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The article is concerned with the experimentally known phenomenon of the precursor
shock driven by the detonation of a tubular charge. It is shown that the basic aspects of
the effect may be successfully captured within a one-dimensional two-phase version of the
Chapman–Jouguet (CJ) theory. A modified CJ principle for determination of the detonation
and precursor shock velocities is discussed.
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1. Introduction

Zeldovich [1], in his renowned paper of 1940 on the ZND model, asked a curious question: Can the gaseous detonation
propel a precursor shock, as occurs in deflagrative combustion? This issue seems never to have enjoyed further discussion,
presumably due to the realization that for the self-sustained CJ detonation higher speed precursor shocks are untenable (see
Appendix A). It transpires, however, that for multiphase systems Zeldovich’s question may well have a positive answer.

In 1947 Woodhead [2] reported an observation that detonation running through a solid charge with a longitudinal air-
filled channel is accompanied by an air-shock propelled ahead of the detonation at a velocity around twice that of the
detonation, Fig. 1. The emerging post-shock temperature is around 10,000 K, causing an intense luminosity of the shocked
gas [2–5]. The gas flow developing in the channel is highly energetic (∼ 10 km/s), which may be of practical interest, e.g.
for launching small high-velocity projectiles [6,7] – an effective means for impact engineering [8].

Although there is now a substantial volume of literature on the subject [2–19], a first-principle understanding of the key
interactions controlling the channel effect is still incomplete.

In the present study the problem is approached from the viewpoint that the tubular charge may be considered as a
special case of a gas-permeable porous explosive. One therefore may expect that the channel effect should have a coun-
terpart in the one-dimensional two-phase (gas–solid) picture widely employed in modeling of porous energetic materials.
Indeed, as shown below the channel effect is quite generic to gas-permeable systems, and may be successfully captured
even within the zero-reaction-zone CJ model. The familiar CJ principle of the minimum mass flux through the detonation,
combined with the requirement of the maximum mass flux through the precursor shock, allows fixing both the detonation
velocity as well as the velocity of the shock.

2. Formulation

Discarding transport effects, the set of conservation equations for the gas–solid mixture reads [20],

mass balance,

∂

∂t
(ϕgρg + ϕsρs) + ∂

∂x
(ϕgρg ug + ϕsρsus) = 0 (1)

* Corresponding author.
E-mail addresses: brailir@post.tau.ac.il (I. Brailovsky), grishas@post.tau.ac.il (G. Sivashinsky).
1631-0721/$ – see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.crme.2012.10.037

http://dx.doi.org/10.1016/j.crme.2012.10.037
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:brailir@post.tau.ac.il
mailto:grishas@post.tau.ac.il
http://dx.doi.org/10.1016/j.crme.2012.10.037


I. Brailovsky, G. Sivashinsky / C. R. Mecanique 340 (2012) 900–909 901
Fig. 1. Diagram for the channel effect. Arrows (also in Fig. 2) represent detonation and precursor shock velocities [5].

momentum balance,

∂

∂t
(ϕgρg ug + ϕsρsus) + ∂

∂x

(
ϕgρg u2

g + ϕg P g + ϕsρsu2
s + ϕs P s

) = 0 (2)

energy balance,

∂

∂t
(ϕgρg E g + ϕsρs Es) + ∂

∂x

[
ϕg ug(ρg E g + P g) + ϕsus(ρs Es + P s)

] = 0 (3)

E g = eg + 1

2
u2

g, Es = es + 1

2
u2

s (4)

ϕg + ϕs = 1 (5)

Here the subscripts s and g refer to the solid and the gas phase, respectively. The state variables for the phases are: ϕg , ϕs
– volume fractions; P g , P s – pressures; T g , Ts – temperatures; ρg , ρs – densities; ug , us – flow velocities; eg , es – specific
internal energies; E g , Es – total specific energies.

As in the CJ model, the reaction, converting the solid explosive into gaseous products, is assumed to occur instantly, i.e.
detonation is treated as a reactive discontinuity. Hence, ϕg = ϕ0, ϕs = 1 − ϕ0 ahead of the detonation front, and ϕg = 1,
ϕs = 0 in the products (ϕ0 is prescribed).

