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The geometrical properties of streamline segments (Wang, 2010 [1]) and their bounding
surface (Schaefer et al., 2012 [2]) in direct numerical simulations (DNS) of different types
of turbulent flows at different Reynolds numbers are reviewed. Particular attention is paid
to the geometrical relation of the bounding surface and local and global extrema of the
instantaneous turbulent kinetic energy field. Also a previously derived model equation
for the normalized probability density of the length of streamline segments is reviewed
and compared with the new data. It is highlighted that the model is Reynolds number
independent when normalized with the mean length of streamline segments yielding that
the mean length lm plays a paramount role as the only relevant length scale in the pdf.
Based on a local expansion of the field of the absolute value of the velocity u along the
streamline coordinate a scaling of the mean size of extrema of u is derived which is then
shown to scale with the mean length of streamline segments. It turns out that lm scales
with the geometrical mean of the Kolmogorov scale η and the Taylor microscale λ so that
lm ∝ (ηλ)1/2. The new scaling is confirmed based on the DNS cases over a range of Taylor
based Reynolds numbers of Reλ = 50–300.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

In the course of turbulence research a manifold of different strategies has been devised to explain the complex mo-
tion of a turbulent fluid flow. The spectrum of approaches reaches from purely mathematical theories based solely on the
Navier–Stokes equations, such as two-point correlations which have yielded the famous and celebrated 4/5th law [3], to
dimensional arguments which has led to the prediction of the −5/3rd scaling of the energy spectrum in the inertial sub-
range [4]. Another approach which has greatly benefited from the recent advances in high performance computing is to
analyze turbulent inherent geometries. In 1971, Corrsin [5] asked the question: “What types (of geometry) are naturally
identifiable in turbulent flows?”. In this spirit, vortex structures have been identified and analyzed for instance by She et
al. [6] and Kaneda and Ishihara [7]. They were found to form tubes in regions of high vorticity, while a sheet-like structure
was identified in regions of low vorticity. However, vortex tubes and sheets do not allow a unique and space-filling decom-
position of the flow field into unambiguous sub-ensembles. This problem was overcome by Wang and Peters [8,9] in their
concept of dissipation elements, an approach which has its roots in early works by Gibson [10] who analyzed the role of
extreme points in turbulent scalar mixing processes. This concept, based on gradient trajectories, allows the decomposition
of turbulent scalar fields into smaller sub-units. By calculating gradient trajectories in direction of ascending and descend-
ing scalar gradients, a local minimum and a local maximum points are reached. Dissipation elements are then defined as
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Fig. 1. (a) Isosurface defined by us = 0 and streamline. (b) Variation of u along the streamline over the arclength s and parametrization of a positive
segment with its length l and velocity difference �u.

the spatial region from which all gradient trajectories reach the same pair of maximum and minimum points in a scalar
field. They may then be parameterized by the linear distance between and the scalar difference at the extreme points which
makes them amenable to statistical analysis. The most important feature of dissipation elements is that they are space-
filling and unambiguous, meaning that at any instant in time the turbulent scalar field can be decomposed in a determined
manner. Then, based on the much simpler conditional statistics within the dissipation elements and the knowledge of their
statistical distribution (in terms of joint probability density functions) the complicated statistics of the entire scalar field can
be reconstructed. Successful examples of this approach can be found in [11,1]. However, one major shortcoming of the the-
ory of dissipation elements is that it is only applicable to turbulent scalar fields. In order to also apply this successful theory
to the turbulent velocity field itself, Wang [1] proposed to study streamlines in turbulent velocity fields. The geometrical
properties of particle paths (the analogon to streamlines in an evolving turbulent field) have for instance been studied by
Rao [12], Braun et al. [13] and Scagliarini [14], whose ideas have been extended to the geometrical properties of streamlines
by Schaefer et al. [15]. Streamlines are not Galilei invariant, meaning that the chosen frame of reference determines the
streamline topology. Thus, one has to choose an appropriate frame of reference when analyzing turbulent flow fields based
on streamlines. In the course of this work this frame of reference will be the fluctuating velocity field with zero mean for
two reasons: first, from a geometrical point of view we are only interested in the geometry and topology of the fluctuating
field, which is often used to isolate “pure” turbulent physics without the interaction with solid walls, mean gradients or
alike. Second, it has been shown that there exists a frame, in which the so-called streamline persistence is maximized [16].
Streamlines are considered persistent if their geometry changes slowly enough for a particle to approximately follow their
path for a significantly long time. In that case, particles initially close to each other will only separate once they approach
a straining stagnation point, where streamlines diverge. For isotropic turbulence, three of the cases considered in this work,
it could be shown that the appropriate frame of reference is the one where all mean velocity components vanish, i.e. the
fluctuating velocity field [17]. In Section 2 we will review the most important features of streamline segments and the
bounding surface of the latter in space. In Section 3 the four different DNS cases which are the basis of the present work
will be introduced. In Section 4 the model for the length distribution of streamline segments and the physical reasoning
behind the different terms in the model equation will be discussed. In Section 5 a new scaling for the mean length of
streamline segments is derived and compared with the DNS data. Finally, in Section 6 concluding remarks are given.

