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In the framework of the lubrication approximation, we derive a set of equations describing
the steady bottom profile of Leidenfrost drops coupled with the vapor pressure. This allows
us to derive scaling laws for the geometry of the concave bubble encapsulated between the
drop and the hot plate under it. The results agree with experimental observations in the
case of droplets with radii smaller than the capillary length Rc as well as in the case of
puddles with radii larger than Rc .
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1. Introduction

It is a great pleasure to write this piece of science for Paul Clavin. Over the years he inspired us in many ways. The topic we have
chosen mixes ideas of non-equilibrium science, of fluid mechanics and thermodynamics. We also predict various properties which agree
with the experimental observations. We hope that Paul will feel that this piece of science is pragmatic enough!

The Leidenfrost effect is named after J.G. Leidenfrost (1715–1794) who wrote an article [1], in Latin, on his observation
that liquid droplets do not touch very hot surfaces and so survive much longer than normally expected. As explained by
Tyndall [2] in the nineteenth century, the vapor released in the gap between the hot plate and the droplet lifts it and cuts
direct physical contact with the hot plate. This increases the lifetime of the evaporating droplet because of the poor heat
conductivity of vapor compared to the one of the hot plate. All this works if the droplet is not too heavy. We discussed
recently [3] scaling laws for small Leidenfrost droplets. This showed the remarkable fact that, for radius less than (in order
of magnitude)

Rl =
(

ηδT λ

gLρvρl

)1/3

the droplet takes off from the hot plate to reach higher and higher elevations as the droplet gets smaller and smaller by
evaporation, (δT ) being the temperature difference between the hot plate and the boiling point of the liquid, η the shear
viscosity of the vapor, λ its heat conductivity, g the acceleration of gravity, L the latent heat, and ρl , ρv the mass density
of the liquid and vapor respectively. Typically Rl is in the range of a few tens micrometers, that is much smaller than the
capillary length Rc = ( σ

ρl g )1/2, σ being the surface tension between liquid and vapor. For a water drop on a hot plate at

400 ◦C, using the following data (in MKSA units) L = 2.25 × 106, λ = 0.032, ρl = 958, ρv = 0.81, η = 1.3 × 10−5, g = 9.81,
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σ = 0.072, δT = 300, we obtain Rl = 19 μm, and Rc ∼ 2.8 mm, namely several order of magnitude larger than Rl . Therefore
we shall assume Rl � Rc .

Ref. [3] dealt with very small droplets of radii of order Rl or smaller, typically from 1 μm to 30 μm. In this range it was
predicted and observed that the height h of the gap below the droplet increases as R decreases, contrary to what is usually
claimed (h is also the thickness of the film of vapor between the droplet and the hot plate). Starting from droplets with
radius larger than Rl , it was shown that, as they evaporate and when the radius becomes of order Rl , then h becomes of
order of the horizontal gap extent l and the droplets spontaneously take-off from the substrate, becoming too light to stand
the upward force generated by the pressure due to evaporation. Because of this lift-up the lubrication approximation (for
the temperature field and the flow in the gap between the droplet and the hot plate) breaks down.

We focus below on larger droplets, big enough to remain close to the hot plate, so that the lubrication approximation
applies. We derive first a set of two coupled equations for the height h(r) of the droplet bottom surface and the local
pressure p(r). Increasing the values of R , the solutions are found for the four following regimes depending on the location
of the droplet radius with respect to the radii [Rl, Ri, Rc,∞], with Ri defined below. Quasi-spherical droplets are described
in Section 3. They exist for a radius larger or of order Rl , but much smaller than Ri , described in Section 4, they correspond
to radius much larger than Rl , up to about Ri . In this case the pressure in the gap is much smaller than Laplace’s pressure
(we mean by Laplace’s pressure the pressure drop across the vapor–liquid interface due to surface tension and equal to
σ(1/R1 + 1/R2), R1.2 principal radii of curvature of the surface), therefore an “uniform approximation” can be used in the
gap, and a spherical shape can be assumed close to the bottom of the droplet. In Section 5 we shall investigate larger
droplets, of radius larger than Ri , up to about Rc . This requires a more complex study because an uniform approximation
cannot be used in the gap which splits into two domains, a trapped bubble and a narrow neck connecting the bubble to the
outside. Different scaling laws apply in the trapped bubble and in the neck, although the lubrication approximation remains
correct in both domains. Finally we consider in Section 7 the case of puddles, with radii much larger than Rc . Note that the
fluid motion and the temperature field in the gap are well described by the lubrication approximation for all cases with R
larger than Rl .

Compared to recent publications on the same subject [4] and [5], this work seems to be the first one giving (original)
estimates of the Leidenfrost effect as a function of the physical parameters by discussing the joint phenomena of evaporation
from the droplet and the viscous vapor flow in the gap between the droplet and the hot plate. This led us to the introduction
of the length scale Rl , which is central in our discussion, as well as the other length scale, Ri , depending on it and on the
capillary length. To the best of our knowledge the set of Eqs. (9), (17) and (19), is used for the first time for solving this
problem. We notice that in another context similar looking droplet shapes have recently been described [5]. In the latter
case the drops levitate by air cushion above a porous mould through which an air stream is forced. They also display
a trapped bubble related to the outside by a neck. In our work the flow is a consequence of the evaporation and so of
temperature gradient in the gap, not an imposed quantity as in [5], leading to equations and solutions with scaling different
to ours.

2. Equations

2.1. Velocity field, pressure at the interface and temperature field

The lubrication approximation in the gap relies on the three following ingredients.