To complete the formulation the following additional assumptions are made:
1. The solid phase is incompressible and static,

ρs = ρs0, us = 0 (6)

2. Pressures in gas and solid phases are identical,

P g = P s = P (7)

which is a common enough premise in modeling two-phase media [21]. By virtue of conditions (6), this assumption does
not violate the hyperbolic character of the system.

3. Temperatures T g and Ts are coupled through the relation,

Ts = T0 + k(T g − T0) (8)

where T0 is the ambient temperature, and k is the heat-exchange parameter. At k = 0 the phases are thermally separated,
while at k = 1 the phases are in thermal equilibrium – an unlikely situation in supersonic combustion.

4. Equations of state for gas and solid phases are specified as,

eg = cg T g, es = cs Ts + Q (9)

P = [
γ (ϕg) − 1

]
ρgeg, ρs = ρs0 (10)

Here Q is the heat-release; cg , cs – specific heats, assumed to be constant; γ (ϕg) – adiabatic index; γp = γ (1), representing
strongly pressurized detonation products, is about twice γc = γ (ϕ0) for the gas inside the channel.

5. To somewhat reduce mathematical clutter in the subsequent discussion it is set,

cs = γccg (= cp) (11)

For solid propellants such as cyclic nitramines RDX and HMX, cs is slightly above cp [22]. So the case of cs = cp seems to
be quite representative [23].

Ahead of the precursor shock,

P = P0, ρg = ρg0, T g = T0, ug = ug0 = 0, ϕg = ϕ0 (12)

Upon initiation and some transient time period the profiles of pressure, temperature, density, and flow-velocity are expected
to assume simple step-like (though unsteady) structures as sketched in Fig. 2.
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Fig. 2. Typical profiles of pressure/density, and temperature/flow-velocity in the channel effect; ug0 = 0. Proportions are not to scale.

3. Rayleigh and Rankine–Hugoniot relations

On the precursor shock (x = D pst), as implied by Eqs. (1)–(3), the following jump conditions are held (see also Fig. 2):

mass flux continuity,

ρg1(D ps − ug1) = ρg0 D ps (13)

momentum flux continuity,

P1 − ϕ0ρg1ug1(D ps − ug1) = P0 (14)

energy flux continuity,

ϕ0ρg1 E g1(D ps − ug1) − ϕ0ug1 P1 + D ps(1 − ϕ0)ρs0 Es1 = ϕ0 D psρg0 E g0 + D ps(1 − ϕ0)ρs0 Es0 (15)

where, by virtue of Eqs. (6)–(12),

E g0 = 1

γc − 1

(
P0

ρg0

)
, E g1 = 1

γc − 1

(
P1

ρg1

)
+ 1

2
u2

g1 (16)

Es0 = γc

γc − 1

(
P0

ρg0

)
+ Q , Es1 = γc(1 − k)

γc − 1

(
P0

ρg0

)
+ γck

γc − 1

(
P1

ρg1

)
+ Q (17)

Here P0, ρg0, E g0, Es0 pertain to the state ahead of the advancing precursor shock, and P1, ρg1, E g1, Es1 – to the state
behind the shock.

Similarly, on the detonation front (x = Dt) the associated jump conditions read,

mass flux continuity,

ρg2(D − ug2) = ρa D (18)

where

ρa = (1 − ϕ0)ρs0 + ϕ0ρg1

(
1 − ug1

D

)
(19)

is the apparent density;

momentum flux continuity,

P2 − ρg2ug2(D − ug2) = P1 − ϕ0ρg1ug1(D − ug1) (20)
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energy flux continuity,

ρg2 E g2(D − ug2) − ug2 P2 = ϕ0ρg1 E g1(D − ug1) − ϕ0ug1 P1 + D(1 − ϕ0)ρs0 Es1 (21)

where

E g2 = 1

γp − 1

(
P2

ρg2

)
+ 1

2
u2

g2 (22)