2. Streamline segments and related geometries

Integration of

dxi = ui
(
x j(t̂), t0

)
dt̂ (1)

where ui(x j(t̂), t0) denotes the i-th velocity component of a turbulent velocity field at position x j and time t0 and a
pseudo-integration time t̂ , yields a space curve Γ (t̂) which is known as a streamline. However, different from gradient
trajectories (based on any turbulent scalar field) which inevitably end in a local extreme point (where the gradient of
the scalar vanishes) [8,9], streamlines are a priori infinitely long. This is why Wang [1] proposed to partition them into
segments based on local extrema of u along the streamline, i.e. points where the gradient of u in streamline direction
us ≡ ti∂u/∂xi = ∂u/∂s vanishes. It turns out that when us is treated as a scalar field all streamline segment ending points
lie in an isosurface defined by us = 0, which divides space into two regions, one of which contains all positive segments
where us > 0 while the other one contains all negative segments where us < 0. Fig. 1(a) shows this isosurface as well as
a streamline entering the box at the top left corner and leaving it at the bottom right corner. In between, the streamline
intersects the isosurface five times, thus yielding four streamline segments. Fig. 1(b) shows the variation of u along the
streamline as well as the four streamline segments.
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Fig. 2. (a) Local extreme points (blue: minima, red: maxima, green: stagnation points) of the turbulent kinetic energy field (taken from DNS). (b) Local
extreme points and the surface us = 0.

Fig. 3. Minimal (light gray) and maximal (dark gray) parts of the isosurface us = 0.

Apart from the extrema of the absolute value of u in streamline direction, the isosurface us = 0 also contains all local
extrema of the instantaneous turbulent kinetic energy field k = u/2 as all points where the gradient u∇u = ∇k ≡ 0 must
lie in the surface [2]. These points also include all stagnation points of the turbulent velocity field, which are critical points
where all three velocity components ui = 0. As at these points k = 0, they are absolute minimum points of the kinetic
energy field [15]. A local expansion of the isosurface in the vicinity of a stagnation point has revealed that indifferent of the
type of stagnation point (in general there exist four different types of stagnation points in incompressible flows [18]) the
surface is always a quadric of cone type which means that at the stagnation point two folds of the surface come infinitely
close to each other [15].

Fig. 2(a) shows the distribution of local extrema (i.e. points where ∇k = 0) obtained from the DNS of homogeneous
isotropic turbulence in a 2π -periodic box, while Fig. 2(b) shows their geometrical relation with the isosurface and proofs
that they are all located in the isosurface. In addition, Schaefer et al. [2] have shown that the surface can be further
decomposed into two parts, one containing all maximum points and one containing all minimum points. The demarcation
line on the surface is the ensemble of points where the streamline is perpendicular to the surface. This is shown in Fig. 3
where the light gray area is the minimal part of the surface while the dark gray area is the maximal part.

3. DNS

The following quantitative statistical analysis of turbulent flows by means of streamline segments is based on four
different DNS calculations in a 2π -periodic box. These comprise three homogeneous isotropic turbulent fields, two of which
are decaying while the third one is forced such that the turbulence intensity is statistically stationary. The fourth case is
that of homogeneous shear turbulence with a mean shear gradient. These DNS cases allow for an analysis of the influence
of the Reynolds number as well as that of the flow type on the statistics of streamline segments. For brevity, details apart
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Table 1
Parameters of the different DNS cases.

DNS case 1 2 3 4

Flow type Decaying Decaying Forced Shear
No. of grid cells 10243 10243 10243 10243

Reynolds number Reλ 50 116 206 300
Viscosity ν 5 × 10−4 1 × 10−4 2.0 × 10−3 5 × 10−4

Kinetic energy k 4.9 × 10−2 3.4 × 10−2 12.0 3.07
Dissipation ε 1.3 × 10−2 5.9 × 10−3 11.3 1.39
Kolmogorov scale η 0.01 3.6 × 10−3 5.2 × 10−3 3.1 × 10−3

Taylor length λ 0.139 7.6 × 10−2 0.146 0.105
Integral time τint 3.88 5.76 1.06 2.21
Kolmogorov time τη 0.196 0.130 0.013 0.019
Resolution �x/η 0.610 1.69 1.19 1.98
Mean shear S – – – 1.5

from Table 1 which summarizes the most important statistical quantities of the flow fields, are not given. The reader is
referred to [19,20] which contain detailed descriptions of the cases under consideration as well as the numerical procedures
employed.