2.1.1. Stokes equations for the flow in the gap
This gap extends mostly in the horizontal direction (x, y), and the components of the fluid velocity are (u, v, w), w

vertical velocity. The boundary conditions are u = v = w = 0 for z = 0, the Cartesian equation of the hot plate. The other
boundary conditions are on the surface of the droplet, at an elevation z = h(x, y). In the lubrication limit, this surface is
close to horizontal, so that the b.c. (boundary conditions) are u = v = 0 for z = h(x, y). The b.c. for w is Stefan condition,
written as w = λT ,z

Lρv
where T ,z|z=h(x,y) is the derivative of the temperature with respect to z on the surface of the droplet,

computed on the vapor side (hereafter the notation f,z will be for ∂ f
∂z ). Stefan condition expresses the conservation of

energy: the heat flux λT ,z normal to the surface of the droplet balances the rate of transformation of liquid into vapor
times the latent heat.

The Stokes equations read

η∇2u − p,x = 0 (1)

η∇2 v − p,y = 0 (2)

and

η∇2 w − p,z = 0 (3)

p being the pressure. The velocity field is divergenceless, so that

u,x + v,y + w,z = 0 (4)
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2.1.2. Balance of normal forces on the surface
There is another equation for the shape of the liquid surface in the gap. Let us consider the case of droplets with radius

R much smaller than Rc . Depending if the pressure generated in the gap by the evaporation flow is of order or much less
than Laplace’s pressure 2σ

R in the droplet, the equation for the surface can be discarded (Section 3) or not (next sections).
If the gap pressure is much less than 2σ

R , one can assume that the droplet is almost spherical. This yields

h(x, y) = h0 + r2

2R
(5)

h0 is the point on the spherical surface the closest to the hot plate and r = √
x2 + y2 is the horizontal distance to this

point. The parabolic approximation for h(r) is valid in the lubrication limit, h0 � R . It is derived in the limit r � R from the
Cartesian equation of a circle, (R − h(r) + h0)

2 + r2 = R2.
If the fluid pressure in the gap is of the same order of magnitude as 2σ

R , another equation is needed for h(x, y). This
equation results from the balance of normal forces on the surface of the droplet. Inside the droplet the pressure is dominated
by Laplace’s pressure (recall that we assume that R is much smaller than the capillary radius Rc), whereas on the vapor
side the normal stress is p − ηw,z . Therefore the balance of normal forces on the surface of droplet inside the gap writes

2σ

R
− (p − ηw,z) = σ(h.xx + h,yy) (6)

which becomes in the axis-symmetric case

2σ

R
− (p − ηw,z) = σ

r
(rh.r),r (7)

Note that this condition is obviously satisfied by the quasi-spherical profile (5) if the pressure in the gap, (p − ηw,z), is
negligible with respect to 2σ

R .

2.1.3. Laplace’s equation for the temperature field
It writes ∇2T (x, y, z) = 0 because we neglect the convective part of this flux, assuming the Peclet number to be small.

This temperature field satisfies two boundary conditions: on the hot plate T (z = 0) = T0, and T = T1 on the surface of the
droplet, namely for z = h(x, y). In the lubrication limit, the solution of Laplace’s equation is

T = T0

(
1 − z

h(x, y)

)
+ T1

z

h(x, y)

Therefore the vertical velocity on the surface of the droplet is w = −k δT
h with δT = T0 − T1 (a positive quantity) and

k = λ
Lρv

.

2.2. Pressure in the vapor flow

Using the above relations, let us derive the equation for the pressure of the flow in the gap. By integrating the incom-
pressibility condition from z = 0 to z = h(x, y) one obtains,

〈〈u,x + v,y〉〉 + w(z = h) = 0 (8)

where 〈〈u〉〉 = ∫ z=h
0 u dz. In Stokes equation, ∇2 is dominated by the second derivative with respect to z, the shortest length

scale in the lubrication limit. Therefore, u is close to the Poiseuille value,

u = p,x

2η
z(z − h)

or 〈〈u〉〉 = − p,xh3

12η . Once put into Eq. (8) it gives,

∇2 ·
(

h3

12
∇2 p

)
+ ηkδT

h
= 0 (9)

where ∇2 = ex
∂
∂x + ey

∂
∂ y , ex being the unit vector in the x direction.

Eq. (9) is valid for all situations where the lubrication approximation applies. Given h(x, y), it can be written as an
Euler–Lagrange condition of minimization of the (Rayleigh) functional with respect to variations of p,

DRa =
∫

dx

∫
dy

[
h3

24
(∇2 p)2 − ηkδT

h
p

]
(10)

For axis-symmetric geometries, Eq. (9) reads explicitly,
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(
rh3

12
p,r

)
.r

+ r
ηkδT

h
= 0 (11)

which can be solved by a double integration,

p(r) = −(12ηkδT )

r∫
0

dr1

r1h3(r1)

r1∫
0

r2 dr2

h(r2)
+ p0 (12)

where p0 is an integration constant fixed by the boundary conditions. Note that this expression is valid for any h(r) and
requires only that the horizontal extension of the gap is much larger than its thickness.

Let us scale out the various physical quantities which have been introduced. As seen in the next section a convenient
choice is⎧⎪⎪⎪⎨

⎪⎪⎪⎩

hs = R3/2
l R−1/2

rs = (Rhs)
1/2 = R3/4

l R1/4

ps = ρl g
R2

hs

(13)

as units for h, r, and p. For quasi-spherical droplets, this choice readily derives from the balance between the weight of
the droplet and the upward force generated by the pressure. We shall see later that it is also pertinent for the description
of disturbed surfaces (droplets with radius smaller than Rc), whereas another scaling will be derived for the description of
Leidenfrost puddles which forms at R > Rc , see Section 7.