For the precursor shock Eqs. (13)–(17) may be recast into the form of the equivalent Rayleigh and Rankine–Hugoniot (RRH)
relations,

P1 = P0 + ϕ0ρg0 D2
ps

(
1 − ρg0

ρg1

)
(23)

P1

[
ρg0

ρg1

(
γc + 1 − 2γc(1 − ϕ0)

γc − 1

)
+ 2kγcρs0(1 − ϕ0)

ρg1(γc − 1)
+ 2(1 − ϕ0) − 1

]

= P0

[
γc + 1 − 2(1 − ϕ0)

γc − 1
− ρg0

ρg1
+ 2kγcρs0(1 − ϕ0)

ρg0(γc − 1)

]
(24)

ug1 = D ps

(
1 − ρg0

ρg1

)
(25)

For the detonation the RRH relations, implied by Eqs. (18)–(22), read,

P2 = P1 + D2ρa

(
1 − ρa

ρg2

)
+ ϕ0ρg1ug1(ug1 − D) (26)

P2

[
ρa

ρg2

(
γp + 1

γp − 1

)
− 1

]
= P1

[
γc + 1 − 2(1 − ϕ0)

γc − 1
− ρa

ρg2
− 2γcϕ0

γc − 1

(
ug1

D

)]

+ ϕoρg1ug1(ug1 − D)

(
1 − ρa

ρg2
− ug1

D

)
+ 2ρs0(1 − ϕ0)(Q + cs Ts1) (27)

ug2 = D

(
1 − ρa

ρg2

)
(28)

4. Precursor-free mode

As in a single-phase non-reactive gaseous system the RRH relations (23), (24) yield two possible solutions for ρg1.
The first,

ρg1 = ρg0 (29)

and the second, defined by the relation,

ρg1

[
2γcϕ0

γc − 1
+ ϕ0ρg0 D2

ps(1 − 2(1 − ϕ0))

P0
+ 2kγcρs0(1 − ϕ0)

ρg0(γc − 1)

]

= ϕ0ρ
2
g0 D2

ps

P0

[
γc + 1 − 2γc(1 − ϕ0)

γc − 1
+ 2kγcρs0(1 − ϕ0)

ρg0(γc − 1)

]
(30)

The first solution pertains to the precursor-free mode where P1 = P0, T g1 = T0, ug1 = 0, and D ps therefore drops out of the
model. In this case for the minimum possible detonation velocity (CJ regime), as one would anticipate,

DCJ − ug2 = √
γp P2/ρg2 (31)

which is the sonic velocity in the products, and

DCJ �
√

2
(
γ 2

p − 1
)
(Q + cs T0) (32)

provided P2 � P0 and ρs0 � ρg0.
Up to the augmented heat-release and enhanced adiabatic index the situation is therefore similar to that of conventional

gaseous detonation.
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Fig. 3. D̂CJ vs. D̂ ps dependency calculated for γp = 3, γc = 1.4, σ = 0.1, α = 20,000(1 − ϕ0), ϕ0 = 0.6, k = 0. In all the figures, the hats on the labels have
been omitted, and the straight line represents the separatrix D̂CJ = D̂ ps .

For further discussion it is convenient to deal with scaled variables and parameters,

P̂ = P/P0, T̂ g = T g/Tb, ρ̂g = ρg/ρb, ûg = ug/ab

D̂ = D/ab, D̂ ps = D ps/ab, σ = T0/Tb, α = ρs0(1 − ϕ0)/ρb

Here,

Tb = T0 + Q /cp, ρb = P0/cg Tb(γc − 1), ab = √
γc P0/ρb

are the burned gas temperature, density and sonic velocity pertaining to isobaric deflagrative combustion.
For a set of parameters,

γc = 1.4, γp = 3, σ = 0.1, α = 20,000(1 − ϕ0), ϕ0 = 0.6

which may correspond, for example, to

P0 = 1 atm, T0 = 293 K, Tb = 2930 K, ρg0 = 0.001 g/cm3

ρb = 0.0001 g/cm3, ρs0 = 2 g/cm3, ab = 1172 m/s

calculation of the precursor-free CJ detonation yields,

D̂CJ = 6.322 (7409 m/s), P̂2 = 112,006 (113 kbar), ρ̂g2 = 10,675
(
1 g/cm3)

ûg2 = 1.581 (1854 m/s), T̂ g2 = 2.1 (6152 K)

which are in a reasonable enough range.

