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The ignition time of hydrogen–air diffusion flames is a quantity of utmost interest in a large
number of applications, with implications regarding the viability of supersonic combustion
and the safe operation of gas turbines. The underlying chemistry and the associated
ignition history are very different depending on the initial temperature and pressure. This
article addresses conditions that place the system above the so-called second explosion
limit, as is typically the case in SCRAMJET operation, so that a branched-chain explosion
characterizes the ignition process. The roles of local radical accumulation, molecular
transport, and chemical reaction in nonpremixed ignition are clarified by considering the
temporal evolution of an unstrained mixing layer formed between two semi-infinite spaces
of hydrogen and air. The problem is formulated in terms of a radical-pool mass fraction,
whose evolution in time is studied with a WKB expansion that exploits the disparity of
chemical time scales present in the problem, leading to an explicit expression for the
ignition time. The applicability of the analytical results for obtaining predictions of ignition
distances in supersonic-combustion applications is also considered.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In nonpremixed combustion devices the air and the fuel mix and react after entering the combustion chamber through
separate feed streams. For the high Reynolds numbers typically encountered in practical burners the flow is turbulent.
Molecular mixing and chemical reaction occur at the interface between the reactant streams in thin mixing layers strained
by the outer flow [1]. When the flow velocity is sufficiently large, as occurs in supersonic-combustion applications, no up-
stream flame propagation is possible, and combustion stabilization relies on autoignition of the mixture [2]. The combustion
zone appears downstream from the injection point at a distance such that the mixture, convected downstream with the
mean flow, has had sufficient time to self-ignite. The effect of flow stretch tends to delay ignition, as first noticed by Ni-
ioka [3], so that autoignition is seen to occur in regions of low scalar dissipation, as revealed by numerical and experimental
studies [4].

The character of the autoignition process depends on the chemistry of the specific fuel considered. A thermal explosion,
including a sudden thermal runaway at a well-defined time, appears often when the controlling chemical reaction has a high
temperature sensitivity. The associated mixing-layer ignition problem was investigated by Liñán and Crespo [5] with a 1-
step irreversible Arrhenius reaction adopted for the chemistry description, an analysis that was later extended by Niioka [3]
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Table 1
The 5-step mechanism for hydrogen–air high-temperature ignition with rate coefficients in Arrhenius form k = AT n exp (−E/R0 T ).

Reaction Aa n Ea

1 H + O2 → OH + O k1 3.52 × 1016 −0.7 71.42
2 H2 + O → OH + H k2 5.06 × 104 2.67 26.32
3 H2 + OH → H2O + H k3 1.17 × 109 1.3 15.21
4 H + O2 + M → HO2 + Mb k0 5.75 × 1019 −1.4 0.0

k∞ 4.65 × 1012 0.44 0.0
5 H2 + O2 → HO2 + H k5 2.69 × 1012 0.36 231.86

a Units are mol, s, cm3, kJ, and K.
b Chaperon efficiencies are 2.5 for H2, 16.0 for H2O, and 1.0 for all other species; Troe falloff with Fc = 0.5.

to account for the effect of flow strain. By way of contrast, for hydrogen or for fuel mixtures containing a significant
amount of hydrogen (e.g., syngas mixtures), a branched-chain explosion with quasi-isothermal autocatalytic radical growth
characterizes the ignition process when the feed-stream temperature is above the so-called crossover temperature [6], the
conditions of interest for SCRAMJET operation.1

The problem of hydrogen–air autoignition in SCRAMJET-like configurations has been considered previously in numerous
papers [4], a recent example being the study of Boivin et at. [8] (see also [9]), whose results were validated by comparison
with the experimental measurements of Cheng et al. [10]. Due to the complexity of the resulting flow, it is rather difficult
to extract information from the numerics on the role of the different physicochemical mechanisms involved in the ignition
process. To that end, theoretical analyses of hydrogen–air mixing-layer ignition incorporating realistic chemistry are often
more useful (see, e.g., [11–13]), in that they serve to clarify more readily the underlying competing phenomena, that being
the purpose of the present paper.

As a simplified case, we neglect herein the effect of flow strain on the ignition process, and focus instead on the time
evolution of the unstrained mixing layer formed between two semi-infinite spaces of hydrogen and air. Unlike previous
mixing-layer theoretical studies [11–13], full account is taken of variations of density and transport properties with temper-
ature and molecular mass, and an explicit analytical solution is presented for the mixing process in isothermal hydrogen–air
mixing layers. We shall see how the starting chemistry, including five elementary reactions with H, O and OH as chemical
intermediates, can be conveniently simplified by introducing a radical-pool variable that appropriately accounts for the de-
partures from steady state of O and OH, thereby reducing the description of the branched-chain explosion to the integration
of a single evolution equation. An asymptotic analysis based on the disparity of time scales involved in the problem will be
performed, showing how the effects of transverse mixing and radical loss by diffusion influence the ignition history. Also,
the development leads to a simple explicit expression for the ignition time. We shall show how the product of this ignition
time and the average convection velocity may be used to provide a simple estimate for the ignition distance in SCRAMJET
devices.