With such scalings the equation for the flow in the gap read without any physical parameter. In the axis-symmetric case
it reads,(

rh3

12
p,r

)
,r

+ r

h
= 0 (14)

and Eq. (12) becomes

p(r) = −12

r∫
0

dr1

r1h3(r1)

r1∫
0

r2 dr2

h(r2)
+ p0 (15)

Thanks to this integral solution, one can see that, given h(r), the integration constant p0 is fixed by the condition that p
tends to zero as r tends to infinity. The constant p0 is related to h(r) by the expression

p0 = 12

∞∫
0

dr1

r1h3(r1)

r1∫
0

r2 dr2

h(r2)
(16)

The balance of the vertical forces on the drop leads to an additional relation. The weight of the drop Mg has to be
compensated by the vertical force generated by the evaporative flow, obtained by integration of the pressure over the
surface of the sphere in the gap,

F z = 2π

∞∫
0

dr rp(r) = Mg (17)

Using the relations (13) the balance of vertical forces becomes in dimensionless form,

2

3
=

∞∫
0

dr rp(r) (18)

2.3. Pressure versus curvature

From w,z = kδT
h2 one finds that p is larger than the viscous stress ηw,z , by a factor l2/h2, l horizontal extent of the gap.

Therefore, when the lubrication approximation applies, the contribution of the viscous stress to the balance of vertical forces
can be neglected, and Eq. (6) yields

2σ − p = σ∇2
2 h (19)
R
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which writes in the axis-symmetric case,

2σ

R
− p = σ

(
h,r2 + 1

r
h,r

)
(20)

After it is written with the units given in (13) this equation becomes

2 − ξ p = h,r2 + 1

r
h,r = 1

r
(rh,r),r (21)

where all the variables are scaled, making appear the dimensionless number

ξ = R7/2 R−3/2
l R−2

c (22)

which is the ratio of the pressure in the vapor flow to Laplace’s pressure in the drop. The scaled coupled set of Eqs. (14)–
(21) together with appropriate boundary conditions make up the model we shall consider henceforth. We recall that they
are derived thanks to the scalings (13) appropriate for drops radii smaller than Rc , as studied in Sections 3–5, whereas
another set of scalings will be derived for larger drops (puddles), leading to the same system of dimensionless equations,
see Section 7.

3. Solution in the case of an undisturbed surface

In this section we solve the equations for the lubrication limit in the case where the droplet remains almost spherical,
that implies to neglect the term ξ p in Eq. (21). This eliminates the need to derive the shape of the surface of the droplet
in the gap by using the balance of normal forces. The present case (undisturbed sphere) is a fairly standard application
of lubrication theory. We start using the original variables and show that the scalings proposed in (13) naturally yield
parameterless equations.

The result of the integration of the right-hand side of Eq. (12) with h(r) given by Eq. (5), is

p(r) = p0 − 12ηkRδT

4h3
0

G

(
r2

h0 R

)

where G(α) is the numerical function defined as

G(α) =
α∫

0

dα′ ln(1 + α′/2)

α′(1 + α′/2)3

To have a pressure tending to zero at r tending to infinity one must take p0 = 12ηkRδT
4h3

0
G(∞), whence the result,

p(r) = 12ηkRδT

4h3
0

(
G(∞) − G

(
r2

h0 R

))
(23)

which yields the vertical force generated by the evaporative flow, F z defined in (17),

F z = π
3ηkR2δT

8h2
0

By writing that this force balances exactly the weight of the sphere,

2π

∞∫
0

dr rp(r) = Mg (24)

one finds h0 =
√

3π
8

R3
l

R , that agrees with the scaling proposed in (13) for the gap height. Whenever the surface of the droplet
is close to a parabolic cylinder, Eq. (5) for h(r) in scaled variables becomes

h(r) = h0 + r2

2
(25)

Notice that p0 is now a pure number constrained by the condition that p(r) tends to zero as r tends to infinity, and that
h0 in Eq. (25) is also a pure number defined by the balance of vertical forces on the droplet (18).

The set of equations solve the quasi-spherical problem if the lubrication approximation applies, namely if the height h0
is physically much less than R , which requires R � Rl . It also assumes that the pressure in the gap is negligible compared
to σ/R , because we assumed the relation (5). This requires ξ � 1, or R � Ri with
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Ri = (
R3

l R4
c

)1/7
(26)

which is about 330 μm for water over a plate heated at 400 ◦C. Otherwise, one has to determine the shape of the droplet
in the gap, namely the function h(r), as done next.

4. Solution in the case of a disturbed surface

In this case the surface of the droplet in the gap is not a spherical cap because the pressure generated by fluid motion
there is not negligible with respect to Laplace’s pressure inside the droplet. Compared to the previous case, we have to
solve the same equation for p already written in (9), but the profile being unknown, we need also to solve Eq. (6) with
the convenient boundary conditions. This second equation is derived from the balance of normal forces. Assuming Eq. (9)
solved, the pressure p is known.

In the range ξ ∼ 1 the new equation to be considered is the equation for the curvature of the droplet in the gap, which
should replace the simple relation (5) used in Section 3 for the range ξ � 1 characterizing an undisturbed spherical droplet.
Finally, if ξ is not small, Eqs. (9) and (19), or their scaled form (14) and (21), make together a pair of equations allowing to
obtain the droplet profile h(r) and the pressure p(r) in the gap.

Some properties can be derived without explicitly solving the equations. From the integral solution for the pressure given
in (15), the pressure is a decreasing function of r because h(r) is positive. Because it has to tend to zero at r infinite, the
pressure is positive and decreasing. From Eq. (21) the mean curvature 1

r (rh,r),r is an increasing function of r, tending to 2
(in dimensionless units) as r tends to infinity. This excludes in particular very large values of this curvature at finite values
of r in the limit ξ large.

The condition of balance of vertical forces can be transformed into a condition for the behavior of h(r) at large r. In the
dimensionless version of the equations, this condition is derived by integrating both sides of Eq. (21) from zero to a large
radius with the element of integration (r dr). The final result yields the following condition valid at r tending to infinity:

h(r) ≈ r2

2
− 2ξ

3
ln(r) + · · · (27)

This is a way of expressing that the vertical force on the droplet is equal to the uncompensated vertical component of the
capillary forces.