5. Precursor shock

Taking the precursor shock velocity D ps as a prescribed parameter, Eqs. (23), (24), (30) determine P1, ρg1, T g1, ug1 as
functions of D ps . This, in turn, uniquely defines the RRH relations (26), (27) for calculation of the CJ detonation.

Fig. 3 shows the D̂CJ(D̂ ps) dependency evaluated for the CJ tangency solution (minimum/maximum possible D̂ for a given
D̂ ps) at k = 0. Other parameters employed are identical to those of Section 4. Thus, there is a whole family of solutions with
D̂CJ < D̂ ps representing CJ detonations furnished with precursor shocks.

A somewhat unexpected feature of the emerging D̂CJ(D̂ ps) dependency is the turning point (maximum D̂ ps) beyond
which the solution for D̂CJ ceases to exist. It seems natural to suggest that this turning-point-solution is precisely the one
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Fig. 4. Hugoniot curves (bold) and Rayleigh lines (thin) calculated for the tangency (CJ) solutions at D̂ ps = 11 near the turning point (D̂ ps = 11.32, D̂CJ =
4.347). At the lower (a) and upper (b) CJ points D̂CJ = 3.266 and 5.016, respectively.

realized physically.1 Validation of this conjecture presumably may be attained through appropriate stability analysis, or high-
resolution numerical simulations, accounting for the reaction-zone structure and transport effects2 (see also Appendix A).

Fig. 4 shows the Hugoniot curves and Rayleigh lines (26), (27) of the tangency (CJ) solutions near the turning point. In
the two-phase problem the Hugoniot curve for the products depends on the flame velocity D . As a result, the upper and
lower tangency (CJ) points, for a given D ps , belong to different Hugoniot curves. This, in turn, allows merging of the upper
and lower branches of the D̂CJ(D̂ ps) curves at the turning point. In conventional single-phase systems the gap between the
upper and lower tangency points is unbridgeable.

Within the D̂CJ(D̂ ps) bubble the Hugoniot and Rayleigh lines do not intersect. Similar to single-phase systems, the up-
per/lower branch of the D̂CJ(D̂ ps) curve corresponds to the minimum/maximum possible D̂ .

At the turning point,

D̂ ps = 11.32 (13,267 m/s), D̂CJ = 4.347 (5095 m/s)

P̂1 = 803 (0.811 kbar), P̂2 = 54,388 (54.932 kbar)

ρ̂g1 = 157
(
0.016 g/cm3

)
, ρ̂g2 = 10,026

(
1 g/cm3)

ûg1 = 10.599 (12,422 m/s), ûg2 = 0.937 (1098 m/s)

T̂ g1 = 5.122 (15,007 K), T̂ g2 = 1.085 (3179 K)

D̂CJ − ûg2 =
√

γp P̂2/γcρ̂g2 (33)

which is a scaled version of Eq. (31).
The post-shock flow-velocity ug1 exceeds DCJ . So a part of the detonation products enters the channel. Note that while

the total mass flux of the gas–solid mixture is certainly conserved, this does not hold for the mass flux of the gas (due to
gasification of the charge).

The temperature in the shocked gas T g1 is significantly higher than in the products T g2. This outcome is perfectly in line
with experimental observations that the intense post-shock luminosity does not extend over the products [2,18,19].

1 An alternative condition ug1 = D [5,18,19] (impermeable piston assumption) brings D ps very close to D , which leaves a substantial body of experimen-
tal data uncovered [5].

2 The experience with other physical systems having similar non-uniqueness [24] shows that to ensure a ‘natural selection’ even minute dissipative
effects may be important.
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Fig. 5. D̂CJ vs. D̂ ps dependency calculated for ϕ0 = 0.496 (a) and 0.99 (b). For other conditions see the caption for Fig. 3.