We begin the presentation in Section 2 by using the case of homogeneous ignition as an example to discuss various
simplifications to the chemistry, to be used later in the mixing-layer problem, which is next formulated in Section 3.
The asymptotic analysis is presented in Section 4, followed by some concluding remarks in Section 5.

2. Simplifications to the chemistry description

2.1. Hydrogen–air ignition chemistry

Although detailed chemical-kinetic mechanisms for hydrogen–air combustion, such as the so-called San Diego Mecha-
nism [14], include up to 21 reversible elementary reactions, description of the branched-chain explosion leading to ignition
in high-temperature environments requires only consideration of the five elementary reactions shown in Table 1. Since
radical concentrations are low prior to ignition, radical regeneration through HO2 attack by H and OH is typically unimpor-
tant and has been correspondingly neglected in writing the short mechanism, thereby causing HO2 to behave effectively as
a product in the 5-step chemistry description. Radical buildup during ignition depends on the competition of the shuffle
reactions 1–3 with the recombination reaction 4, with the former being progressively more dominant as the temperature in-
creases above the so-called crossover temperature, defined below in (7). Although the reaction-rate constant of reaction 5 is
much smaller than those of the other reactions in the temperature range of interest, so that for instance k5/k1 � 1.45×10−8

at T = 1200 K, this reaction must be included in the mechanism to provide the initial radical growth when radicals are ab-
sent at the initial instant.

The accuracy with which the 5-step mechanism reproduces the detailed-chemistry results is illustrated in Fig. 1, which
shows the evolution with time of the temperature and of the mole fractions XH and XH2 in a stoichiometric H2–air mixture
contained in a homogeneous adiabatic reactor at constant atmospheric pressure p = 1 atm and with initial temperature

1 It is of interest to note that, as revealed in recent work [7], a thermal explosion characterizes hydrogen ignition for conditions below crossover, found for
instance in gas-turbine mixers upstream from the combustion chamber, so that the corresponding mixing-layer ignition would be similar to that described
by Liñán and Crespo [5].
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Fig. 1. The time evolution of XH2 , XH, and T for a stoichiometric hydrogen–air mixture in a homogeneous adiabatic reactor at constant atmospheric
pressure and initial temperature T = 1200 K as obtained from numerical integrations with the SD mechanism (solid curves) and with the 5-step mechanism
(dashed curves).

T = 1200 K. As can be seen, the reaction history includes an induction stage of exponential radical growth with negligible
reactant consumption and negligible heat release, followed by a stage of radical recombination with progressive temperature
increase. It can be seen in the plot that the 5-step mechanism describes accurately the radical growth during the branched-
chain explosion until the peak radical concentration is reached. Ignition times can be identified with the temperature-
inflection criterion or with the occurrence of a maximum in the H-atom concentration, both criteria giving results that
differ typically by less than 5%, but the latter is inappropriate with the 5-step mechanism.

Reactant consumption and heat release can be neglected during the induction stage, so that the homogeneous-reactor
problem reduces to that of integrating the evolution equations for the radicals

dCH

dt
= −k1CO2 CH + k2CH2 CO + k3CH2 COH − k4CM4CO2 CH + k5CO2 CH2 (1)

dCO

dt
= k1CO2 CH − k2CH2 CO (2)

dCOH

dt
= k1CO2 CH + k2CH2 CO − k3CH2 COH (3)

with initial conditions CH = CO = COH = 0, yielding a linear problem that has been considered in the past (see [15] and
references therein). Here, Ci denotes the concentration of species i and CM4 is the effective third-body concentration of reac-
tion 4, which accounts for the increased chaperon efficiency of H2 according to CM4 = (1+1.5XH2 )CM, where CM = p/(R0T )

is the third-body concentration and R0 = 8.314 J/(kg K) represents the universal gas constant. With reactant consumption
neglected, the solution of the linear system (1)–(3) leads to unbounded radical growth, so that a criterion must be intro-
duced to identify ignition conditions. For instance, one may identify ignition as the instant of time at which the H-atom
concentration obtained from integration of (1)–(3) reaches a value equal to the initial H2 concentration. In view of Fig. 1,
since the peak radical concentration is somewhat smaller than the initial H2 concentration, overpredictions on the order of
10% can be expected to be associated with this simple condition CH = CH2 .