One can reduce the equations to a single one for h(r) with a closed set of b.c. By simple algebra, one derives:

−1

ξ

(
rh3

12

(
h,r2 + 1

r
h,r

)
,r

)
,r

+ r

h
= 0 (28)

The Laurent expansion of h(r) near r = 0 reads h(r) = h0 +a1r2 +a2 ln(r)+a3r3 +· · · where h0 and a1−3 are free coefficients,
although the coefficients of the next order terms in the expansion, like br4, etc. can be derived order by order from Eq. (28).
The coefficients a2 and a3 must vanish to make the solution smooth. The two remaining free parameters h0 and a1 are fixed
by the asymptotic behavior of the solution at large r. It reads

h(r) = cr2 + d ln(r) + f

r2
+ · · ·

where c, d, and f are free parameters. Two parameters are constrained by the condition that a2 and a3 vanish, but the
solution that we shall display has a2 = a3 = 0 and so we shall not consider them anymore, and call a1 simply a. The next

Fig. 1. (a) Bottom profile of a Leidenfrost drop for ξ = 0.18 or R = 200 μm. The numerical solution of Eq. (28) in red solid line melting with the asymptotic
expansion (27) in black dashed line, are located below the spherical profile (solid purple line). Initial conditions h,r2 (0) = (2−ξ)/2, h0 = 1.375. The physical
variables can be recovered by using the scaling lengths hs = 5.86 μm, rs = 34 μm. (b) Decreasing pressure versus axial distance. ξ p(r) solution of Eq. (21).
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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order terms are also derivable from c and d by order by order solution of Eq. (28). The b.c. on the shape of the surface
imposes c = 1/2 and the condition for the balance of vertical forces imposes d = − 2ξ

3 . This yields two conditions for two
free parameters, h0 and a. The exact solution of Eq. (28) fits well the analytical expansions (27) and (25) (valid for r < 1
and r > 1 respectively), as shown in Fig. 1 where the solid line coincides with the dotted line, as distinct from the spherical
profile located above.

5. Limit ξ large

The limit ξ small is somewhat trivial since in this limit one can neglect the term ξ p in Eq. (21) which has the simple
solution h(r) = h0 + r2

2 , and one is back to the case of a spherical droplet of unit radius, as expected.
An obviously interesting limit is the limit of a large ξ . In this limit, the solution splits into two different domains. Those

domains are derived from an analysis of the solution of the equations in this limit of a large ξ . The results presented are
consistent with the equations, although they cannot be considered as obvious consequences of them. Between r = 0 and
r = rc (to be found) the surface of the sphere is like a trapped bubble with a negative curvature and where the pressure
p is almost constant. The radius rc is such that the trapped bubble solution crosses the hot surface, which is obviously
impossible. To get rid of this crossing, other scalings must be used locally and a neck replaces this crossing, as shown
below. From Eq. (21) the mean curvature of the surface is also constant, and negative (which is the only possible choice as
one can check).

5.1. Unbalanced pressure hypothesis

Assuming for the moment (something that will be shown not to be correct) that this constant value is not 2/ξ , the
curvature of the surface of the trapped bubble should of order 1, one finds that hb(r), namely the value of h(r) in the
trapped bubble is equal to

hb(r) = 2 − ξ p0

4
r2 + h0

We assume now that the main contribution to the upward force is from the bubble, something to be checked at the end.
This yields from Eq. (25) that

r2
c = 4h0

p0ξ − 2

This gives a trapped bubble which is an almost perfect spherical cap with constant pressure inside. It should be connected
to the outside by a neck smoothing the solution near r = rc , as necessary because the integral contribution to the right-hand
side of Eq. (15) scales formally like r2/h4, of order ξ−3 in the bubble although p0 scales like ξ−1, which makes it dominant.
Therefore inside the trapped bubble the pressure is constant and equal to p0. The balance of vertical forces yields

h0 = p0ξ − 2

3π p0

This solution does not work however because it cannot be matched with the solution in the neck. In other words we have
to discard the hypothesis of spherical cap (for the surface of the trapped bubble), because the continuity of slope of the
surface at the transition between the neck and the trapped bubble cannot be insured.

5.2. Description of the trapped vapor bubble

The only possibility remaining is that the pressure inside the bubble is at leading order (with respect to ξ ) equal to 2/ξ

to balance Laplace’s pressure inside the droplet, plus a small contribution depending on r and balancing the curvature of
the droplet there. Therefore we assume that, inside the trapped bubble,

p = 2

ξ
+ pb

where pb(r) is much smaller than ξ−1. At leading order p = 2
ξ

. This makes it straightforward to derive the radius of the
trapped bubble from Eq. (18) which set out the balance of vertical forces. One finds

r2
c = 2ξ

3
(29)

This radius is actually the radial distance between the axis at r = 0 and the neck where the pressure makes a transition
from its value 2/ξ inside the bubble to zero outside of it. Therefore the radius inside the trapped bubble is of order ξ1/2,
the order of magnitude of rc . The equation relating pb to the curvature of the surface reads



874 Y. Pomeau et al. / C. R. Mecanique 340 (2012) 867–881
−ξ pb = hb,r2 + 1

r
hb,r (30)

The other equation relating hb and pb is derived from (14) and reads
(

rh3
b

12
p,r

)
,r

+ r

hb
= 0 (31)

Defining scaled quantities ξ−1/2r, ξ−3/5hb and ξ+7/5 pb makes disappear any small or large parameter in the differential
equations to be satisfied by those quantities. It means also that, inside the trapped bubble, the height is of order ξ3/5 and
that the correction to the leading order constant pressure (2/ξ in the original variables) is of order ξ−7/5, negligible in
the large ξ limit, as expected, with respect to the leading order contribution 2/ξ . Note also that even though the scaling
law hb ∼ ξ3/5 seems to imply that the lubrication approximation does not hold because h seems to be much bigger than
rc ∼ ξ1/2, this is not so because physically h and r are originally measured with different unit lengths. We shall come back
to this at the end of this section.