As one would expect, the hydrodynamic profiles corresponding to the lower part of the D̂CJ(D̂ ps) curve are deflagration-
like, provided D̂ ps is low enough. For example, at D̂ ps = 0.5: D̂CJ = 0.0002, P̂1 = 1.26, P̂2 = 0.39, ρ̂g1 = 14.55, ρ̂g2 = 0.045,
ûg1 = 0.16, ûg2 = −4.30, T̂ g1 = 0.09, T̂ g2 = 1.72.

For sufficiently high and low porosities (ϕ0 < ϕ0,min = 0.498 and ϕ0 > ϕ0,max = 0.97) the turning point crosses the
separatrix D̂CJ = D̂ ps , ending up in the unphysical domain D̂CJ > D̂ ps (Fig. 5). This outcome is qualitatively in line with
experimental observations. According to Refs. [9,16,18], both for high and low porosities the channel effect disappears and
the conventional precursor-free regime becomes a preferable mode.

Note that under further reduction of ϕ0 the turning point escapes to infinity resulting in the break up of the D̂CJ(D̂ ps)

curve.
For the adopted formulation the lower threshold ϕ0,min = 0.498 is relatively high. It may however be lowered by replac-

ing the pressure equilibrium condition (7) by P s − P0 = β(P g − P0) with β < 1, presumably more adequate for gas–solid
systems in question [14,21].

Accounting for the heat exchange (k > 0) weakens the channel effect – the disparity between DCJ and D ps , and T g1 and
T g2 is diminished (Fig. 6). For example, for k = 0.001 at the turning point,

D̂ ps = 8.69 (10,185 m/s), D̂CJ = 4.688 (5494 m/s)

P̂1 = 568 (0.574 kbar), P̂2 = 62,909 (63.538 kbar)

ρ̂g1 = 408.449
(
0.004 g/cm3

)
, ρ̂g2 = 9923

(
0.99 g/cm3

)
ûg1 = 8.477 (9935 m/s), ûg2 = 1.002 (1174 m/s)

T̂ g1 = 1.391 (4076 K), T̂ g2 = 1.268 (3715 K)

It is curious that formally self-sustained gasification waves may well survive even in the absence of chemical heat-release
(Q = 0, σ = 1), Fig. 7.

D̂ ps = 22.98 (8525 m/s), D̂CJ = 3.919 (1454 m/s)

P̂1 = 331 (0.334 kbar), P̂2 = 44,072 (44.513 kbar)

ρ̂g1 = 15.277
(
0.015 g/cm3

)
, ρ̂g2 = 10,301

(
10.301 g/cm3

)
ûg1 = 21.476 (7323 m/s), ûg2 = 0.891 (331 m/s)

T̂ g1 = 21.671 (6350 K), T̂ g2 = 0.856 (251 K)

Here P0 = 1 atm, Tb = T0 = 293 K, ρb = ρ0 = 0.001 g/cm3, ab = a0 = 371 m/s.
A similar effect has recently been identified in the problem of conductive/convective burning of gas-permeable explo-

sives [25].
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Fig. 6. D̂CJ vs. D̂ ps dependency calculated for k = 0.001. For other conditions see the caption for Fig. 3.

Fig. 7. D̂CJ vs. D̂ ps dependency calculated for σ = 1. For other conditions see the caption for Fig. 3.

The channel effect also survives the distinguished limit combining high porosity (ϕ0 → 1) with strong disparity between
gas/solid densities (ρs0/ρb → ∞), while keeping the product α = (ρs0/ρb)(1 − ϕ0) finite. This limit leads to considerable
simplifications of the equations, which may be advantageous for theoretical explorations.

6. Concluding remarks

The present study demonstrates the compatibility of detonation-propelled shocks with the general thermodynamics of
gas-permeable systems. However, it does not explain why and when the precursor mode (when it is allowed) is physically
favored over the invariably present precursor-free mode. This issue needs further exploration.