2.2. The steady-state assumptions for O and OH

The problem can be simplified by exploiting the fact that the rate constants for reactions 2 and 3 are larger than that of
reaction 1, so that for instance k1/k2 = 0.318 and k1/k3 = 0.0746 at T = 1200 K, thereby promoting rapid consumption of O
and OH. The development begins by combining linearly (1)–(3) to eliminate the terms involving the fast reactions 2 and 3,
yielding

d

dt
(CH + 2CO + COH) = (2k1 − k4CM4)CO2 CH + k5CO2 CH2 (4)

where a characteristic branching time

t̃B = 1
(5)
(2k1 − k4CM4)CO2
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appears, and a characteristic initiation time

tI = 1

k5CO2

(6)

occurs, such that t̃B/tI ∼ k5/k1 � 1. As can be seen in (4), an exponential radical growth takes place if the condition
2k1 > k4CM4 is satisfied, which occurs as long as the temperature is above a crossover temperature, defined for ignition by
the equation

2k1 = k4(1 + 1.5XH2)p/
(

R0T
)

(7)

giving for instance T � (930,1250) K when evaluated at p = (1,20) atm with XH2 = 0. Note that a slightly different defini-
tion applies when the combustion conditions are such that the attack of HO2 by radicals is nonnegligible, thereby modifying
the effective radical growth rate, as occurs for instance in lean premixed flames [16,17].

An order-of-magnitude analysis serves to simplify the solution. Thus, with anticipated radical evolution times of order t̃B,
the accumulation rates in (2) and (3) can be expected to be negligibly small when the conditions k2CH2 � k1CO2 and
k3CH2 � k1CO2 are satisfied. If they are neglected, then (2) and (3) reduce to algebraic equations that can be solved to give
the steady-state expressions

CO = k1CO2

k2CH2

CH (8)

and

COH = 2k1CO2

k3CH2

CH (9)

According to these two equations, in the limit k2CH2 � k1CO2 and k3CH2 � k1CO2 the concentrations of O and OH are much
smaller than that of H. At leading order in the steady-state analysis, one may therefore neglect CO and COH in (4) to yield

d

dt
(CH) = (2k1 − k4CM4)CO2 CH + k5CO2 CH2 (10)

leading to

CH

CH2

= t̃B

tI

(
et/t̃B − 1

)
(11)

upon integration with initial condition CH(0) = 0. The above expression indicates that for t ∼ t̃B the H-atom concentration
reaches very small values of order CH = (t̃B/tI)CH2 . The results in Fig. 1 indicate that ignition is associated with radical
concentrations becoming comparable to, although somewhat smaller than, the initial reactant concentrations, and therefore
requires much larger times, which can be computed by using the ignition criterion CH = CH2 in (11) to yield in the first
approximation

tig = t̃B ln

(
tI

t̃B

)
= 1

(2k1 − k4CM4)CO2

ln

(
2k1 − k4CM4

k5

)
(12)

for the ignition time, with ln(tI/t̃B) ∼ 15–20 for temperatures of practical interest.
The prediction given in (12) is compared in Fig. 2 with detailed-chemistry computations of ignition times using the

temperature-inflection criterion. As can be seen, although the prediction is reasonably accurate for rich mixtures, giving
overpredictions on the order of 10% that are consistent with the ignition criterion CH = CH2 selected in deriving (12), in-
creasing departures are found as the mixture becomes leaner, with (12) severely underpredicting the result. The reason for
the identified failure is that the assumptions of fast O and OH consumption, used in deriving (10) from (4), rely on the
conditions k2CH2 � k1CO2 and k3CH2 � k1CO2 and therefore become increasingly inaccurate as the fuel content decreases,
resulting in significant underpredictions of ignition times for lean mixtures. In particular, while the detailed-chemistry com-
putations predict ignition to be fastest near stoichiometric conditions, the steady-state expression (12) yields the minimum
ignition time where the H2 concentration vanishes. Hence, if utilized in mixing-layer computations, the steady-state as-
sumptions for O and OH would lead to inaccurate predictions of ignition events, occurring too early and too far on the air
side.