With the scaled quantities (written the same as the original quantities) the equations to be satisfied are Eq. (31) with
pb instead of p and

−pb = hb,r2 + 1

r
hb,r (32)

The condition to be satisfied by this set of equations is hb(rc) = 0 with rc = ( 2
3 )1/2. Actually this crossing is unphysical. It

defines the large distance behavior (in inner variables) of a neck solution connecting the trapped bubble with the outside.

5.3. Neck region

Let δ = r − rc be the local coordinate in the neck and hn(δ) be the local height. In the neck the pressure is of order 1/ξ

because it has to tend to p0 = 2/ξ on one side (in the trapped bubble) and to zero outside. From Eq. (18) because p is of
order ξ−1, hn(r) should scale like δ2. Assuming the neck to be much less extended than the trapped bubble, namely that
δ � rc , one finds that, inside the neck, h is much smaller than in the bubble, namely much smaller than ξ3/5, and

hn,δ2 = 2 − ξ p(δ)

This is to be completed by Eq. (14) relating the pressure and the height inside the neck. As far as the order of magnitude
with respect to ξ is concerned this last equation is consistent if p scales like 1/ξ , δ scales like ξ1/6 and hn(δ) scales like
ξ1/3 (this power law ξ1/3 makes, as expected, the height in the neck much smaller than the height of the trapped bubble
the latter being of order ξ3/5). Let us introduce local (overlined) quantities by absorbing the scaling laws in multiplicative
factors,⎧⎨

⎩
p = ξ p

δ = ξ−1/6δ

hn = ξ−1/3hn

(33)

The equations to be satisfied by the overlined quantities are purely numerical (namely without large or small parameter)
and read(

h3
n

12
p,δ

)
,δ

+ 1

hn
= 0 (34)

and

2 − p = hn,δ2 (35)

The boundary conditions for the pressure are simple to write. For δ very large negative (that is on the side of the bubble),
the scaled pressure should tend to p0 = 2, and as δ tends to plus infinity (namely outside the bubble) the pressure should
tend to zero. The asymptotic conditions for h(δ) are dealt with later.

Supposing hn known, one can integrate Eq. (34) to obtain:

p(δ) = −12

δ∫
−∞

dδ1

h3
n(δ1)

δ1∫
−∞

dδ2

hn(δ2)
+ p0 (36)

The integration limit r = 0 of the original problem is pulled to δ = −∞ for the overlined variable. The jump of pressure
from p = p0 = 2/ξ to zero takes place almost exclusively across the neck. This yields p0 = 2 as a constant of integration.
The other b.c. for the pressure is p → 0 as δ tends to plus infinity. It becomes the following condition for hn:
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2 = p0 = 12

+∞∫
−∞

dδ1

h3
n(δ1)

δ1∫
−∞

dδ2

hn(δ2)
(37)

The solution in the trapped bubble and in the neck should merge somewhere. This merging occurs in a region where the
solution of the equations on either side have a common power law behavior with respect to the distance to rc . This power
law behavior is easier to see on the neck side. It has to do with the way the solution behaves for δ large negative. The
equations to be solved are (34) and (35). Let us introduce p1 = 2 − p. The equations to be solved become

(
h3

n

12
p1,δ

)
,δ

= 1

hn

and

p1 = hn,δ2

They have as an exact solution the power law,

hn =
(

54

2

)1/5

(−δ)4/5

and

p1 = (−δ)−6/5

that makes an acceptable solution because, at large negative δ, p1 decays to zero. Therefore the pressure tends to 2, as it
should.

Outside the neck, the solution should merge with the asymptotic spherical droplet in a region where the pressure
tends to zero. For the neck solution this writes h̄ = δ̄2 + αδ̄k . Introducing this expression in Eqs. (34)–(35), we obtain the
asymptotic expansion valid for large δ̄

h̄n ≈ δ̄2 + 1

120
δ̄−4 + · · · (38)

and

p̄ ≈ 1

6
δ̄−6 (39)

These asymptotic expansions display a surface evolving towards a sphere, and a pressure decaying to zero at large positive
δ̄ as expected. In summary we have found that the solution of Eqs. (14)–(21) is unique, the choice of the initial conditions
h0,h,r2(0) being determined by the two conditions

⎧⎪⎪⎨
⎪⎪⎩

2

3
=

∞∫
0

dr rp(r)

lim p(r)r→∞ = 0

(40)

The above description of a vapor bubble encapsulated below the concave part of the droplet in the large ξ regime was
done under the hypothesis of axis-symmetric profile, although experiments report mostly non-axis-symmetric ones [6,7].
Therefore a quantitative comparison between numerical data and experiments is out of our scope. Nevertheless we have
found a fair agreement between numerical solutions of Eqs. (14)–(21) and the experimental profiles for large ξ , as illustrated
in Fig. 2. In this figure the experimental set-up is depicted in (a) (see the detail in [6]). A high speed camera is used to
image the interference fringes between the drop–vapor and substrate–vapor interfaces which are visible in (b). The relative
height profile below the drop along the horizontal of figure (b) is reported in (c), where the experimental asymmetrical
black curve (with circles) qualitatively agrees with the axis-symmetrical solution of Eqs. (14)–(21) obtained for the same
value of parameter ξ .