4. A model for the length distribution of streamline segments

To go beyond a mere descriptive stage of turbulent flows by means of streamlines and related geometries Wang [1]
proposed to parametrize streamline segments using the arclength distance l between and the velocity difference �u at the
ending points. Then most of the statistical information are captured in the joint probability density function (jpdf) of these
two parameters P (l,�u). Based on Bayes’ theorem we relate the marginal distribution of the length of streamline segments
P (l) to the conditional pdf P (�u|l) yielding

P (l) = P (l,�u)

P (�u|l) (2)

Based on prior works, Schaefer et al. [2] derived a model equation for the normalized probability density function of the
length of streamline segments P̃ (l̃) = P (l/lm) · lm (Eq. (3)), where lm denotes the mean length of streamline segments whose
scaling with turbulent length scales is discussed in Section 5.

∂ P̃ (l̃, τ̂ )

∂τ̂
+ ∂

∂ l̃

[(
ã1(l̃) − l̃

τlma∞

)
P̃ (l̃, τ̂ )

]
= 1

2

∂2

∂ l̃2

[
ã2(l̃) P̃ (l̃, τ̂ )

]

+ Λc

(
2

∞∫
0

P̃ (l̃ + z̃, τ̂ )dz̃ − l̃ P̃ (l̃, τ̂ )

)

+ 2Λa

( l̃∫
0

ỹ

l̃
P̃ (l̃ − ỹ, τ̂ ) P̃ ( ỹ, τ̂ )d ỹ − P̃ (l̃, τ̂ )

)
(3)

For a detailed derivation of Eq. (3) the reader is referred to [2]. In the following the different terms will briefly be
discussed and related to their physical sources. The different terms in Eq. (3) represent the different mechanisms which
influence the temporal length evolution of streamline segments belonging to a length class l. The first term on the l.h.s.
is the unsteady term which in the numerical solution is sought to vanish to obtain a steady solution. The second term
on the l.h.s. and the first term on the r.h.s. describe so-called “slow changes” of streamline segments, where ã1 denotes
the normalized drift velocity in phase space and ã2 denotes the normalized diffusion in phase space. Physically, the drift

ã1 = ṽ D + ˜〈�u|l〉 can be decomposed into two different parts, one is the diffusive drift of small segments which turns
out to scale as ṽ D ∝ −1/l̃ yields the disappearance of small segments due to viscous diffusion. The second one is due to
the conditional velocity difference at the ending points of streamline segments which yields a continuous compression or
stretching of the segments. In [2] these drift velocities have been analyzed from DNS and appropriate expressions have
been introduced to solve Eq. (3) numerically. The analysis has revealed that the conditional velocity difference at the ending
points 〈�u|l〉 is negative for small segments but scales linearly with the separation distance and is positive for larger
segments, a scaling known from gradient trajectories [21,22]. Overall, the slow changes are mainly due to the continuous
evolution of the bounding isosurface whose displacement in the flow field can be described by a level-set approach. The
diffusion term on the r.h.s. turns out to scale as ã2 ∝ ã1 Re−1/2

λ so that in the limit of large Reynolds numbers its influence on
the pdf is small and can be neglected. The same is true for the term containing the time scale τlm which is the logarithmic
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Fig. 4. Comparison of the normalized pdf P̃ (l̃) from DNS cases 1–4 with the model solution (Eq. (3)). (!: case 1, 1: case 2, �: case 3, �: case 4; - - -:
model (Eq. (3)).

time rate of change of the mean length of streamline segments and is relevant for the case of decaying turbulence. However,
the analysis of the DNS date revealed [2] that τlm is large so that the term can be neglected.

On the other hand, streamline segments are subject to so-called “fast changes” which are attributed to the local random
distortion of the velocity field which yields non-local abrupt changes in the geometry of the streamline segment. These
fast changes result in the four integral terms on the r.h.s. of Eq. (3) which have been modeled as a stationary Poisson
like cutting and reconnection process with the two frequencies Λc (cutting frequency, corresponds to the new creation of
extrema within a streamline segments and results in the cutting of the latter) and Λa (reconnection frequency, corresponds
to the disappearance of extrema and the subsequent reconnection of two adjacent streamline segments).