2.3. The radical-pool variable as a first-order correction

These inaccuracies of the O and OH steady-state assumptions have been known for quite some time, with different
remedies proposed depending on the specific application of interest [18,19]. Following ideas developed previously [13],
a different approach is taken here, based on the introduction of the radical-pool concentration C = CH +2CO +COH appearing
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Fig. 2. The dependence on equivalence ratio φ of the ignition time of a hydrogen–air mixture as obtained in a homogeneous adiabatic reactor at constant
pressure from numerical integrations with the SD mechanism using the temperature-inflection criterion (solid curves) and from evaluations of (12) (dashed
curves) and of (17) (dot-dashed curves).

in the accumulation term of (4) for the description of the branched-chain explosion. The proposed strategy avoids the large
inaccuracies associated with the neglect of the concentrations CO and COH. In deriving an evolution equation for C , the
steady-state expressions (8) and (9) are used to relate C with the H-atom concentration according to

C = CH + 2CO + COH =
(

1 + 2k1CO2

k2CH2

+ 2k1CO2

k3CH2

)
CH (13)

which is the employed to rewrite (4) in the form

dC

dt
= (2k1 − k4CM4)CO2 CH2

CH2 + 2(k1/k2 + k1/k3)CO2

C + k5CO2 CH2 (14)

similar to (10) but involving a branching time

tB = CH2 + 2(k1/k2 + k1/k3)CO2

(2k1 − k4CM4)CO2 CH2

(15)

that depends on the H2 concentration and shows a minimum value for a mixture composition close to stoichiometric
conditions. Integrating (14) with initial condition C(0) = 0 gives

C

CH2

= tB

tI

(
et/tB − 1

)
(16)

which can be employed, together with the ignition condition C = CH2 , to derive the expression

tig = tB ln

(
tI

tB

)
(17)

for the ignition time, with tI and tB given, respectively, in (6) and (15) in terms of the composition and temperature. This last
equation is shown in Fig. 2 to give reasonably accurate predictions of ignition times over the whole range of compositions,
with overpredictions that are of the order of 10% for the most reactive conditions, found near stoichiometry, as is consistent
with the ignition criterion selected. Similar inaccuracies can be expected to arise when using the radical pool in analyzing
mixing-layer ignition problems, as is done below.

3. Formulation of the mixing-layer problem

3.1. Conservation equations

Consider the temporal evolution of two stagnant spaces of H2 and air that begin to mix and react at time t = 0, with
the air occupying initially the semi-space x > 0. In the weakly reactive solution observed prior to ignition, the reactants
mix without appreciable chemical reaction, giving a nearly self-similar evolution for the reactant and temperature profiles.
To describe the ignition process, including the self-similar mixing occurring in the absence of chemical reaction, it is conve-
nient to formulate the problem in terms of the dimensionless coordinate η = x/(D ′∞t)1/2, where D ′∞ represents the value of
the H2–air binary diffusion coefficient evaluated at the air-side temperature. Correspondingly, the transverse velocity v ′ and
the diffusion velocity V ′ of each species i are scaled with (D ′∞/t)1/2, yielding the dimensionless variables v = v ′/(D ′∞/t)1/2
i
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and V i = V ′
i /(D ′∞/t)1/2. The temperature, density, and thermal conductivity are scaled with the properties on the air side

to give the dimensionless variables T = T ′/T ′∞ , ρ = ρ ′/ρ ′∞ , and κ = κ ′/κ ′
A∞ . The problem reduces to that of integrating

∂ρ

∂t
+ 1

t

[
(ρv)η − 1

2
ηρη

]
= 0 (18)

ρ
∂Yi

∂t
+ 1

t

[
ρ

(
v − η

2

)
Yiη + (ρYi V i)η

]
= Miωi

ρ ′∞
(19)

1

T

∂T

∂t
+ 1

t

[
1

T

(
v − η

2

)
Tη − L(κTη)η

]
= −

∑
i

hiωi

ρ ′∞c′
p∞t∞

(20)

with initial conditions at t = 0

η > 0: Yi − Yi∞ = T − 1 = 0 (21)

η < 0: Yi − Yi−∞ = T − T−∞ = 0 (22)

and boundary conditions for t > 0 given by

η → +∞: v = Yi − Yi∞ = T − 1 = 0 (23)

η → −∞: Yi − Yi−∞ = T − T−∞ = 0 (24)

including a condition of zero displacement v = 0 on the air side. The resulting ignition time is independent of this last
choice, in that introduction of a different condition for the transverse velocity, such as zero displacement v = 0 on the
hydrogen side η → −∞, would cause a shift in the transverse location of the different profiles, but would not modify the
resulting ignition time.