As shown in Fig. 2(c) the trapped bubble size and height are clearly comparable in the numerics and in the experiment.
Furthermore the trapped bubble connects with the outside through a very narrow neck, as predicted above. The narrow
neck is observed for large ξ values corresponding to the domain Ri < R < Rc as illustrated for ξ = 1000 in Fig. 3. In the
latter figure we also report the pressure profile in the gap (dashed curve) which decreases from the center of the bubble to
the outside of the neck, where it vanishes. The theoretical curves are drawn with the physical variables by scaling back the
variables h, p help to the expressions written in the next subsection.
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Fig. 2. Experiment and theory for ξ = 80. (a) Experimental setup; (b) 2D plot of the portion of surface below the drop (interference pattern) for a water
Leidenfrost droplet of radius R = 1.14 mm on a substrate kept at T0 = 400 ◦C; (c) experimental profile h − h0 (circles on the black curve) of the droplet
bottom along the horizontal axis of curve (b). The red curve inserted below is the theoretical solution of axis-symmetrical Eqs. (14)–(21) for ξ = 80, with
initial conditions h,r2 (0) = −1.2ξ−2/5, h0 = 0.75ξ3/5 plotted in physical variables using the scalings hs = 2.44 μm, rs = 53 μm, ps/σ = 0.07 μm−1 defined
in (13). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 3. Numerical solution of Eqs. (14)–(21) for ξ = 1000, or R = 2.36 mm. The height h (red solid curve) and pressure ap (blue dashed curve) are plotted
in physical variables, with a = 140 a scale factor. Initial conditions h,r2 (0) = −0.162, h0 = 0.9ξ3/5.

5.4. Large ξ domain in physical variables

The case ξ large considered here is such that the droplet radius fulfills the condition Ri � R � Rc . The length scale hs
for the height of the droplet above the heated plate, and the length scale for the horizontal distances rs are given by the
relations (13). Therefore the radial extent of the trapped bubble is

rb ∼ R2(Rc)
−1 (41)

which is also the radius of the disk of contact at equilibrium of small nonwetting droplets. The vertical thickness of the
trapped bubble is

hb ∼ R8/5 R3/5
l (Rc)

−6/5 (42)

The gap elongates in the horizontal direction as R increases, with an aspect ratio hb/rb = R−2/5 R3/5
l R−1/5

c becoming
smaller and smaller as R increases. Therefore the lubrication approximation remains correct as ξ gets bigger and bigger,
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which is equivalent to increase R at constant Rc and Rl . Therefore the range of applicability of the theory at large ξ relying
on the lubrication approximation extends all over the range [Ri, Rc] and stops to be valid when R becomes of the same
order of magnitude as the capillary radius.

6. Evaporation of droplets in the various regimes

An obvious application of the ideas presented before is the derivation of the lifetime of the droplet. This is related to the
evaporation flux from the droplet. This flux depends itself on the range of parameters where the radius lies. At very small
radii one expects that, because the droplet is well above the hot surface, the evaporation flux is very close to the one for
an isolated droplet (without the hot plate) in a vapor at temperature T + δT at large distances. In the case of an isolated
droplet the total mass evaporation rate is given in order of magnitude by J is ∼ R2ρv w with w = λ

Lρv
T ,z and T ,z ∼ T /R , that

gives

J is = RλδT

L
(43)

This mass loss rate is the one explaining the decay of the square radius proportional to time, the well-known D2 law. We
shall consider below the mass loss of matter out of the droplet in various range of radii. The corresponding law of decay of
the radius is easy to get in each case and we shall not do the calculation. Actually we shall limit ourselves to find whether
the main contribution to the evaporative mass comes from the quasi-spherical part of the droplet or from the evaporation
in the gap.

Let us compare to J is the evaporative mass in the vapor film between the droplet and the hot plate in the regime
Rl � R � Ri . In this regime, the area of the film is much less than 4π R2, the area of the drop, but the temperature
gradient in the film is much larger than δT /R , so the normal speed of evaporation is much bigger than what it is for an
isolated droplet with the same δT . Therefore it is not obvious which mass loss rate, J is or Jfilm is the largest. The total mass
loss rate in the film is of order l2ρv w ∼ l2 λδT

Lh . From the relation l2 = Rh one derives immediately that Jfilm ∼ J is where J is
is given in (43), an unexpected result valid in the regime Rl � R � Ri .

Let us estimate Jfilm in the regime Ri � R � Rc . We use again the relation Jfilm ∼ r2
bρv w ∼ r2

b
λδT
Lhb

together with the
estimates rb (radius of the film) and hb (thickness of the film or of the trapped bubble), given by Eqs. (41)–(42). Inserting
the order of magnitudes just derived into the expression of Jfilm pertinent for this case, we obtain

Jfilm ∼ λδT

L

(
R12

R4
c R3

l

)1/5

= J is

(
R

Ri

)7/5

(44)

Therefore, in the range Ri � R � Rc the ratio Jfilm/ J is is of order ( R
Ri

)7/5, much bigger than one, so that the flux is
dominated by the contribution from the film. We did not consider the flux coming from the neck domain. It is rather
straightforward to show that it is negligible compared to Jfilm in the limit ξ large and rb � R , equivalent to Ri � R � Rc .
Our theoretical prediction is confirmed by the experiment, as shown in Fig. 4. In this figure the experimental data (circles)
are obtained from droplets evaporating over a thin brass substrate (thin enough to be curved and then stabilize the droplet)
healed at 300 ◦C. The red curve is the best fit to Eq. (44) in the whole domain Ri < R < Rc , leading to a mass evaporating
rate very close to 2λδT

L ( R12

R4
c R3

l
)1/5, an expression that could be derived from Jfilm ∼ πr2

bρv w by using the relation (29) for

rc = rb/rs .

Fig. 4. The experimental mass evaporation rate (circles) are plotted together with the theoretical prediction (solid curve). The red curve is the best fit to

Eq. (44), very close to Jfilm = 2λδT
L ( R12

R4
c R3

l
)1/5. (For interpretation of the references to color in this figure, the reader is referred to the web version of this

article.)
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From this discussion one can conclude that, even though the low heat conductivity of the vapor lowers the rate of mass
loss of the droplet, it does it in different ways depending of the range of droplet radius one considers.