It can be shown that the reconnection frequency Λa must be related to the diffusive drift in the origin as the latter is
responsible for the disappearance of small segments due to viscous drift which directly entails the reconnection of the two
adjacent segments, yielding

Λa ∝ ∂ P̃

∂ l̃

∣∣∣∣
l̃→0

(4)

The remaining unknown cutting frequency Λc is determined during the numerical solution of Eq. (3) to ensure the
normalization condition of the normalized pdf

∫ ∞
0 P̃ l̃ dl̃ = 1 of the steady solution.

Based on the above modeling, the behavior of P̃ (l̃) in the limit l̃ → 0 and l̃ → ∞ can be predicted: in the origin where
Eq. (3) is dominated by the viscous drift part of the convective velocity ã1, the pdf must scale linearly while its tail for large
segments will decay exponentially which is a typical feature of a Poisson process.

Fig. 4 shows the normalized pdfs P̃ (l̃) obtained from the four DNS cases (symbols) where streamline segments are
calculated from homogeneously distributed grid points in space. This procedure ensures a correct weighting of space as
in general streamlines do not probe space equally resulting in a varying streamline density. In addition, homogeneously
distributed grid points introduce a weighting of the pdf by a factor proportional to the length of the segments (as a twice
as long segment has a twice as large probability to be counted) which as been corrected for in the post-processing of the
data. Included in Fig. 4 is the steady solution of Eq. (3) where for the drift velocity the ansätze obtained in [2] have been
used. A quite good agreement of the DNS data with the model can be observed, revealing the linear rise at the origin as
well as the exponential tails, which are further highlighted in the log–lin inset. The maximum of all pdfs occurs at l̃ ≈ 0.5
with a value of P̃max ≈ 0.75 where the model slightly overpredicts the maxima of the DNS data which in themselves vary
slightly from one DNS case to another. As the different data collapse well, the Reynolds number independence predicted by
the model can be confirmed with a further independence of the type of the flow under consideration as the data not only
contain homogeneous isotropic decaying cases, but also a forced and a homogeneous shear flow. In addition, the model
shows that the only relevant length scale of the distribution of the length of streamline segments is the mean length lm .
This raises the question how the mean length scales with turbulent length scales of the flow under consideration, a question
that will be addressed in the following section.
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Fig. 5. Local expansion of the u profile in an extremum along the streamline coordinate s.

5. Scaling of the mean length

Introduction of the unit tangent vector ti into Eq. (1) yields after integration a space curve parameterized with its own
arclength s which can be obtained by integration of ds = u dτ̂ . Then along a streamline the arclength s serves as a one-
dimensional coordinate and the variation of the absolute value u(s) can be viewed as a one-dimensional variation along s.

Let us in this context determine the life-time of an extreme point. The vicinity of an extreme point is mainly diffusion
controlled so that in a coordinate system moving with it (Lagrangian view) we can model the evolution of the u profile by
a simple diffusion equation

Du

Dt
≈ ν

∂2u

∂s2
(5)

Within this framework we can estimate its characteristic life-time ta as

ta ∝ l2a
ν

(6)

where la denotes its characteristic size. Note that the inverse of the time scale ta must be proportional to the reconnection
frequency μa (which corresponds to the non-dimensional frequency Λa in the model pdf Eq. (3)) yielding

t−1
a ∝ μa (7)

as the disappearance of an extreme point along the streamline yields the reconnection of the two adjacent segments. The
size of the extreme point la can be estimated as follows by an expansion of the scalar field u around it yielding

u = u0 + 1

2
uss(s − s0)

2 +O
(
s3) ≈ u0

[
1 + uss

2u0
(s − s0)

2
]

≈ u0

[
1 +

(
(s − s0)

la

)2]
(8)

where u0 is the value of the scalar at the extreme point and uss = ∂2u/∂s2 is its second derivative in direction of the
streamline evaluated at the extreme point which is located at s0. Fig. 5 illustrates the scenario along a streamline and
displays all relevant scales. In particular, it becomes obvious that the size of the extremum la is proportional to the size of
the segment l under consideration.

From the last identity we see that the instantaneous characteristic size of an extreme point can be estimated as

l2a ∝ u0

uss
(9)

Assuming statistical independence of u0 and uxx at the extreme point let us average over all extrema to obtain

〈la〉 ∝
( 〈u2〉1/2

〈u2
ss〉1/2

)1/2

(10)

Note the similarity to the result obtained by Rice’s theorem [23,24] for the zero crossings of u, i.e. the mean distance of
stagnation points. However, in our case the second derivative comes into play as we are considering the zero crossings of
the gradient of u rather than of u itself.
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Table 2
Statistical parameters of the streamline segment analysis.