In the formulation, the subscript η is used to indicate differentiation with respect to this variable and the subscripts ∞
and −∞ are employed for the magnitudes on the air and hydrogen sides, respectively. Here, Yi , Mi , ωi , and hi represent,
respectively, the mass fraction, molecular mass, chemical production rate (mols per unit volume per unit time), and molar
enthalpy of species i. Since all species except for H2, nitrogen and oxygen appear in negligibly small concentrations, the
mass fraction of air in the mixture is given in the first approximation by (1 − YH2 ), so that the equation of state reduces to

ρT = 1

(MA/MH2)YH2 + 1 − YH2

(25)

in terms of the air-to-hydrogen molecular-mass ratio MA/MH2 � 14.5. In writing (20) the specific heat per mol of gas
mixture is assumed to be constant and equal to that found on the air side, so that the product of the density times the
specific heat per unit mass c′

p is proportional to the reciprocal of the temperature according to (ρ ′c′
p)/(ρ ′∞c′

p∞) = 1/T ,
an excellent approximation for H2–air gas mixtures in the temperature range considered (900 K < t < 1800 K). The thermal
conductivity is a function of the composition and temperature, with the simple expression

κ = κH2–A(MA/MH2)
2/3YH2 + 1 − YH2

(MA/MH2)
2/3YH2 + 1 − YH2

T σ (26)

suggested by Rosner [20], used below in computations, with κH2–A = κ ′
H2∞/κ ′

A∞ � 7 denoting the hydrogen-to-air thermal
conductivity ratio evaluated at the air-side temperature and with the value σ = 0.7 employed for the presumed power-
law temperature dependence. The Lewis number L = κ ′

A∞/(ρ ′∞c′
p∞ D ′∞) appearing in (20) is taken to be L = 0.3 in the

computations.

3.2. Chemically frozen mixing layer

In the absence of chemical reaction, the solution is self-similar when expressed in terms of the variable η. Since the
molecules of nitrogen and oxygen are very similar, for describing diffusion they can be treated as a single species with
average molecular mass MA, so that the mixture is effectively binary. The composition is determined in terms of YH2 ,
with the oxygen mass fraction obtained simply from YO2 = YO2 A (1 − YH2 ), with YO2 A = 0.232 representing the oxygen
mass fraction in the air mixture. The diffusion velocity of hydrogen can be obtained by solving exactly the Stefan–Maxwell
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equation for a binary mixture to give the Fickian law [1]

YH2 V H2 = −T 1+σ
f (YH2η

− 0.29YH2 T fη/T f ) (27)

which includes thermal diffusion, with T f denoting the chemically-frozen temperature distribution and −0.29 used for the
Soret factor. The problem reduces to that of integrating

(ρv)η − 1

2
ηρη = 0 (28)[

ρT 1+σ
f

(
YH2η

− 0.29
YH2

T f
T fη

)]
η

+ ρ

(
1

2
η − v

)
YH2η

= 0 (29)

LT f (κT fη )η +
(

1

2
η − v

)
T fη = 0 (30)

supplemented with (25) and (26) written for T = T f , with boundary conditions

η → +∞: v = YH2 = T f − 1 = 0 (31)

η → −∞: YH2 − 1 = T f − T−∞ = 0 (32)

The solution requires in general numerical integration for the computation of ρ , v , YH2 , and T f as a function of η for
a given value of the hydrogen-to-air temperature ratio T−∞ , the only free parameter in the problem. As shown in [21],
an analytic solution arises for the quasi-isothermal case T−∞ − 1 � 1, when T f − 1 � 1 everywhere across the mixing
layer, thereby reducing the equation of state (25) to

YH2 = MH2

MA − MH2

(
1

ρ
− 1

)
(33)

Differentiating the above equation and substituting the result into (29) gives

ρ

(
ρη

ρ

)
η

+
(

1

2
η − v

)
ρη = 0 (34)

which further reduces to ρ(v + ρη/ρ)η = 0 by addition of (28). Integrating with the boundary conditions as η → +∞
provides

v = −ρη/ρ (35)

which can be used in (28) to give the linear equation

ρηη + 1

2
ηρη = 0 (36)

finally yielding

ρ = 1 − MA − MH2

2MA
erfc

(
η

2

)
(37)

upon integration, with erfc representing the complementary error function. This last expression can be used in (33) and (35)
to determine the variation of YH2 and v across the mixing layer, along with the accompanying H2 and O2 mole fractions

XH2 = 1 − XO2

XO2 A

= YH2

YH2 + (MH2/MA)(1 − YH2)
(38)

which can be seen to simplify to

XH2 = 1 − XO2

XO2 A

= 1

2
erfc

(
η

2

)
(39)
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3.3. Radical-pool conservation equation

Guided by the previous homogeneous-ignition results, to describe the chain-branching explosion in the mixing layer we
introduce a radical-pool variable, so that the problem reduces to the integration of a single parabolic partial differential
equation. As before, we begin by writing the conservation equations for the radicals H, O, and OH, obtained by writing (19)
for the short chemistry description considered here to give