A droplet beginning with a radius of order Rc will decay to a (much smaller) radius Ri after a time of order t∗ ∼
(R3

c R7
i )

1/5 Lρl
λρv δT . If one substitutes R2 for (R3 R7

i )
1/5 in this estimate one gets back the standard D2 law. This is consistent

with the acceleration of the evaporation: to evaporate an isolated droplet of radius Rc would take a time of order R2
c

Lρl
λρv δT ,

much longer than the time t∗ just estimated (recall that Rc � Ri ).

7. Leidenfrost puddles

At equilibrium, drops of radius larger than Rc standing on a flat plate become flat puddles. Of course they can no longer
be characterized by their radius only, because their shape is not spherical. The relevant quantity to characterize them is
their volume. If this volume V were spherical, it would define a radius R = ( 3V

4π )1/3. Differently from the drop case above,
we consider below physical variables, in the limit R � Rc , with R so defined. In this limit, we assume that the equilibrium
puddle of liquid has a circular shape of radius of order rc and thickness of order Rc . From the estimate of the volume of
the puddle, the radius rc = ( R3

Rc
)1/2 can be considered as given and much bigger than Rc .

7.1. Description of the vapor layer

We consider now the situation of a flat puddle hovering on a hot plate by the Leidenfrost effect, and derive the structure
and thickness of the vapor layer between the plate and the puddle. Like in the case of droplets of radius in the range [Ri, Rc]
we assume the puddle to be very close to its equilibrium shape at the given volume. This has to be checked at the end to
yield a solution consistent with the assumptions and with the underlying physics. A direct consequence of the assumption
of closeness to the equilibrium shape is that the pressure in the puddle near the bottom is almost constant and just equal
to Archimedes hydrostatic value ρl g H , H being the height of the puddle, of order Rc , so that we shall simply replace H by
Rc in the coming order of magnitude estimates. Therefore the situation is similar to the one studied before in the sense
that the pressure in the liquid (above the vapor film) is constant, the Archimedes’s pressure replacing the Laplace’s one. Let
p0 ∼ ρl g Rc be this Archimedes pressure.

Eq. (20) for the pressure reads now

p0 − p = σ

(
h,r2 + 1

r
h,r

)
(45)

As we did before we assume that p is the constant p0 plus a small (with respect to a parameter to be found) part p1 which
balances the curvature term in Eq. (45). Therefore

−p1 = σ

(
h,r2 + 1

r
h,r

)
(46)

This is to be completed by Eq. (11) for the inhomogeneous part p1(r) of the pressure
(

rh3

12
p1,r

)
.r

+ r
ηkδT

h
= 0 (47)

and by the two boundary conditions⎧⎪⎪⎨
⎪⎪⎩

lim p1(r)r→+∞ = −p0

2

3
R3ρl g = p0

∞∫
0

(
1 + p1(r)

p0

)
r dr

(48)

which ensures that the axis-symmetric solution is unique. The two equations can be reduced to a dimensionless form by
taking⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rc =
(

R3

Rc

)1/2

hc = (
R3

l r4
c R−2

c

)1/5 = (
R3

l R6 R−4
c

)1/5

p1c = (
R3

l r−6
c R−2

c

)1/5

(49)

as unit for r, h and for p1/σ . The two resulting equations read

−p1 =
(

h,r2 + 1
h,r

)
(50)
r
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Fig. 5. Puddle study: (a)–(b) Solution of Eqs. (46), (47), (48) for R = 7.46 mm, also solution of Eqs. (50), (51) with initial conditions h0 = 1.825, h,r2 (0) =
−2.85. (c)–(d) Experimental (points) and theoretical (solid lines) values, of the height h in (c) and neck radius rneck in (d) versus R , of the vapor bubble
below the drop. The piecewise theoretical curves are plotted in physical variables, from Eqs. (41), (42) for Ri < R < Rc , and relations (49) for Rc < R < Rmax ,
both without any fit.

and (
rh3

12
p1,r

)
.r

+ r
1

h
= 0 (51)

The condition p1 � p0 is satisfied if rc � (Rc Rl)
1/2, which is satisfied because we assumed rc � Rc � Rl .

There is another constraint on this solution: the film of vapor must be a thin layer underneath the puddle. Therefore its
height must be much smaller than the height of the puddle. This implies Rc � h, equivalent to Rc � R3/5

l r4/5
c R−2/5

c , or to

R7
c � R3

l r4
c . This puts an upper bound on the radius of the puddle: rc

Rc
� ( Rc

Rl
)3/4, which is compatible with the conditions

Rc � rc and Rl � Rc . Lastly a neck makes the transition between the trapped bubble and the outside. In the neck the
equations to be satisfied are formally the same as Eqs. (34) and (35), except that the scaling are derived differently. The
constant pressure in the trapped bubble is now p0 = ρl g Rc . One obtains the same equations as (34) and (35) by taking as
units of width, height and pressure,⎧⎪⎪⎨

⎪⎪⎩
δ = (Rc Rl)

1/2

h = Rl

p = p0

2

(52)