In the proposed model the turning-point detonation (Section 5) appears to be slower than that for the gas-impermeable
cast explosive (ϕ0 = 0, D̂CJ = 6.325). Experimentally however, the situation is just the opposite: the detonation velocity is
enhanced by the channeling [2,4,5]. There are at least two major, and possibly related, ingredients unaccounted for in the
model which could be partially responsible for this discrepancy: (i) the conical profile of the detonation front in tubular
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charges, increasing its apparent velocity [4,18,19]; and (ii) compression induced lateral density increase within the shocked
part of the charge [5] – known to raise the detonation velocity.

The present model therefore definitely needs an enhancement. Yet whatever future shape it might take, the topology of
the found D̂CJ(D̂ ps) dependency, being based on fundamental principles, is unlikely to be altered.

On the other hand, if the tubular charge is replaced by a powdered charge of the same average density the resulting
detonation velocity may well fall considerably below that for the compact explosive [5, p. 30], which is qualitatively in line
with predictions of the current 1D model. In this case the detonation is likely to be preceded by a spontaneous channeling
of the powder [17], rather than its usual uniform compaction.
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Appendix A. Zeldovich’s problem

In the conventional gaseous detonation, assuming γ to be constant, the RRH relations for the precursor shock and
detonation read,

precursor shock,

P1 = P0 + D2
psρ0

(
1 − ρ0

ρ1

)
(A.1)

P1

[
ρ0

ρ1

(
γ + 1

γ − 1

)
− 1

]
= P0

(
γ + 1

γ − 1
− ρ0

ρ1

)
(A.2)

u1 = D ps

(
1 − ρ0

ρ1

)
(A.3)

detonation,

P2 = P1 + D2ρa

(
1 − ρa

ρ2

)
+ ρ1u1(u1 − D) (A.4)

P2

[
ρa

ρ2

(
γ + 1

γ − 1

)
− 1

]
= P1

[
γ + 1

γ − 1
− ρa

ρ2
− 2γ

γ − 1

(
u1

D

)]
+ ρ1u1(u1 − D)

(
1 − ρa

ρ2
− u1

D

)
+ 2ρ1 Q

(
1 − u1

D

)

(A.5)

u2 = D

(
1 − ρa

ρ2

)
(A.6)

where

ρa = ρ1

(
1 − u1

D

)
(A.7)

is the apparent density.
Eqs. (A.1), (A.2) yield two possible solutions for ρ1. The first one, ρ1 = ρ0, pertains to the conventional precursor-free

detonation. The second solution is defined by the relation,

ρ1

(
γ + 1

γ − 1
+ D2

psρ0

P0
+ 1

)
= D2

psρ
2
0

P0

(
γ + 1

γ − 1

)
(A.8)

Fig. A.1 shows the D̂CJ(D̂ ps) dependency calculated for the CJ tangency solutions. The upper curve pertains to the upper
tangency solution (CJ detonation), and the lower curve – to the lower tangency solution (CJ deflagration). For the CJ detona-
tion DCJ appears to be higher than D ps , i.e. the precursor shock is ruled out. However for the CJ deflagration and sufficiently
small D ps the precursor shocks are quite feasible.

The maximum possible D ps , where

DCJ = D ps =
√(

γ 2 − 1
)

Q /2 +
√(

γ 2 − 1
)

Q /2 + γ P0/ρ0 (A.9)

corresponds to the classical CJ detonation. But here it appears as a CJ deflagration of the shocked premixture.
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Fig. A.1. D̂CJ vs. D̂ ps dependency for gaseous system calculated for γ = 1.4, σ = 0.1. The reference scales employed are identical to those of Section 4.

At DCJ = D ps the deflagration and the precursor shock form a steady complex. Within the adopted formulation, however,
the gap between the reactive and shock interfaces remains undetermined.

Depending on whether the adopted formulation allows for the precursor shocks or not, the same propagation velocity
DCJ may occur either within the deflagrative or within the detonative set of solutions.

In the precursor shock formulation the detonation velocity DCJ corresponds to the maximum D ps . This lends extra weight
to the selection principle suggested for the two-phase problem.
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