∂YH

∂t
+ 1

t

[(
v − η

2

)
YHη − 1

ρ
(ρDHYHη )η

]
= MH

ρ ′ (−ω1 + ω2 + ω3 − ω4 + ω5)

∂YO

∂t
+ 1

t

[(
v − η

2

)
YOη − 1

ρ
(ρDOYOη )η

]
= MO

ρ ′ (ω1 − ω2)

∂YOH

∂t
+ 1

t

[(
v − η

2

)
YOHη − 1

ρ
(ρDOHYOHη )η

]
= MOH

ρ ′ (ω1 + ω2 − ω3)

where a Fickian description is assumed for radical diffusion into the mixture, with Di denoting the diffusivity of species i
scaled with D ′∞ . We proceed by combining the above equations to eliminate the singular rates ω2 and ω3, as done earlier
in deriving (4), with the appropriate radical-pool variable being in this case

Y = YH + 2
MH

MO
YO + MH

MOH
YOH (40)

to be expressed as

Y =
(

1 + 2k1 XO2

k2 XH2

+ 2k1 XO2

k3 XH2

)
YH (41)

with use made of the steady-state expressions (8) and (9) together with the identities Ci = ρYi/Mi = Xi CM. The develop-
ment is simplified if we assume constant values of Di , because in the resulting linear combination the diffusive term can
be expressed in terms of Y by introducing an effective diffusivity

D = DH + 2(DOk1/k2 + DOHk1/k3)XO2/XH2

1 + 2(k1/k2 + k1/k3)XO2/XH2

(42)

thereby yielding the evolution problem

∂Y

∂t
+ 1

t

[(
v − η

2

)
Yη − 1

ρ

[
ρ(DY )η

]
η

]
= Y

tB
+ XH2 MH/M

tI
(43)

subject to the initial and boundary conditions

t = 0: Y = 0 for −∞ < η < +∞
t > 0: Y = 0 as η → ±∞ (44)

Here, M is the mean molecular weight of the gas mixture. As in (14), the chemical times tI and tB are those defined in (6)
and (15), which are functions of η to be calculated across the mixing layer from the chemically-frozen profiles T f , XH2 ,
and XO2 .

Transverse diffusion of radicals will be seen to have a dominant effect on the mixing-layer evolution. This can be antici-
pated by considering the simplified description

Y

XH2 MH/M
= tB

tI

(
et/tB − 1

)
(45)

obtained from (43) by neglecting the transport terms, i.e., the terms in square brackets. As can be seen, in the absence of
radical transport, the radical pool at each transverse location would follow the exponential increase (16) of the homogeneous
explosion, with a branching rate corresponding to the local conditions of composition and temperature, giving a maximum
growth rate at the intermediate location η = η∗ where tB is minimum. Since ignition requires values of t/tB ∼ ln(tI/tB) � 1,
the solution given by (45) would develop a pronounced peak at η = η∗ , thereby promoting diffusive radical loss to the sides
and reducing the peak growth rate. The predominant role of radical diffusion can be further appreciated by substituting (45)
into (43), because the transport terms evaluated in that way turn out to be a factor t/tB larger than the accumulation or
branching terms. As shown below, to determine the ignition solution for times much larger than tB full consideration must
be given to the interplay between chemical production, local accumulation, and transverse transport of radicals.
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Fig. 3. The reduced branching rate WB for the isothermal mixing layer evaluated from (48) for k1/k2 = 0.318 and k1/k3 = 0.746.

4. Asymptotic analysis

4.1. The WKB method

For the analysis it is convenient to use a dimensionless time τ = (2k1∞ − k4∞CM∞)CM∞t in writing the evolution
equation (43) in the form

∂Y

∂τ
+ 1

τ

[(
v − η

2

)
Yη − 1

ρ

[
ρ(DY )η

]
η

]
= WB(η)Y + εXO2 XH2 (46)

The dimensionless branching rate WB(η) = [(2k1∞ − k4∞CM∞)CM∞tB]−1 and the initiation-to-branching rate-constant ratio

ε = MH

M

k5

2k1∞ − k4∞CM∞
(47)

are to be computed from the reactant and temperature frozen distributions. For instance, for the isothermal mixing layer

WB(η) = XO2 XH2

XH2 + 2(k1/k2 + k1/k3)XO2

(48)

with XH2 and XO2 given in (39), resulting in the branching-rate distribution shown in Fig. 3 for the values k1/k2 = 0.318
and k1/k3 = 0.746 associated with a temperature of 1200 K. This branching rate shows a maximum value W ∗

B � 0.106 at
η = η∗ � 0.787, corresponding to the minimum of the branching time (15).