The b.c. are the same as before, namely p tends to 2 as δ tends to minus infinity and p tends to 0 as δ tends to plus
infinity. In summary, we find that the steady state solution of the puddle profile is given by Eqs. (34) and (35) written in
terms of the scaled variables p1,h by using the scalings (49). The unique axis-symmetric solution is obtained by choosing as
initial conditions the value of h(0),h,r2(0) such that the relations (48) are fulfilled. It is remarkable that this puddle solution
is given by the solution of the same set of equations, but with different scaling parameters. Remember that it has a limited
range of existence because, physically, the wider is the puddle, the larger is the pressure in the trapped bubble, so that it
reaches the top of the puddle at the limit of its domain of existence. It could be that at still larger masses of fluid, steady
solutions have chimneys of vapor crossing the puddle from bottom to top. In reality it is likely that this corresponds to the
onset of boiling, an unsteady phenomenon in general. Moreover the trapped bubble could be Rayleigh–Taylor unstable as
soon as rc gets bigger than few Rc , an instability that could be counteracted by viscosity of the vapor in the gap. Therefore
steady solutions in this range of values of rc � Rc are at best only indirectly connected to real life phenomena. An example
of numerical solution for the puddle is given in Fig. 5 where curves (a)–(b) display the profile and pressure for R close to
Rmax , the largest radius of stable water puddles. We plot in curves (c)–(d), solid lines, the theoretical values of the height
and neck radius for the two domains [Ri, Rc] and [Rc, Rmax] as derived in paragraphs (5) and (7) respectively. The points
reported on these figures are experimental results corresponding to Fig. 2 of [7], that are in very good agreement with our
theoretical predictions drawn without any fit to experimental data. Let us precise that the data in [7] are drawn versus a
variable rmax which is the radius of the neck below the drop, while we expressed here our results versus the radius R of
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a drop having the same volume. Therefore in order to compare the data of [7] with our theoretical results, we have set
rmax = R for R = Rc , and rmax = R( 2R

3Rc
)1/2 for R � Rc , and in between we have extrapolated the rmax(R) dependence.

7.2. Evaporation rate

The mass evaporation rate of the vapor layer below puddles can be derived by using similar argument as used for
droplets in Section 6. It writes Jfilm ∼ r2

c ρv w ∼ r2
c

λδT
Lhc

where rc and hc are the radius and height of the film. Introducing the
physical values written in Eq. (49), we obtain

Jfilm ∼ λδT

L

(
R9

Rc R3
l

)1/5

= J is

(
R

Ri

)4/5( Rc

Ri

)3/5

(53)

which is still much larger than the evaporation rate of the equivalent spherical isolated drop. Let us compare this mass
loss rate (out of the vapor layer) with the rate out of the top of the puddle, and also with the rate out of the neck region.
To calculate the temperature gradient close to the top surface of the puddle, we see the puddle as a disk of radius rc and
temperature T −δT inserted on a plate heated at temperature T . This leads to a vertical temperature gradient of order δT /rc
because rc is the unique scale length of this problem. It follows that the evaporation rate is J top ∼ r2

c
λδT
Lrc

∼ hc
rc

Jfilm at the top

of the puddle. On the other hand the mass loss rate in the neck region is Jneck ∼ rcδ
λδT
Lh

∼ δ
rc

hc

h
Jfilm . Using Eqs. (49)–(52),

these two relations lead to the ratios

J top

Jfilm
∼

(
Rl√
R Rc

)3/5

(54)

and

Jneck

Jfilm
∼

(
Rl R2

c

R3

)1/10

(55)

that are much smaller than unity for Rl � Rc < R � Rmax (recall that Rmax is of order few Rc). We conclude that the
evaporation mostly takes place in the vapor layer below the puddle, as it was shown for droplets in the range Ri < R < Rc
in Section 6. In summary the evaporation process happens through the vapor bubble for any drop or puddle whose radius
R belongs to the domain [Ri, Rmax].

8. Summary and perspective

This contribution explains the scaling laws for the Leidenfrost phenomenon, sweeping the domain of small droplets
to large puddles. Our approach relies on a scaling analysis of the fundamental equations in the lubrication approximation,
which has a wide domain of applicability for explaining the Leidenfrost phenomenon. A significant restriction on the validity
of our approach is a constraint on the control parameters: we assumed Rc � Rl , in agreement with the data for the
experiments done in Nice. It could be however that this inequality is not satisfied in other experiments, opening the way
to other scaling laws. Another very interesting question is the transition to boiling. It has to do with the extension of our
approach to large puddles. Experimentally this could be related to the much studied and still mysterious effect of film
boiling. There one has to deal with the occurrence of physical contact between the liquid and the hot plate by the breaking
of the continuity of the vapor film, something beyond our approach, as we assumed the hot plate to be at fixed temperature,
above the boiling temperature of the liquid. Likely the understanding of the transition to film boiling requires a solution of
the heat transfer equations in the solid also. The ratio of heat conductivities of the vapor and the solid could be used as a
small parameter for this problem.

Another limit for the applicability to real experiments of the concepts of fluid mechanics and heat transfer, as used in
the present work, is the Knudsen limit: the mean-free path of molecules in ordinary conditions in air is in the micrometric
range, and could be of the same order or even bigger than some length scales of the Leidenfrost phenomenon. Indeed the
smallest scale is the thickness of the film of vapor underneath the droplet. If this thickness gets noticeably smaller than the
mean free path, the correct physical picture for the flow there is by the direct solution of the equations of kinetic theory,
which are either the Boltzmann equation in principle or simplified versions of it, like the BGK model [9]. In the limit of a
mean-free path much bigger than the thickness of the vapor layer, one recovers a rather simple description: the molecules
bounce on both sides of the thin layer and so make a Brownian motion in the horizontal direction. This is described in the
lubrication approximation by a diffusion equation with the time and the horizontal coordinates as variables, and the number
density per unit horizontal area as conserved quantity. This has to be matched with the regular continuum mechanics
picture (Stokes equation and Laplace’s equation for the temperature field). This transition to a rarefied gas situation could
explain some of the observation of splashing of droplets at low pressure [8]. In this much studied problem of the impact
of droplets on solid surfaces (in the absence of any temperature effect), the pressure in the trapped bubble should depend
on the history of the collision, and some scaling laws derived in this paper could be valid. For example small impacting
droplets at low speed could remain quasi-spherical and so could be dealt with the same lubrication approximation that we
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used. At larger impact velocities it is likely that a concave trapped bubble could show up too. All this will be the subject of
future investigations.
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