + e2
2k2(bp)2)

+ A3(k)

)
ebe2

1b2p − dσ 2(1 − exp
(−1/4σ 2k2)) (A.4)

A1(k) =
(

− K0

k
+ e2bp√

1 + e2
2k2(bp)2

)
e

a2b−p

e2 (A.5)

A2(k) = −J(1,a2k)bpke2a2 + a2J(0,a2k) (A.6)

A3(k) = (bp)2b(1 − b)e2
1(1 + 2p + e2

1k2(bp)2(1 − p))

(1 + e2
1k2(bp)2)5/2

(A.7)

K0 = e
− a2

e2bp
∞∑

n=1

(
ωn+ − ωn−

)
J(n,a2k)

1√
1

e2
2k2(bp)2 + 1

(A.8)

ω+ = 1

e2bpk
+

√
1

k2e2
2(b

p)2
+ 1, ω− = 1

e2bpk
−

√
1

k2e2
2(b

p)2
+ 1 (A.9)

The J(n,a2k) represent the Bessel functions of the first kind.
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