DNS case 1 2 3 4

Flow type Decaying Decaying Forced Shear
Reynolds number Reλ 50 116 206 300
Mean length lm 0.109 0.047 0.078 0.058
Ratio lm/λ 0.780 0.618 0.534 0.552
Ratio lm/η 10.90 13.10 15.00 18.70
Ratio lm/(λη)1/2 2.924 2.841 2.831 3.215

Fig. 6. Scaling of the mean length of streamline segments with the Taylor microscale and the new scaling (Eq. (14)) over the Taylor based Reynolds number
from DNS cases 1–4.

Following Kolmogorov’s similarity hypothesis [3,25], the root-mean-square (rms) of the second derivative uss , being a
purely small scale quantity, should scale solely with the mean energy dissipation ε and the viscosity ν yielding〈

u2
ss

〉1/2 ∝ ε3/4ν−5/4 (11)

With Eq. (11) we obtain the following scaling of the mean size of extrema of u along streamlines

〈la〉 ∝ (
urmsε

−3/4ν5/4)1/2 ∝ λRe−1/4
λ ∝ (λη)1/2 (12)

with the Kolmogorov scale η = (ν3/ε)1/4 and the Taylor microscale λ = (15νu2
rms/ε)1/2.

At this point we only have to show that indeed the mean size of the extrema scales with the mean length of the
streamline segments (with a numerical constant that is independent of the Reynolds number). To this end let us use Eq. (7)
in combination with Eq. (4) to obtain

t−1
a ∝ μa ∝ ν

∂ P

∂l

∣∣∣∣
l→0

∝ ν

l2m

∂ P̃

∂ l̃

∣∣∣∣
l̃→0

∝ ν

l2m
(13)

where the slope in the origin of the compensated pdf ∂ P̃/∂ l̃ is a universal, Reynolds number independent constant (or
in other words, the non-dimensional frequency Λa is Reynolds number independent). Comparison of Eq. (13) with Eq. (6)
yields finally

〈la〉 ∝ lm ∝ λRe−1/4
λ ∝ (λη)1/2 (14)

Introduction of Eq. (14) into (13) yields for the reconnection time ta

ta ∝ urmsε
−3/4ν1/4 (15)

which corresponds to the Tennekes Lagrangian time tl , cf. [26].
Table 2 shows that the above scaling of the mean length of streamline segments is valid for all four cases under consid-

eration and thus seems to hold over a broad range of Reynolds numbers. While the ratio of lm with neither the Kolmogorov
length scale nor the Taylor microscale yields a Reynolds number independent constant, the value of the constant for a nor-
malization following the scaling of Eq. (14) yields a constant C ≈ 2.9 for all three cases where only the shear case, probably
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due to the anisotropic influence of the constant shear gradient, yields a slightly larger value than the three other cases.
This finding is further highlighted in Fig. 6 where the ratio lm/λ and the ratio lm/(λη)1/2 are shown over the Taylor based
Reynolds number in a double logarithmic plot, indicating a clear scaling with Re−1/4

λ of the former and a Reynolds number
independent constant of the latter.

6. Conclusion

The analysis of turbulent flow fields via streamline segments has been extended to the DNS of flow fields other than
homogeneous isotropic decaying turbulent fields which now cover a range of Reynolds numbers from Reλ = 50–300. Special
attention was given to the normalized pdf of the length of streamline segments, which turns out to be Reynolds number
independent when normalized with the mean length lm . A model for the pdf which has been derived in [2] is reviewed
and was found to also be in good agreement with the new DNS cases confirming the assertion that in the context of
streamline segments there exists only one relevant length scale, namely the mean length lm . In addition, the main features
of the surface containing all ending points of streamline segments have been reviewed, namely the fact that in this surface
all local extrema of the turbulent kinetic energy field are contained. These points also include stagnation points of the
flow field as these are minima of the turbulent kinetic energy. In a second step, a new scaling law of the mean length of
streamline segments in turbulent flows has been derived based on theoretical considerations on the size of local extrema
of the absolute value of the velocity field u along the streamline which demark the ending points of streamline segments.
A scaling argument based on Kolmogorov’s similarity hypotheses yields that, in close connection to the well known Rice
theorem, the mean distance between two extrema along a streamline should scale with geometrical mean of the Kolmogorov
scale η and the Taylor microscale λ so that lm ∝ (ηλ)1/2. This scaling could be confirmed for all four DNS cases under
consideration and the proportionality constant turns out to be close to a numerical value of 2.9.
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