Since the value of ε is always small, the effect of initiation is only important for t ∼ tB, i.e., τ ∼ O (1), when the value
of Y is of order ε, and it is negligible for larger times. Ignition occurs when Y reaches values of order unity, which occurs
for t/tB ∼ ln(tI/tB), corresponding in the present formulation to τ ∼ ln(ε−1) � 1. In analyzing ignition, one may therefore
neglect the initial stage in which initiation is important and focus on the long-time evolution for τ � 1 with initiation
neglected in (46) and the radical pool taking the form

Y /ε = exp
[
G0(η)τ + G1(η)τ 1/2 + G2(η) + · · ·] (49)

Introducing the above expansion into (46) and solving sequentially the problems that arise at different orders in powers
of τ determines the functions G0, G1, G2, . . . as shown below.

4.2. The asymptotic development

Diffusion dominates the solution at leading order to yield (G0η )
2 = 0, which can be integrated to give a constant value

G0η = G∗
0 (50)

revealing that, because of radical diffusion, the growth rate is uniform at leading order all across the mixing layer. The next
nontrivial equation in the asymptotic development follows from the balance

G∗
0 − DG2

1η
= WB (51)
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between accumulation, diffusion and branching, which can be solved to give

G1η = ±
√

G∗
0 − WB

D
(52)

This equation indicates that G∗
0 must be equal to the maximum branching rate G∗

0 = W ∗
B , because if G∗

0 were larger than W ∗
B ,

then (52) would include a monotonically increasing solution and a monotonically decreasing solution, neither of them being
valid, since they would lead to a radical-pool distribution diverging on one side of the mixing layer or on the other, and
if G∗

0 were smaller than W ∗
B , then there would exist a central region where G∗

0 < WB, giving imaginary values of G1,
corresponding to unrealistic oscillatory radical profiles.

The solution for G1 follows from integrating (52) with G∗
0 = W ∗

B to give

G1 = G∗
1 +

⎧⎨
⎩

− ∫ η
η∗

(W ∗
B−WB)1/2

D1/2 dη for η > η∗

+ ∫ η
η∗

(W ∗
B−WB)1/2

D1/2 dη for η < η∗
(53)

where the minus and plus branches are selected for η > η∗ and for η < η∗ to ensure a nondiverging behavior. The peak
value G1 = G∗

1 is obtained from the equation at the following order, which can be cast in the form

2DG2η = v − η

2
− (ρD)η

ρ
− Dη + G1/2 − DG1ηη

G1η

(54)

As can be seen, to avoid the appearance of a singularity in the function G2η at η = η∗ , where G1η = 0, the numerator in the
last term must vanish at that location, thereby giving

G∗
1 = 2D∗G∗

1ηη
= −(−2D∗W ∗

Bηη

)1/2
(55)

with the value of G∗
1ηη

= −[W ∗
Bηη

/(2D∗)]1/2 evaluated from higher-order derivatives of (51) at η = η∗ .

At the order resolved here the development gives

Y /ε = exp
[
W ∗

Bτ − (−2D∗W ∗
Bηη

)1/2
τ 1/2] × exp

[
±

η∫
η∗

(W ∗
B − WB)1/2

D1/2
dη

]
(56)

for the radical-pool distribution. The peak in the radical pool

Ymax = ε exp
[
W ∗

Bτ − (−2D∗W ∗
Bηη

)1/2
τ 1/2] (57)

is achieved at η = η∗ . Radical growth is uniform at leading order, with a branching rate equal to its peak value at η = η∗ .
The first-order correction, associated with diffusive radical loss, involves the square root of the radical diffusivity times the
curvature of the branching-rate distribution evaluated at η = η∗ .

4.3. Results from the asymptotics

The results of the asymptotic analysis are compared in Fig. 4 with results of numerical integrations of (46) for the
isothermal mixing layer. The leading-order prediction for the peak radical mass fraction

Ymax = ε exp
(
W ∗

Bτ
)

(58)

and the corrected expression (57) are compared in left-hand-side plot with the numerical results. As expected, the so-
lution (58) corresponding to radicals growing with the maximum branching rate tends to overpredict the radical-pool
concentration. Accounting for diffusive radical loss improves significantly the accuracy of the results, giving a variation of
Ymax with τ that is virtually indistinguishable from that obtained numerically for τ � 30 when plotted in logarithmic scale.

The full radical profiles are shown in the right-hand-side plot for different times. Reasonably good agreement is found
between the numerics and the analytical results, the most noticeable difference being the transverse location of the radical
peak Ymax. Thus, the asymptotic analysis for large times predicts Ymax to be at η = η∗ , with η∗ � 0.787 for the isothermal
case considered in the plot, whereas the numerical results give a peak in radical mass fraction closer to the fuel side. These
departures can be explained by noting that radical growth is initially controlled by the initiation reactions, with a rate
εXO2 XH2 in (46) that shows a maximum at η = 0 for the isothermal case. One may therefore expect radicals to initially
peak near the center of the mixing layer. This is observed in the profiles of Fig. 4, where the radical peak progressively
moves towards the air side as branching takes over for larger times, thereby approaching the asymptotic prediction.
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Fig. 4. The left-hand-side plot shows the evolution with time of the peak value of Y as obtained from numerical integration of (46) for T−∞ = 1, D = 1, and
ε = 10−6 (solid lines), from the leading-order prediction Ymax = ε exp[W ∗

Bτ ] (dot-dashed curves), and from the first-order correction Ymax = ε exp[W ∗
Bτ −

(−2D∗W ∗
Bηη

)1/2τ 1/2] (dashed curves). The right-hand-side plot compares the corresponding radical-pool profiles determined numerically (solid lines) with

the asymptotic prediction (56) (dashed curves).

4.4. Ignition time and ignition distance

Although including higher-order terms in (49) would increase the accuracy of the asymptotic development, the order
of the expansion considered here provides sufficient accuracy for most purposes. Predictions of ignition times follow from
using the ignition criterion Y = X∗

H2
MH/M , equivalent to the criterion C = CH2 employed in deriving (17), together with the

asymptotic predictions for the peak radical mass fraction given in (57) and (58). At leading order, the simple expression

tig = t∗
B ln

[
t∗

I /t∗
B

]
(59)

is obtained from (58) when small relative errors of order ln(ε−1) are neglected to write the term in the logarithm in
compact form. Here, t∗

B is the minimum of the branching time across the mixing layer, which can be computed from (15)
from the chemically frozen profiles of temperature and of oxygen and hydrogen mole fractions, and t∗

I is the corresponding
initiation time, evaluated from (6) at η = η∗ .

The mixing-layer analysis presented here can be applied in an approximate way to obtain estimates of autoignition dis-
tances lig in practical nonpremixed combustion devices by multiplying the ignition time (59) by an appropriately selected
average velocity. This simple approach, neglecting the effect of flow strain on the mixing and reaction in the mixing layer,
provides reasonable results. As an illustrative example, we consider the experiment of [10], including a hydrogen jet with
velocity 1780 m/s and temperature T ′−∞ = 545 K and a hot co-flow of vitiated air with oxygen mass fraction XO2 A = 0.201
at velocity 1420 m/s and temperature T ′∞ = 1250 K. The self-similar profiles T f and XH2 = 1− XO2/XO2 A , obtained from in-
tegrating (28)–(30), can be used in (15) to obtain the values η∗ = 1.347 and t∗

B = 2.5×10−6 s, and in (6) to give t∗
I = 26.73 s.

Substituting these two values in (59) then yields tig = 4.05 × 10−5 s that, when multiplied by an average convective veloc-
ity of 1600 m/s, finally gives lig = 6.47 cm for the ignition distance, very close to the value lig = 5.9 cm reported in the
experiment.

5. Concluding remarks

We have addressed here branched-chain explosions in mixing layers, which determine the lift-off distance of hydrogen–
air diffusion flames in high-speed combustion devices, such as SCRAMJETS. The development includes the derivation, based
on the disparity of chemical time scales, of an evolution equation for the radical pool that effectively corrects departures
of steady-state assumptions previously identified. The disparity of chemical times is also used in obtaining an analytical
solution for the chain-branching explosion. It is seen that radical diffusion causes radical growth to proceed at a uniform
rate at leading order all across the mixing layer, with a value associated with the minimum branching time t∗

B, found at an
intermediate location. Radical loss by diffusion enters at the following order to determine the shape of the radical profiles
and correct the resulting peak value.

Of interest for practical applications is the predictions of ignition times that may be derived from the analysis, including
the simple expression (59). Assuming the mixing-layer element to be convected with a mean velocity, intermediate between
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those of the two feed streams, results in predictions of ignition distances that compare well with previous experimental
results. The agreement found is illustrative of how simple analytical methods not only serve to clarify the effect of the
competing physicochemical phenomena but also produce quantitative results of practical applicability when the computation
includes an accurate account of density and transport properties, as done here when evaluating the controlling chemical
times t∗

B and t∗
I . The resulting demonstrated applicability of a highly simplified, but properly developed model to real-world

turbulent-combustion situations seems truly remarkable.
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